搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤环形谐振腔的频率锁定及其特性

宋丽军 张鹏飞 王鑫 王晨曦 李刚 张天才

引用本文:
Citation:

光纤环形谐振腔的频率锁定及其特性

宋丽军, 张鹏飞, 王鑫, 王晨曦, 李刚, 张天才

Characteristics and control of fiber ring resonator

Song Li-Jun, Zhang Peng-Fei, Wang Xin, Wang Chen-Xi, Li Gang, Zhang Tian-Cai
PDF
HTML
导出引用
  • 基于可调分束比的光纤分束器, 制作了光纤环形谐振腔并通过调节分束比实现了对光纤环形谐振腔的欠耦合、临界耦合和过耦合的状态控制. 实验测量了腔最小反射率与腔损耗之间的关系, 获得光纤环形谐振腔的腔内衰减率为${\kappa _0}{\rm{ = }}2{\text{π}} \times \left( {1.60 \pm 0.03} \right)\;{\rm{ MHz}}$, 品质因子为$Q = \left( {1.10 \pm 0.02} \right) \times {10.8}$. 在此基础上, 结合了压电陶瓷拉伸光纤以控制腔长和Pound-Drever-Hall锁频两大技术优势, 克服了之前温度反馈控制等方法的反馈带宽窄、噪声大和稳定性差等问题, 实现了对光纤环形谐振腔共振频率的快速、灵敏的控制和锁定. 结果表明, 锁频过程中相位调制功率与相位调制引起腔反射光的强度调制之间的关系为线性关系, 进而通过降低相位调制信号的功率以减小相位调制对腔反射光强度调制的影响. 当调制功率设定最低为–9 dBm时, 光纤环形谐振腔仍能被稳定锁定. 该光纤环形谐振腔为其与原子、金刚石色心等发光粒子相互作用的腔量子电动力学实验研究奠定了坚实的基础.
    Optical resonators play an active role in fundamental research and applications in atomic fine spectra, laser generation, precision measurements, and quantum information processing because of their high-resolution spectra and strong optical field enhancement. The fiber ring resonators, as a derivative of the resonant resonators, have the advantages of simple structure, small size, stable performance and easy integration. The fiber ring resonators are widely used in fiber lasers, optical communication devices, optical fiber sensing, etc. In this paper, we demonstrate the characteristics of a fiber ring resonator based on a tunable fiber beam splitter experimentally. Control of under-coupling, critical coupling and over-coupling state of the fiber ring resonator can be achieved by adjusting the splitting ratio of the tunable fiber beam splitter. The relationship between the minimum resonator reflectance and resonator loss is given. The intrinsic decay rate of the fiber ring resonator is ${\kappa _0}{\rm{ = }}2{\text{π}} \times \left( {1.60 \pm 0.03} \right)\;{\rm{ MHz}}$, and the quality factor is $Q = \left( {1.10 \pm 0.02} \right) \times {10.8}$. The resonance frequency of the fiber ring resonator is controlled by stretching the fiber. The fiber resonator is kept straight and fixed on a self-made U-shaped holder by gluing two points. A piezoelectric transducer is used to change the distance between the two glued points. The fiber ring resonator length is changed and controlled when the fiber is stretched. The Pound-Drever-Hall technique is used to lock the resonator to resonance with the laser. The phase of the laser beam is modulated by using an electro-optical modulator, and two sidebands of the laser frequency are generated. Due to the phase sensitivity of the fiber resonator, the reflected light of the fiber resonator with an intensity modulation is observed when the fiber ring resonator is locked. The intensity modulation is caused by the interference between the resonance frequency and the sidebands of the fiber ring resonator. The reflected spectrum of the fiber ring resonator carries the same-frequency modulation as the phase modulation. This is a disadvantage for the usage of the fiber ring resonator. Thus, we reduce the phase modulation power to reduce the intensity modulation of the resonator reflectance. The linear relationship between the phase modulation power and the intensity modulation of the resonator reflectance caused by the phase modulation is obtained. The fiber ring resonator can be locked when the phase modulation power decreases to –9 dBm. The fiber ring resonator has laid a solid experimental foundation for experimental research on the interaction between the fiber ring resonator and quantum emitters such as atoms and color centers in diamond.
      通信作者: 张鹏飞, zhangpengfei@sxu.edu.cn ; 张天才, tczhang@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11574187, 11634008, 11674203, 61227902)和山西省“1331工程”重点学科建设计划资助的课题.
      Corresponding author: Zhang Peng-Fei, zhangpengfei@sxu.edu.cn ; Zhang Tian-Cai, tczhang@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grants Nos. 11574187, 11634008, 11674203, 61227902) and Shanxi Province “1331 Project” Key Discipline Construction Plan.
    [1]

    Kogelnik H, Li T 1966 Proc. IEEE 54 1312

    [2]

    刘涛, 张天才, 王军民, 彭堃墀 2002 量子光学学报 8 30Google Scholar

    Liu T, Zhang T C, Wang J M, Peng K C 2002 J. Quantum Opt. 8 30Google Scholar

    [3]

    张国威, 王兆民 2007 激光光谱学原理与技术 (北京: 北京理工大学出版社) 第87—93页

    Zhang G, Wang Z M 2007 Principles and Techniques of Laser Spectroscopy (Beijing: Beijing Institute of Technology Press) pp87—93 (in Chinese)

    [4]

    周炳琨, 高以智, 陈倜嵘, 陈家骅, 霍力 2014 激光原理(第七版)(北京: 国防工业出版社) 第14—18页

    Zhou B Z, Gao Y Z, Chen W, Chen J Y, Huo L 2014 Laser Principles (Seventh Edition) (Beijing: National Defense Industry Press) pp14—18 (in Chinese)

    [5]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351Google Scholar

    [6]

    Li P B, Gu Y, Gong Q H, Guo G C 2009 Phys. Rev. A 79 126

    [7]

    Stokes L F, Chodorow M, Shaw H J 1982 Opt. Lett. 7 288Google Scholar

    [8]

    高磊 2016 博士学位论文 (重庆: 重庆大学)

    Gao L 2016 Ph. D. Dissertation (Chongqing: University of Chongqing)

    [9]

    Pierre-Henri M, Olivier L, Gilles C 2008 IEEE Photon. Tech. L 20 1399Google Scholar

    [10]

    Ma H, Zhang J, Wang L, Lu Y, Ying D, Jin Z 2015 Opt. Lett. 40 5862Google Scholar

    [11]

    Tong L M, Gattass R R, Ashcomv J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816Google Scholar

    [12]

    成凡, 张鹏飞, 王鑫, 张天才 2017 量子光学学报 23 74

    Cheng F, Zhang P F, Wang X, Zhang T C 2017 J. Quantum Opt. 23 74

    [13]

    Hoffman J E, Ravets S, Grover J A, Solano P, Kordell P R, Wong-Campos J D, Orozco L A, Rolston S L 2014 Aip Adv. 067124

    [14]

    Nagai R, Aoki T 2014 Opt. Express 22 28427Google Scholar

    [15]

    Zhang P F, Cheng F, Wang X, Song L J, Zou C L, Li G, Zhang T C 2018 Opt. Express 26 31500Google Scholar

    [16]

    Jones D, Hickman G, Franson J, Pittman T 2016 Opt. Lett. 41 3683Google Scholar

    [17]

    Schneeweiss P, Zeiger S, Hoinkes T, Rauschenbeutel A, Volz J 2017 Opt. Lett. 42 85Google Scholar

    [18]

    Ruddell S K, Webb K E, Herrera I, Parkins A S, Hoogerland M D 2017 Optica 4 576Google Scholar

    [19]

    Wuttke C, Rauschenbeutel A 2013 Phys. Rev. Lett. 111 024301Google Scholar

    [20]

    Reynaud F, Boca J 1993 Pure Appl. Opt. 2 677Google Scholar

    [21]

    Jackson D A, Priest R G, Dandridge A, Tveten A B 1980 Appl. Opt. 19 2926Google Scholar

    [22]

    Reynaud F, Delaire E 1993 Electron. Lett. 29 1718Google Scholar

    [23]

    Coen S, Haelterman M, Emplit P, Delage L, Simohamed L M, Reynaud F 1998 J. Opt. Soc. Am. B 15 2283Google Scholar

    [24]

    Eric D, Black 2001 Am. J. Phys. 69 79

    [25]

    刘志强, 刘建丽, 翟泽辉 2018 量子光学学报 24 228

    Liu Z Q, Liu J L, Yan Z H 2018 J. Quantum Opt. 24 228

    [26]

    Spillane S M, Kippenberg T J, Painter O J, Vahala K J 2003 Phys. Rev. Lett. 91 043902Google Scholar

  • 图 1  (a) 光纤环形谐振腔及其光谱测量实验装置; (b)光纤拉伸支架

    Fig. 1.  (a) Fiber ring resonator and spectrum experiment device; (b) fiber tensile holder.

    图 2  PDH锁定实验装置示意图

    Fig. 2.  Schematic of PDH stabilization experiment device.

    图 3  可调谐分束器的分束比与旋钮旋转角度关系

    Fig. 3.  Splitting ratio as a function of angle of knob of fiber splitter.

    图 4  (a) 不同耦合态下的光纤环形谐振腔反射谱; (b) 最低反射率T随总衰减率κ的关系

    Fig. 4.  (a) Fiber ring resonator reflectance spectra with different coupling states; (b) minimum reflectance T as a function of κ.

    图 5  相位调制功率为12 dBm (a)和–9 dBm(b)的锁定结果

    Fig. 5.  Locking results when modulation power of phase is 12 dBm (a) and –9 dBm(b).

    图 6  (a)腔反射信号的频谱分析; (b)腔反射最大调制强度与无调制时的比值随相位调制功率的变化

    Fig. 6.  (a) Frequency spectra analysis of resonator reflectance; (b) power ratio of resonator reflectance modulated at maximum intensity and without modulation as a function of phase modulation power.

  • [1]

    Kogelnik H, Li T 1966 Proc. IEEE 54 1312

    [2]

    刘涛, 张天才, 王军民, 彭堃墀 2002 量子光学学报 8 30Google Scholar

    Liu T, Zhang T C, Wang J M, Peng K C 2002 J. Quantum Opt. 8 30Google Scholar

    [3]

    张国威, 王兆民 2007 激光光谱学原理与技术 (北京: 北京理工大学出版社) 第87—93页

    Zhang G, Wang Z M 2007 Principles and Techniques of Laser Spectroscopy (Beijing: Beijing Institute of Technology Press) pp87—93 (in Chinese)

    [4]

    周炳琨, 高以智, 陈倜嵘, 陈家骅, 霍力 2014 激光原理(第七版)(北京: 国防工业出版社) 第14—18页

    Zhou B Z, Gao Y Z, Chen W, Chen J Y, Huo L 2014 Laser Principles (Seventh Edition) (Beijing: National Defense Industry Press) pp14—18 (in Chinese)

    [5]

    Coddington I, Swann W C, Nenadovic L, Newbury N R 2009 Nat. Photonics 3 351Google Scholar

    [6]

    Li P B, Gu Y, Gong Q H, Guo G C 2009 Phys. Rev. A 79 126

    [7]

    Stokes L F, Chodorow M, Shaw H J 1982 Opt. Lett. 7 288Google Scholar

    [8]

    高磊 2016 博士学位论文 (重庆: 重庆大学)

    Gao L 2016 Ph. D. Dissertation (Chongqing: University of Chongqing)

    [9]

    Pierre-Henri M, Olivier L, Gilles C 2008 IEEE Photon. Tech. L 20 1399Google Scholar

    [10]

    Ma H, Zhang J, Wang L, Lu Y, Ying D, Jin Z 2015 Opt. Lett. 40 5862Google Scholar

    [11]

    Tong L M, Gattass R R, Ashcomv J B, He S L, Lou J Y, Shen M Y, Maxwell I, Mazur E 2003 Nature 426 816Google Scholar

    [12]

    成凡, 张鹏飞, 王鑫, 张天才 2017 量子光学学报 23 74

    Cheng F, Zhang P F, Wang X, Zhang T C 2017 J. Quantum Opt. 23 74

    [13]

    Hoffman J E, Ravets S, Grover J A, Solano P, Kordell P R, Wong-Campos J D, Orozco L A, Rolston S L 2014 Aip Adv. 067124

    [14]

    Nagai R, Aoki T 2014 Opt. Express 22 28427Google Scholar

    [15]

    Zhang P F, Cheng F, Wang X, Song L J, Zou C L, Li G, Zhang T C 2018 Opt. Express 26 31500Google Scholar

    [16]

    Jones D, Hickman G, Franson J, Pittman T 2016 Opt. Lett. 41 3683Google Scholar

    [17]

    Schneeweiss P, Zeiger S, Hoinkes T, Rauschenbeutel A, Volz J 2017 Opt. Lett. 42 85Google Scholar

    [18]

    Ruddell S K, Webb K E, Herrera I, Parkins A S, Hoogerland M D 2017 Optica 4 576Google Scholar

    [19]

    Wuttke C, Rauschenbeutel A 2013 Phys. Rev. Lett. 111 024301Google Scholar

    [20]

    Reynaud F, Boca J 1993 Pure Appl. Opt. 2 677Google Scholar

    [21]

    Jackson D A, Priest R G, Dandridge A, Tveten A B 1980 Appl. Opt. 19 2926Google Scholar

    [22]

    Reynaud F, Delaire E 1993 Electron. Lett. 29 1718Google Scholar

    [23]

    Coen S, Haelterman M, Emplit P, Delage L, Simohamed L M, Reynaud F 1998 J. Opt. Soc. Am. B 15 2283Google Scholar

    [24]

    Eric D, Black 2001 Am. J. Phys. 69 79

    [25]

    刘志强, 刘建丽, 翟泽辉 2018 量子光学学报 24 228

    Liu Z Q, Liu J L, Yan Z H 2018 J. Quantum Opt. 24 228

    [26]

    Spillane S M, Kippenberg T J, Painter O J, Vahala K J 2003 Phys. Rev. Lett. 91 043902Google Scholar

  • [1] 侯磊, 关舒阳, 尹俊, 张语军, 肖宜明, 徐文, 丁岚. 谐振腔-单层二硫化钼系统中的高阶腔耦合等离极化激元. 物理学报, 2024, 73(22): 227102. doi: 10.7498/aps.73.20241106
    [2] 胡裕栋, 宋丽军, 王晨曦, 张沛, 周静, 李刚, 张鹏飞, 张天才. 基于纳米光纤的光学法布里-珀罗谐振腔腔内模场的表征. 物理学报, 2022, 71(23): 234203. doi: 10.7498/aps.71.20221538
    [3] 李长亮, 陈智辉, 冯光, 王晓伟, 杨毅彪, 费宏明, 孙非, 刘一超. 基于波导-同心环形谐振腔模型的纳米流体荧光颗粒微位移检测. 物理学报, 2022, 71(20): 204702. doi: 10.7498/aps.71.20220771
    [4] 谷馨, 张惠芳, 李明雨, 陈俊雅, 何英. 三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析. 物理学报, 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [5] 朱子豪, 高有康, 曾严, 程政, 马洪华, 易煦农. 基于四盘形谐振腔耦合波导的三波段等离子体诱导透明效应. 物理学报, 2022, 71(24): 244201. doi: 10.7498/aps.71.20221397
    [6] 王雅君, 王俊萍, 张文慧, 李瑞鑫, 田龙, 郑耀辉. 光学谐振腔的传输特性. 物理学报, 2021, 70(20): 204202. doi: 10.7498/aps.70.20210234
    [7] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器. 物理学报, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [8] 刘景良, 陈薪羽, 王睿明, 吴春婷, 金光勇. 基于中红外光参量振荡器光束质量优化的90°像旋转四镜非平面环形谐振腔型设计与分析. 物理学报, 2019, 68(17): 174201. doi: 10.7498/aps.68.20182001
    [9] 祁云平, 张雪伟, 周培阳, 胡兵兵, 王向贤. 基于十字连通形环形谐振腔金属-介质-金属波导的折射率传感器和滤波器. 物理学报, 2018, 67(19): 197301. doi: 10.7498/aps.67.20180758
    [10] 李培, 王辅忠, 张丽珠, 张光璐. 左手介质对谐振腔谐振频率的影响. 物理学报, 2015, 64(12): 124103. doi: 10.7498/aps.64.124103
    [11] 刘俊, 张天恩, 张伟, 雷龙海, 薛晨阳, 张文栋, 唐军. 平面环形谐振腔微光学陀螺结构设计与优化. 物理学报, 2015, 64(10): 107802. doi: 10.7498/aps.64.107802
    [12] 李红霞, 江阳, 白光富, 单媛媛, 梁建惠, 马闯, 贾振蓉, 訾月姣. 有源环形谐振腔辅助滤波的单模光电振荡器. 物理学报, 2015, 64(4): 044202. doi: 10.7498/aps.64.044202
    [13] 崔立红, 颜昌翔, 赵维宁, 张新洁, 胡春辉. 失调多腔镜型环形谐振腔共轭光轴位置精度分析. 物理学报, 2015, 64(22): 224210. doi: 10.7498/aps.64.224210
    [14] 许杰, 周丽, 黄志祥, 吴先良. 含石墨烯临界耦合谐振器的吸收特性研究. 物理学报, 2015, 64(23): 238103. doi: 10.7498/aps.64.238103
    [15] 童星, 韩奎, 沈晓鹏, 吴琼华, 周菲, 葛阳, 胡晓娟. 基于光子晶体自准直环形谐振腔的全光均分束器. 物理学报, 2011, 60(6): 064217. doi: 10.7498/aps.60.064217
    [16] 王楠, 掌蕴东, 王金芳, 田赫, 王号, 张学楠, 张敬, 袁萍. 环中环结构谐振腔中的耦合谐振透明特性研究. 物理学报, 2009, 58(11): 7672-7679. doi: 10.7498/aps.58.7672
    [17] 李正红, 孟凡宝, 常安碧, 胡克松. 利用场耦合理论研究开放微波谐振腔. 物理学报, 2004, 53(11): 3627-3631. doi: 10.7498/aps.53.3627
    [18] 张裕恒. 强耦合超导薄膜的临界场. 物理学报, 1979, 28(6): 883-886. doi: 10.7498/aps.28.883
    [19] 方洪烈. 多元件谐振腔的正则描述. 物理学报, 1979, 28(3): 430-434. doi: 10.7498/aps.28.430
    [20] 林为干. 矩形波导与圆柱波导或圆柱谐振腔间的小孔耦合. 物理学报, 1959, 15(7): 368-376. doi: 10.7498/aps.15.368
计量
  • 文章访问数:  12779
  • PDF下载量:  309
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-29
  • 修回日期:  2019-02-04
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-05

/

返回文章
返回