搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

适用于ppb量级NO2检测的低功率蓝光二极管光声技术研究

靳华伟 胡仁志 谢品华 陈浩 李治艳 王凤阳 王怡慧 林川

引用本文:
Citation:

适用于ppb量级NO2检测的低功率蓝光二极管光声技术研究

靳华伟, 胡仁志, 谢品华, 陈浩, 李治艳, 王凤阳, 王怡慧, 林川

Photo-acoustic technology applied to ppb level NO2 detection by using low power blue diode laser

Jin Hua-Wei, Hu Ren-Zhi, Xie Pin-Hua, Chen Hao, Li Zhi-Yan, Wang Feng-Yang, Wang Yi-Hui, Lin Chuan
PDF
HTML
导出引用
  • 在405 nm处基于低功率蓝光二极管光声技术探测ppb量级NO2浓度系统, 获取了NO2有效吸收截面, 探讨了水蒸气等气体的测量干扰, 通过频率扫描拟合得到了1.35 kHz的谐振频率. 采用内部抛光的铝制圆柱空腔作为光声谐振腔(内径为8 mm, 长为120 mm), 系统优化了腔体、窗片和电源等影响因素, 分析了降低本底噪声、提高信噪比的方法, 噪声信号可降至0.02 $\text{μV}$. 设计了两级缓冲结构, 显著抑制了流量噪声的影响, 提高了系统的稳定性. 系统的标定梯度曲线经过线性拟合后的斜率为0.016 $\text{μV/ppb}$, R2为0.998, 在60 s平均时间下, 系统NO2探测限为3.67 ppb(3$\sigma$). 为了证实系统的测量结果, 将其与二极管激光腔衰荡光谱系统同步对比测量大气NO2浓度, 二者线性拟合后的斜率为0.94 ± 0.009, 截距为1.89 ± 0.18, 相关系数为0.87, 一致性较好. 实验结果表明, 该系统实现了ppb量级NO2浓度的低成本在线探测, 可用于NO2浓度外场的实时检测.
    Photo-acoustic technology based on a low power blue diode laser for measuring the ppb level NO2 is presented in this paper. A low-cost NO2 measurement system based on traditional photo-acoustic technology is established. The 405 nm blue diode laser with an external modulation is used as a light source. The central wavelength of the laser is 403.56 nm, the half-peak full width is 0.84 nm, and the power is 65.3 mW. The effective absorption cross section of NO2 is obtained, and the interference of the water vapor and other trace gasisinvestigated. The resonant frequency is tested to be 1.35 kHz by frequency scanning fitting. An internally polished and coated poly tetra fluoroethylene aluminum cylindrical cavity is used as a photo-acoustic resonator (the inner diameter is 8 mm and the length is 120 mm). The influence factors caused by cavity parameters, optical windows and power supply are studied. The system is optimized to reduce background noise and improve signal-to-noise ratio. Then the noise signal is dropped to 0.02 ${\text{μV}}$. An additional buffer chamber is integrated on the original buffer chamber to form a two-level buffer. The two-stage buffer structure significantly suppresses the effects of airflow noise and improves the system stability. The slope of the calibration curve of the system after linear fitting is 0.016 ${\text{μV/ppb}}$, and R2 is 0.998. The NO2 detection limit of system is 2 ppb (3$\sigma$) with an average time of 60 s. To verify the results of the system, a diode laser cavity ring-down spectroscopy system (CRDS system, using a 409 nm the diode laser, with a system detection limit of 6.6 × 10–1) is used to measure ambient NO2 simultaneouslyon Lake Dong-Pu in western Hefei, Anhui Province, China. During the experiment, the measured NO2 concentration ranges from 8 to 30 ppb, with an average concentration of 20.8 ppb. The results of two systems have good consistency:alinear fitting slope of 0.94 ± 0.009, an intercept of 1.89 ± 0.18 and acorrelation coefficient of 0.87. The experimental results show that the system can realize the low-cost on-line detection of the ppb level NO2, and it can also be used for the real-time detection of NO2 concentration field.
      通信作者: 胡仁志, rzhu@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 91644107, 61575206, 61805257)、国家重点研发计划(批准号: 2017YFC0209401, 2017YFC0209403, 2017YFC0209902)和安徽省高校优秀青年人才支持计划项目(2019年靳华伟)资助的课题.
      Corresponding author: Hu Ren-Zhi, rzhu@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91644107, 61575206, 61805257), the National Key R&D Program of China (Grant Nos. 2017YFC0209401, 2017YFC0209403, 2017YFC0209902), and the Outstanding Young Talents Program of Anhui University of China (2019 Jin Huawei).
    [1]

    Tapia V, Carbajal L, Vasquez V, Espinoza R, Vasquez-Velasquez C, Steenland K, Gonzales G F 2018 Revista Peruana De Medicina Experimental Y Salud Publica 35 190Google Scholar

    [2]

    Vasilkov A P, Joiner J, Oreopoulos L, Gleason J F, Veefkind P, Bucsela E, Celarier E A, Spurr R J D, Platnick S 2009 Atmosph. Chem. Phys. 9 6389Google Scholar

    [3]

    Song W, Jia H F, Li Z L, Tang D L 2018 Sci. Total Environ. 631-632 688Google Scholar

    [4]

    Salome C M, Brown N J, Marks G B, Woolcock A J, Johnson G M, Nancarrow P C, Quigley S, Tiong J 1996 Eur. Respir. J. 9 910Google Scholar

    [5]

    Seo H, Jeong R H, Boo J H, Song J, Boo J H 2017 Appl. Sci. Converg. Technol. 26 218

    [6]

    Meena G S, Jadhav D B 2007 Atmósfera 20 271

    [7]

    United States Environmental Protection Agency Website. http://www.epa.gov[2019-3-8]

    [8]

    Ryerson T B, Williams E J, Fehsenfeld F C 2000 J. Geophys. Res. 105 26447Google Scholar

    [9]

    Yang Y, Dong F Z, Ni Z B, Pang T, Zeng Z Y, Wu B, Zhang Z R 2014 Chin. Phys. B 23 040703Google Scholar

    [10]

    Karpf A, Rao G N 2009 Appl. Opt. 48 408Google Scholar

    [11]

    Dong L, Tittel F K, Li C G, Sanchez N P, Wu H P, Zheng C T, Yu Y J, Sampaolo A, Griffin R J 2016 Opt. Exp. 24 A528Google Scholar

    [12]

    单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 物理学报 66 220204Google Scholar

    Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204Google Scholar

    [13]

    胡仁志, 王丹, 谢品华, 陈浩, 凌六一 2016 光学学报 36 312

    Hu R Z, Wang D, Xie P H, Chen H, Ling L Y 2016 Acta Opt. Sin. 36 312

    [14]

    Fuchs H, Dube W P, Lerner B M, Wagner N L, Williams E J, Brown S S 2009 Environ. Sci. Technol. 43 7831Google Scholar

    [15]

    Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K D, Tang K, Liang S X, Meng F H, Hu Z K, Xie P H, Liu W Q, Häsler R 2018 Atmosph. Measur. Tech. 11 4531Google Scholar

    [16]

    Ventrillard I, Gorrotxategi-Carbajo P, Romanini D 2017 Appl. Phys. B 123 180

    [17]

    Liu K, Lewicki R, Tittel F K 2016 Sens. Actuat. B: Chemical 237 887Google Scholar

    [18]

    Lewicki R, Doty J H, Curl R F, Tittel F K, Wysocki G 2009 Proc. Nati. Acad. Sci. USA 106 12587Google Scholar

    [19]

    Volkamer R, Baidar S, Campos T L, Coburn S, DiGangi J P, Dix B, Koenig T K, Ortega I, Pierce B R, Reeves M, Sinreich R, Wang S, Zondlo M A, Romashkin P A 2015 Atmosph. Measur. Tech. 8 623

    [20]

    郁敏捷, 刘铭晖, 董作人, 孙延光, 蔡海文, 魏芳 2015 中国激光 42 351

    Yu M J, Liu M H, Dong Z R, Sun Y G, Cai H G, Wei F 2015 Chin. J. Lasers 42 351

    [21]

    Lu X, Qin M, Xie P H, Duan J, Fang W, Ling L Y, Shen L L, Liu J G, Liu W Q 2016 Chin. Phys. B 25 024210Google Scholar

    [22]

    Li A, Xie P H, Liu C, Liu J G, Liu W Q 2007 Chin. Phys. Lett. 24 2859Google Scholar

    [23]

    Thornton J A, Wooldridge P J, Cohen R C 2000 Analyt. Chem. 72 528Google Scholar

    [24]

    D'Ottone L, Campuzano-Jost P, Bauer D, Hynes A J 2001 J. Phys.Chem. A 105 10538Google Scholar

    [25]

    Yin X K, Dong L, Wu H P, Zheng H D, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2017 Sens. Actuat. B: Chemical 247 329Google Scholar

    [26]

    Yi H M, Liu K, Chen W D, Tan T, Wang L, Gao X M 2011 Optics Letters 36 481Google Scholar

    [27]

    Dong L, Wu H P, Zheng H D, Liu Y Y, Liu X L, Jiang W Z, Zhang L, Ma W G, Ren W, Yin W B, Jia S T, Tittel F K 2014 Opt. Lett. 39 2479Google Scholar

    [28]

    Waclawek J P, Moser H, Lendl B 2016 Opt. Express 24 6559Google Scholar

    [29]

    Sampaolo A, Csutak S, Patimisco P, Giglio M, Menduni G, Passaro V, Tittel F K, Deffenbaugh M, Spagnolo V 2019 Sens. Actuat. B: Chemical 282 952Google Scholar

    [30]

    Wu H P, Dong L, Zheng H D, Liu X L, Yin X K, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2015 Sens. Actuat. B: Chemical 221 666Google Scholar

    [31]

    DeMille S, DeLaat R H, Tanner R M, Brooks R L, Westwood N P C 2002 Chem. Phys. Lett. 366 383Google Scholar

    [32]

    张建锋, 潘孙强, 陈哲敏, 杨眉, 裘越 2017 光电子激光 28 194

    Zhang J F, Pan S Q, Chen Z M, Yang M, Qiu Y 2017 J. Optoelectron. Laser 28 194

    [33]

    Pourhashemi A, Farrell R M, Cohen D A, Speck J S, DenBaars S P, Nakamura S 2015 Appl. Phys. Lett. 106 160

    [34]

    Pourhashemi A, Farrell R M, Cohen D A, Becerra D L, DenBaars S P, Nakamura S 2016 Electron. Lett. 52 2003Google Scholar

    [35]

    Mohery M, Abdallah A M, Ali A, Baz S S 2016 Chin. Phys. B 25 050701Google Scholar

    [36]

    周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明 2018 物理学报 67 084201Google Scholar

    Zhou Y, Cao Y, Zhu G D, Liu K, Tan T, Wang L J, Gao X M 2018 Acta Phys. Sin. 67 084201Google Scholar

    [37]

    何应, 马欲飞, 佟瑶, 彭振芳, 于欣 2018 物理学报 67 020701Google Scholar

    He Y, Ma Y F, Tong Y, Peng Z F, Yu X 2018 Acta Phys. Sin. 67 020701Google Scholar

    [38]

    Voigt S, Orphal J, Burrows J P 2002 J. Photochem. Photobiol. A: Chemistry 149 1Google Scholar

  • 图 1  NO2-PAS系统示意图

    Fig. 1.  Schematic diagram of NO2-PAS system

    图 2  NO2和H2O的吸收截面以及蓝光二极管激光光谱

    Fig. 2.  Cross sections of NO2, H2O and diode laser spectrum

    图 3  光声池的频率响应

    Fig. 3.  Frequency response of the photo-acoustic cell

    图 4  表面处理影响分析及性能优化研究

    Fig. 4.  Impact analysis of surface treatment and study of performance optimization

    图 5  单缓冲和两级缓冲对本底噪声的对比研究

    Fig. 5.  Comparative study of background noise between one buffer and two buffer

    图 6  系统性能评估

    Fig. 6.  Performance evaluationof the system

    图 7  Allan方差分析图

    Fig. 7.  Analysis diagram of Allan variance

    图 8  环境大气NO2的进气系统

    Fig. 8.  Air intake system of atmospheric NO2 concentrations

    图 9  (a) PAS系统和CRDS系统测得的环境大气NO2浓度; (b)PAS系统和CRDS系统NO2测量结果对比

    Fig. 9.  (a) Simultaneous measurement of atmospheric NO2 concentrations by PAS and CRDS systems; (b) correlation between the atmospheric NO2 concentrations measured by PAS and CRDS systems

    表 1  测试结果比较

    Table 1.  Comparison of test results.

    明细 样气响应/${\text{μV}}$ 本底噪声/${\text{μV}}$
    腔体内表面处理前 94.33 ± 2.47 3.27 ± 0.34
    腔体内表面处理后 110.27 ± 1.04 2.86 ± 0.33
    光学窗片处理前 3.28 ± 0.34
    光学窗片处理后 3.13 ± 0.14
    线性电源 2.8 ± 0.16
    下载: 导出CSV
  • [1]

    Tapia V, Carbajal L, Vasquez V, Espinoza R, Vasquez-Velasquez C, Steenland K, Gonzales G F 2018 Revista Peruana De Medicina Experimental Y Salud Publica 35 190Google Scholar

    [2]

    Vasilkov A P, Joiner J, Oreopoulos L, Gleason J F, Veefkind P, Bucsela E, Celarier E A, Spurr R J D, Platnick S 2009 Atmosph. Chem. Phys. 9 6389Google Scholar

    [3]

    Song W, Jia H F, Li Z L, Tang D L 2018 Sci. Total Environ. 631-632 688Google Scholar

    [4]

    Salome C M, Brown N J, Marks G B, Woolcock A J, Johnson G M, Nancarrow P C, Quigley S, Tiong J 1996 Eur. Respir. J. 9 910Google Scholar

    [5]

    Seo H, Jeong R H, Boo J H, Song J, Boo J H 2017 Appl. Sci. Converg. Technol. 26 218

    [6]

    Meena G S, Jadhav D B 2007 Atmósfera 20 271

    [7]

    United States Environmental Protection Agency Website. http://www.epa.gov[2019-3-8]

    [8]

    Ryerson T B, Williams E J, Fehsenfeld F C 2000 J. Geophys. Res. 105 26447Google Scholar

    [9]

    Yang Y, Dong F Z, Ni Z B, Pang T, Zeng Z Y, Wu B, Zhang Z R 2014 Chin. Phys. B 23 040703Google Scholar

    [10]

    Karpf A, Rao G N 2009 Appl. Opt. 48 408Google Scholar

    [11]

    Dong L, Tittel F K, Li C G, Sanchez N P, Wu H P, Zheng C T, Yu Y J, Sampaolo A, Griffin R J 2016 Opt. Exp. 24 A528Google Scholar

    [12]

    单昌功, 王薇, 刘诚, 徐兴伟, 孙友文, 田园, 刘文清 2017 物理学报 66 220204Google Scholar

    Shan C G, Wang W, Liu C, Xu X W, Sun Y W, Tian Y, Liu W Q 2017 Acta Phys. Sin. 66 220204Google Scholar

    [13]

    胡仁志, 王丹, 谢品华, 陈浩, 凌六一 2016 光学学报 36 312

    Hu R Z, Wang D, Xie P H, Chen H, Ling L Y 2016 Acta Opt. Sin. 36 312

    [14]

    Fuchs H, Dube W P, Lerner B M, Wagner N L, Williams E J, Brown S S 2009 Environ. Sci. Technol. 43 7831Google Scholar

    [15]

    Duan J, Qin M, Ouyang B, Fang W, Li X, Lu K D, Tang K, Liang S X, Meng F H, Hu Z K, Xie P H, Liu W Q, Häsler R 2018 Atmosph. Measur. Tech. 11 4531Google Scholar

    [16]

    Ventrillard I, Gorrotxategi-Carbajo P, Romanini D 2017 Appl. Phys. B 123 180

    [17]

    Liu K, Lewicki R, Tittel F K 2016 Sens. Actuat. B: Chemical 237 887Google Scholar

    [18]

    Lewicki R, Doty J H, Curl R F, Tittel F K, Wysocki G 2009 Proc. Nati. Acad. Sci. USA 106 12587Google Scholar

    [19]

    Volkamer R, Baidar S, Campos T L, Coburn S, DiGangi J P, Dix B, Koenig T K, Ortega I, Pierce B R, Reeves M, Sinreich R, Wang S, Zondlo M A, Romashkin P A 2015 Atmosph. Measur. Tech. 8 623

    [20]

    郁敏捷, 刘铭晖, 董作人, 孙延光, 蔡海文, 魏芳 2015 中国激光 42 351

    Yu M J, Liu M H, Dong Z R, Sun Y G, Cai H G, Wei F 2015 Chin. J. Lasers 42 351

    [21]

    Lu X, Qin M, Xie P H, Duan J, Fang W, Ling L Y, Shen L L, Liu J G, Liu W Q 2016 Chin. Phys. B 25 024210Google Scholar

    [22]

    Li A, Xie P H, Liu C, Liu J G, Liu W Q 2007 Chin. Phys. Lett. 24 2859Google Scholar

    [23]

    Thornton J A, Wooldridge P J, Cohen R C 2000 Analyt. Chem. 72 528Google Scholar

    [24]

    D'Ottone L, Campuzano-Jost P, Bauer D, Hynes A J 2001 J. Phys.Chem. A 105 10538Google Scholar

    [25]

    Yin X K, Dong L, Wu H P, Zheng H D, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2017 Sens. Actuat. B: Chemical 247 329Google Scholar

    [26]

    Yi H M, Liu K, Chen W D, Tan T, Wang L, Gao X M 2011 Optics Letters 36 481Google Scholar

    [27]

    Dong L, Wu H P, Zheng H D, Liu Y Y, Liu X L, Jiang W Z, Zhang L, Ma W G, Ren W, Yin W B, Jia S T, Tittel F K 2014 Opt. Lett. 39 2479Google Scholar

    [28]

    Waclawek J P, Moser H, Lendl B 2016 Opt. Express 24 6559Google Scholar

    [29]

    Sampaolo A, Csutak S, Patimisco P, Giglio M, Menduni G, Passaro V, Tittel F K, Deffenbaugh M, Spagnolo V 2019 Sens. Actuat. B: Chemical 282 952Google Scholar

    [30]

    Wu H P, Dong L, Zheng H D, Liu X L, Yin X K, Ma W G, Zhang L, Yin W B, Jia S T, Tittel F K 2015 Sens. Actuat. B: Chemical 221 666Google Scholar

    [31]

    DeMille S, DeLaat R H, Tanner R M, Brooks R L, Westwood N P C 2002 Chem. Phys. Lett. 366 383Google Scholar

    [32]

    张建锋, 潘孙强, 陈哲敏, 杨眉, 裘越 2017 光电子激光 28 194

    Zhang J F, Pan S Q, Chen Z M, Yang M, Qiu Y 2017 J. Optoelectron. Laser 28 194

    [33]

    Pourhashemi A, Farrell R M, Cohen D A, Speck J S, DenBaars S P, Nakamura S 2015 Appl. Phys. Lett. 106 160

    [34]

    Pourhashemi A, Farrell R M, Cohen D A, Becerra D L, DenBaars S P, Nakamura S 2016 Electron. Lett. 52 2003Google Scholar

    [35]

    Mohery M, Abdallah A M, Ali A, Baz S S 2016 Chin. Phys. B 25 050701Google Scholar

    [36]

    周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明 2018 物理学报 67 084201Google Scholar

    Zhou Y, Cao Y, Zhu G D, Liu K, Tan T, Wang L J, Gao X M 2018 Acta Phys. Sin. 67 084201Google Scholar

    [37]

    何应, 马欲飞, 佟瑶, 彭振芳, 于欣 2018 物理学报 67 020701Google Scholar

    He Y, Ma Y F, Tong Y, Peng Z F, Yu X 2018 Acta Phys. Sin. 67 020701Google Scholar

    [38]

    Voigt S, Orphal J, Burrows J P 2002 J. Photochem. Photobiol. A: Chemistry 149 1Google Scholar

  • [1] 张铭珂, 高振威, 高光珍, 江宇豪, 蔡廷栋. 基于二极管激光消光光谱的高温气体与颗粒物同时探测研究. 物理学报, 2022, 71(19): 193301. doi: 10.7498/aps.71.20220866
    [2] 刘丽娴, 陈柏松, 张乐, 章学仕, 宦惠庭, 尹旭坤, 邵晓鹏, 马欲飞, MandelisAndreas. 面向工业园区的多组分痕量气体光声光谱同时检测. 物理学报, 2022, 71(17): 170701. doi: 10.7498/aps.71.20220613
    [3] 尹旭坤, 董磊, 武红鹏, 刘丽娴, 邵晓鹏. 面向SF6气体绝缘设备故障检测的光声CO气体传感器设计和优化. 物理学报, 2021, 70(17): 170701. doi: 10.7498/aps.70.20210532
    [4] 程刚, 曹渊, 刘锟, 曹亚南, 陈家金, 高晓明. 光声光谱检测装置中光声池的数值计算及优化. 物理学报, 2019, 68(7): 074202. doi: 10.7498/aps.68.20182084
    [5] 周彧, 曹渊, 朱公栋, 刘锟, 谈图, 王利军, 高晓明. 基于7.6 m量子级联激光的光声光谱探测N2O气体. 物理学报, 2018, 67(8): 084201. doi: 10.7498/aps.67.20172696
    [6] 曹亚南, 王贵师, 谈图, 汪磊, 梅教旭, 蔡廷栋, 高晓明. 基于可调谐二极管激光吸收光谱技术的密闭玻璃容器中水汽浓度及压力的探测. 物理学报, 2016, 65(8): 084202. doi: 10.7498/aps.65.084202
    [7] 林莹莹, 李葵英, 单青松, 尹华, 朱瑞苹. ZnSe/ZnS/L-Cys核壳结构量子点光声与表面光伏特性. 物理学报, 2016, 65(3): 038101. doi: 10.7498/aps.65.038101
    [8] 廖志贤, 罗晓曙, 黄国现. 两级式光伏并网逆变器建模与非线性动力学行为研究. 物理学报, 2015, 64(13): 130503. doi: 10.7498/aps.64.130503
    [9] 刘进, 邹莹, 司福祺, 周海金, 窦科, 王煜, 刘文清. 基于差分吸收光谱技术的大气痕量气体二维观测方法. 物理学报, 2015, 64(16): 164209. doi: 10.7498/aps.64.164209
    [10] 蓝丽娟, 丁艳军, 贾军伟, 杜艳君, 彭志敏. 可调谐二极管激光吸收光谱测量真空环境下气体温度的理论与实验研究. 物理学报, 2014, 63(8): 083301. doi: 10.7498/aps.63.083301
    [11] 陈应天, 何祚庥. 用于轴对称的两级光学聚光器的非成像二次反射镜. 物理学报, 2013, 62(13): 134209. doi: 10.7498/aps.62.134209
    [12] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究. 物理学报, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [13] 许雪梅, 戴鹏, 杨兵初, 尹林子, 曹建, 丁一鹏, 曹粲. 光声池中微弱光声信号检测. 物理学报, 2013, 62(20): 204303. doi: 10.7498/aps.62.204303
    [14] 余荣, 江月松, 余兰, 欧军. 利用散射光增强弱吸收固体混合物中主要光吸收物质的光声光谱特征. 物理学报, 2013, 62(8): 087802. doi: 10.7498/aps.62.087802
    [15] 许雪梅, 李奔荣, 杨兵初, 蒋礼, 尹林子, 丁一鹏, 曹粲. 基于光声光谱技术的NO,NO2气体分析仪研究. 物理学报, 2013, 62(20): 200704. doi: 10.7498/aps.62.200704
    [16] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊. 宽带腔增强吸收光谱技术应用于痕量气体探测及气溶胶消光系数测量. 物理学报, 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [17] 袁长迎, 炎正馨, 蒙瑰, 李智慧, 尚丽平. 高浓度气体共振光声光谱信号饱和特性研究. 物理学报, 2010, 59(10): 6908-6913. doi: 10.7498/aps.59.6908
    [18] 杨薇, 刘迎, 肖立峰, 高树理. 两级串联声光可调谐滤波器旁瓣抑制的研究. 物理学报, 2009, 58(1): 328-332. doi: 10.7498/aps.58.328
    [19] 李宜德, 杜英磊, 李纪焕, 吴柏枚. 光声谱研究多孔碳化硅的能带特性. 物理学报, 2003, 52(5): 1260-1263. doi: 10.7498/aps.52.1260
    [20] 胡恺生. 用高斯函数积分计算发光二极管(LED)的光视效能、功率效率和量子效率的方法. 物理学报, 1978, 27(6): 691-699. doi: 10.7498/aps.27.691
计量
  • 文章访问数:  8330
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-25
  • 修回日期:  2019-01-29
  • 上网日期:  2019-03-23
  • 刊出日期:  2019-04-05

/

返回文章
返回