搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

掺铌SrTiO3中的逆自旋霍尔效应

何冬梅 彭斌 张万里 张文旭

引用本文:
Citation:

掺铌SrTiO3中的逆自旋霍尔效应

何冬梅, 彭斌, 张万里, 张文旭

Inverse spin Hall effect in Nb doped SrTiO3

He Dong-Mei, Peng Bin, Zhang Wan-Li, Zhang Wen-Xu
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 采用磁控溅射法在未掺杂和掺杂的SrTiO3基片上沉积了NiFe薄膜, 通过翻转测试法分离出掺杂样品中的自旋整流电压和逆自旋霍尔电压. 研究结果表明: 在未掺杂的SrTiO3基片中, 翻转前后测试的电压曲线基本一致, 为NiFe薄膜自旋整流效应产生的电压. 对于掺Nb浓度x为0.028, 0.05, 0.1, 0.15, 0.2的SrTiO3基片, 分离出的逆自旋霍尔电压随掺杂浓度增加而减小, 在掺杂浓度为0.15和0.2的样品中没有探测到明显的逆自旋霍尔电压. 本文的结果表明, 在SrTiO3中掺入强自旋轨道耦合的杂质, 通过掺杂浓度可以实现对SrTiO3中逆自旋霍尔效应的调控, 这类可调控的自旋相关研究为自旋电子器件的研究和开发提供了更多的可能性, 具有很大的潜在应用价值.
    The inverse spin Hall effect (ISHE), namely spin flows converted into charge currents due to spin orbital interaction, is investigated extensively in heavy metals, such as Pt, W, Au, etc. Recently, the effect was also found in Cu doped with Au. Their difference is that the spin Hall effect is from the intrinsic effect which is related to the topological character of the electronic bands, while the ISHE is mainly from the extrinsic spin dependent scattering by the impurities. The impurity scattering can give opportunities to tune the effect, for example by impurity concentration, which is impossible by the intrinsic mechanism. In this work, we extend the material to the doped oxides. NiFe films are deposited on undoped and doped SrTiO3 substrates by magnetron sputtering, respectively. The spins are injected from the magnetic thin films by spin pumping through using a shorted microstrip transmission line fixture at different frequencies and room temperature. The spin rectification voltage and the inverse spin Hall voltage in the doped sample are separated by the inverting spin injection direction method, which is realized by flipping the samples. The results show that in the undoped SrTiO3 substrate, the voltage curves before and after flipping the sample are basically the same, which is due to the voltage generated by the spin rectification effect of the NiFe film. For Nb-doped SrTiO3 substrates with Nb concentration x = 0.028, 0.05, 0.1, 0.15 and 0.2, the inverse spin Hall voltage decreases with doping concentration increasing and is not detectable in sample with doping concentration of 0.15, nor with doping concentration of 0.2. The decrease of the ISHE effect may be due to the spin coherent length decreasing with the increase of the impurity concentration. The correlation between spin-charge conversion and transportation needs knowing in detail. Nevertheless, the results show that by doping strong spin-orbit coupling impurities into SrTiO3, thus by changing the doping concentration, the inverse spin Hall effect in SrTiO3 can be controlled. This tunable spin-charge conversion provides more possibilities for developing the spintronic devices and it will have great potential applications in the future.
      通信作者: 张文旭, xwzhang@uestc.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFB0406403)资助的课题.
      Corresponding author: Zhang Wen-Xu, xwzhang@uestc.edu.cn
    • Funds: Project supported by National Key R&D Program of China (Grant No. 2017YFB0406403).
    [1]

    Valenzuela S O, Tinkham M 2006 Nature 442 176Google Scholar

    [2]

    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601Google Scholar

    [3]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [4]

    Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar

    [5]

    Kumar A, Bansal R, Chaudhary S, Muduli P K 2018 Phys. Rev. B 98 104403Google Scholar

    [6]

    Nakayama H, Ando K, Harii K, Fujikawa Y, Kajiwara Y, Yoshino T, Saitoh E 2010 IEEE Trans. Magn. 46 2202Google Scholar

    [7]

    Jungwirth T, Qian N, Macdonald A H 2002 Phys. Rev. Lett. 88 207208Google Scholar

    [8]

    Guo G Y, Murakami S, Chen T W, Nagaosa N 2008 Phys. Rev. Lett. 100 096401Google Scholar

    [9]

    Bottegoni F, Ferrari A, Cecchi S, Finazzi M, Ciccacci F, Isella G 2013 Appl. Phys. Lett. 10215241 1

    [10]

    Ramaswamy R, Wang Y, Elyasi M, Motapothula M, Venkatesan T, Qiu X, Yang H 2017 Phys. Rev. Appl. 8 024034Google Scholar

    [11]

    Tse W K, Das S S 2006 Phys. Rev. Lett. 96 056601Google Scholar

    [12]

    Fert A, Levy P M 2011 Phys. Rev. Lett. 106 157208Google Scholar

    [13]

    Gradhand M, Fedorov D V, Zahn P, Mertig I 2010 Phys. Rev. Lett. 104 186403Google Scholar

    [14]

    Choi W Y, Kim H J, Chang J, Han S H, Abbout A, Saidaoui H B M, Manchon A, Lee K J, Koo H C 2018 Nano Lett. 18 7998Google Scholar

    [15]

    Zhang W, Peng B, Han F, Wang Q, Soh W T, Ong C K, Zhang W 2016 Appl. Phys. Lett. 108 102405Google Scholar

    [16]

    Wang Q, Zhang W, Peng B, Zhang W 2017 Aip. Adv. 7 125218Google Scholar

    [17]

    Mosendz O, Vlaminck V, Pearson J E, Fradin F Y, Bauer G E W, Bader S D, Hoffmann A 2010 Phys. Rev. B 82 214403Google Scholar

    [18]

    Ando K, Takahashi S, Ieda J, Kajiwara Y, Saitoh E 2011 J. Appl. Phys. 109 103913Google Scholar

    [19]

    Deorani P, Yang H 2013 Appl. Phys. Lett. 103 232408Google Scholar

  • 图 1  测试平台原理图

    Fig. 1.  Schematic diagram of the test platform

    图 2  NiFe/STO在不同频率下的测试曲线(a)及4.4 GHz时的翻转测试曲线(b)

    Fig. 2.  Voltages of NiFe/STO at different frequencies(a) and reversal test curves at 4.4 GHz before and after sample flip(b)

    图 3  NiFe/STO中铁磁共振线宽ΔH随频率f的变化曲线(a)和频率f随铁磁共振场Hr的变化曲线(b)

    Fig. 3.  Linewidth (ΔH) of ferromagnetic resonance varies with frequency f (a) and frequency f varies with resonance field(Hr) (b) in NiFe/STO

    图 4  NiFe/0.05Nb:STO体系3.4 GHz时的测试曲线, 插图为该体系3.4 GHz时的VSREVISHE随外磁场的变化曲线

    Fig. 4.  Test curve at 3.4GHz in NiFe/0.05Nb:STO, the inset shows the variation of VSRE and VISHE with external magnetic field at 3.4 GHz

    图 5  3.4 GHz时不同掺杂浓度的VISHE随外磁场的变化曲线

    Fig. 5.  Variation curve of VISHE with different doping concentrations with external magnetic field at 3.4 GHz

    图 6  各掺杂浓度样品频率f与线宽ΔH的拟合曲线, 插图为阻尼系数α与掺杂浓度的关系

    Fig. 6.  Fitting curves of frequency f and linewidth ΔH at different doping concentrations,the inset shows the relationship between the damping coefficient α and the doping concentration

  • [1]

    Valenzuela S O, Tinkham M 2006 Nature 442 176Google Scholar

    [2]

    Kimura T, Otani Y, Sato T, Takahashi S, Maekawa S 2007 Phys. Rev. Lett. 98 156601Google Scholar

    [3]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [4]

    Kato Y K, Myers R C, Gossard A C, Awschalom D D 2004 Science 306 1910Google Scholar

    [5]

    Kumar A, Bansal R, Chaudhary S, Muduli P K 2018 Phys. Rev. B 98 104403Google Scholar

    [6]

    Nakayama H, Ando K, Harii K, Fujikawa Y, Kajiwara Y, Yoshino T, Saitoh E 2010 IEEE Trans. Magn. 46 2202Google Scholar

    [7]

    Jungwirth T, Qian N, Macdonald A H 2002 Phys. Rev. Lett. 88 207208Google Scholar

    [8]

    Guo G Y, Murakami S, Chen T W, Nagaosa N 2008 Phys. Rev. Lett. 100 096401Google Scholar

    [9]

    Bottegoni F, Ferrari A, Cecchi S, Finazzi M, Ciccacci F, Isella G 2013 Appl. Phys. Lett. 10215241 1

    [10]

    Ramaswamy R, Wang Y, Elyasi M, Motapothula M, Venkatesan T, Qiu X, Yang H 2017 Phys. Rev. Appl. 8 024034Google Scholar

    [11]

    Tse W K, Das S S 2006 Phys. Rev. Lett. 96 056601Google Scholar

    [12]

    Fert A, Levy P M 2011 Phys. Rev. Lett. 106 157208Google Scholar

    [13]

    Gradhand M, Fedorov D V, Zahn P, Mertig I 2010 Phys. Rev. Lett. 104 186403Google Scholar

    [14]

    Choi W Y, Kim H J, Chang J, Han S H, Abbout A, Saidaoui H B M, Manchon A, Lee K J, Koo H C 2018 Nano Lett. 18 7998Google Scholar

    [15]

    Zhang W, Peng B, Han F, Wang Q, Soh W T, Ong C K, Zhang W 2016 Appl. Phys. Lett. 108 102405Google Scholar

    [16]

    Wang Q, Zhang W, Peng B, Zhang W 2017 Aip. Adv. 7 125218Google Scholar

    [17]

    Mosendz O, Vlaminck V, Pearson J E, Fradin F Y, Bauer G E W, Bader S D, Hoffmann A 2010 Phys. Rev. B 82 214403Google Scholar

    [18]

    Ando K, Takahashi S, Ieda J, Kajiwara Y, Saitoh E 2011 J. Appl. Phys. 109 103913Google Scholar

    [19]

    Deorani P, Yang H 2013 Appl. Phys. Lett. 103 232408Google Scholar

  • [1] 万煜炜, 王瑞, 周文权, 王一平, 蔡亚楠, 王常. Ag、Cu掺杂氧化石墨烯吸附NH3的第一性原理研究. 物理学报, 2025, 74(7): . doi: 10.7498/aps.74.20241737
    [2] 程宏阳, 马倩茹, 徐浩然, 张慧萍, 金钻明, 何为, 彭滟. 硅基自旋光电子学太赫兹辐射源特性. 物理学报, 2024, 73(16): 167801. doi: 10.7498/aps.73.20240703
    [3] 张冷, 张鹏展, 刘飞, 李方政, 罗毅, 侯纪伟, 吴孔平. 基于形变势理论的掺杂计算Sb2Se3空穴迁移率. 物理学报, 2024, 73(4): 047101. doi: 10.7498/aps.73.20231406
    [4] 马云鹏, 庄华鹭, 李敬锋, 李千. 应变增强Nb掺杂SrTiO3薄膜热电性能. 物理学报, 2023, 72(9): 096803. doi: 10.7498/aps.72.20222301
    [5] 颜俊, 王子毅, 曾若生, 邹炳锁. 零维Sb3+掺杂Rb7Bi3Cl16金属卤化物的三重态自陷激子发射. 物理学报, 2021, 70(24): 247801. doi: 10.7498/aps.70.20211024
    [6] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [7] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源. 物理学报, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [8] 宋邦菊, 金钻明, 郭晨阳, 阮舜逸, 李炬赓, 万蔡华, 韩秀峰, 马国宏, 姚建铨. Y3Fe5O12(YIG)/Pt异质结构中基于超快自旋塞贝克效应产生太赫兹相干辐射研究. 物理学报, 2020, 69(20): 208704. doi: 10.7498/aps.69.20200733
    [9] 张顺浓, 朱伟骅, 李炬赓, 金钻明, 戴晔, 张宗芝, 马国宏, 姚建铨. 铁磁异质结构中的超快自旋流调制实现相干太赫兹辐射. 物理学报, 2018, 67(19): 197202. doi: 10.7498/aps.67.20181178
    [10]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质. 物理学报, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [11] 阮璐风, 王磊, 孙得彦. Sr掺杂对La1-xSrxMnO3/LaAlO3/SrTiO3界面电子结构的影响. 物理学报, 2017, 66(18): 187301. doi: 10.7498/aps.66.187301
    [12] 程超群, 李刚, 张文栋, 李朋伟, 胡杰, 桑胜波, 邓霄. B, P掺杂β-Si3N4的电子结构和光学性质研究. 物理学报, 2015, 64(6): 067102. doi: 10.7498/aps.64.067102
    [13] 韩方彬, 张文旭, 彭斌, 张万里. NiFe/Pt薄膜中角度相关的逆自旋霍尔效应. 物理学报, 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
    [14] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [15] 郭熹, 王霞, 郑鹉, 唐为华. Eu掺杂TbMnO3多晶材料的介电性质. 物理学报, 2010, 59(4): 2815-2819. doi: 10.7498/aps.59.2815
    [16] 张云, 邵晓红, 王治强. 3C-SiC材料p型掺杂的第一性原理研究. 物理学报, 2010, 59(8): 5652-5660. doi: 10.7498/aps.59.5652
    [17] 徐新发, 邵晓红. Y掺杂SrTiO3晶体材料的电子结构计算. 物理学报, 2009, 58(3): 1908-1916. doi: 10.7498/aps.58.1908
    [18] 杜丽萍, 陈抱雪, 孙 蓓, 陈 直, 邹林儿, 浜中广见, 矶 守. 掺杂As2S8非晶态薄膜波导的光阻断效应. 物理学报, 2008, 57(6): 3593-3599. doi: 10.7498/aps.57.3593
    [19] 张加宏, 马 荣, 刘 甦, 刘 楣. 掺杂MgCNi3超导电性和磁性的第一性原理研究. 物理学报, 2006, 55(9): 4816-4821. doi: 10.7498/aps.55.4816
    [20] 初宝进, 李国荣, 殷庆瑞, 张望重, 陈大任. 非化学计量和掺杂对(Na1/2Bi1/2)0.92Ba0.08TiO3陶瓷电性能的影响. 物理学报, 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
计量
  • 文章访问数:  7809
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-22
  • 修回日期:  2019-03-18
  • 上网日期:  2019-05-01
  • 刊出日期:  2019-05-20

/

返回文章
返回