搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光晶格中超冷原子系统的磁激发

赵兴东 张莹莹 刘伍明

引用本文:
Citation:

光晶格中超冷原子系统的磁激发

赵兴东, 张莹莹, 刘伍明

Magnetic excitation of ultra-cold atoms trapped in optical lattice

Zhao Xing-Dong, Zhang Ying-Ying, Liu Wu-Ming
PDF
HTML
导出引用
  • 囚禁在光学晶格中的旋量凝聚体由于其长的相干性和可调控性, 使其成为时下热点的多比特量子计算的潜在候选载体, 清楚地了解该体系的自旋和磁性的产生和调控就显得尤为重要. 本文主要从理论上回顾了光晶格原子自旋链的磁性的由来和操控手段. 从激光冷却原子出发, 制备旋量玻色-爱因斯坦凝聚体, 并装载进光晶格, 最后实现原子自旋链, 对整个过程的理论研究进行了综述; 就如何产生和操控自旋激发进行了详细探讨, 其中包括磁孤子的制备; 讨论了如何将原子自旋链应用于量子模拟. 对光学晶格中的磁激发研究将会对其在冷原子物理、凝聚态物理、量子信息等各方向的应用起指导性作用.
    Spinor condensates trapped in optical lattices have become potential candidates for multi-bit quantum computation due to their long coherence and controllability. But first, we need to understand the generation and regulation of spin and magnetism in the system. This paper reviews the origin and manipulation of the magnetism of atomic spin chains in optical lattices. The theoretical study of the whole process is described in this paper, including laser cooling, the spinor Bose-Einstein condensate preparations, the optical lattice, and the atomic spin chain. Then, the generation and manipulation of magnetic excitations are discussed, including the preparation of magnetic solitons. Finally, we discuss how to apply atomic spin chains to quantum simulation. The theoretical study of magnetic excitations in optical lattices will play a guiding role when the optical lattice is used in cold atomic physics, condensed matter physics and quantum information.
      通信作者: 刘伍明, wmliu@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11434015, 61835013, 11728407, KZ201610005011, 11347159, 11604086)、国家科技攻关项目(批准号: 2016YFA0301500)、中国科学院战略性先导科技专项资助(批准号: XDB01020300, XDB21030300)和河南省教育厅自然科学项目(批准号: 01026631082, 14A140032)资助的课题.
      Corresponding author: Liu Wu-Ming, wmliu@iphy.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2016YFA0301500), the Nantional Natueral Science Foundation of China (Grant Nos. 11434015, 61835013, 11728407, KZ201610005011, 11347159,11604086), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos. XDB01020300, XDB21030300), and the Foundation of He'nan Educational Committee, China (Grant Nos. 01026631082,14A140032).
    [1]

    Xie Z W, Liu W M 2004 Phys. Rev. A 70 045602Google Scholar

    [2]

    杨树荣, 蔡宏强, 漆伟, 薛具奎 2011 物理学报 60 060304Google Scholar

    Yang S R, Cai H Q, Qi W, Xue J K 2011 Acta Phys. Sin. 60 060304Google Scholar

    [3]

    Cristiani M, Morsch O, Müller J H, Ciampini D, Arimondo E 2002 Phys. Rev. A 65 063612Google Scholar

    [4]

    Kolovsky A R, Maksimov D N 2016 Phys. Rev. A 94 043630Google Scholar

    [5]

    奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文 2010 物理学报 59 3720Google Scholar

    Xi Y D, Wang D L, Yu Y C, Wang F J, Ding J W 2010 Acta Phys. Sin. 59 3720Google Scholar

    [6]

    Li Z D, Li Q Y, He P B, Liang J Q, Liu W M, Fu G S 2010 Phys. Rev. A 81 015602Google Scholar

    [7]

    Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, Ketterle W 1998 Nature 396 345Google Scholar

    [8]

    Li L, Li Z D, Malomed B A, Mihalache D, Liu W M 2005 Phys. Rev. A 72 033611Google Scholar

    [9]

    Ieda J, Miyakawa T, Wadati M 2004 Phys. Rev. Lett. 93 194102Google Scholar

    [10]

    Zhang W P, Pu H, Search C, Meystre P 2002 Phys. Rev. Lett. 88 060401Google Scholar

    [11]

    Pu H, Zhang W P, Meystre P 2001 Phys. Rev. Lett. 87 140405Google Scholar

    [12]

    Gross K, Search C P, Pu H, Zhang W P, Meystre P 2002 Phys. Rev. A 66 033603Google Scholar

    [13]

    Li Z D, He P B, Li L, Liang J Q, Liu W M 2005 Phys. Rev. A 71 053611Google Scholar

    [14]

    Xie Z W, Zhang W P, Chui S T, Liu W M 2004 Phys. Rev. A 69 053609Google Scholar

    [15]

    Hemmerich A, Hänsch T W 1993 Phys. Rev. Lett. 70 410Google Scholar

    [16]

    Grynberg G, Lounis B, Verkerk P, Courtois J Y, Salomon C 1993 Phys. Rev. Lett. 70 2249Google Scholar

    [17]

    Bloch I 2005 Nat. Phys. 1 23

    [18]

    Fried D G, Killian T C, Willmann L, Landhuis D, Moss S C, Kleppner D, Greytak T J 1998 Phys. Rev. Lett. 81 3811Google Scholar

    [19]

    Zhao X D, Zhao X, Jing H, Zhou L, Zhang W P 2013 Phys. Rev. A 87 053627Google Scholar

    [20]

    Zhao X D, Geng Z D, Zhao X, Qian J, Zhou L, Li Y, Zhang W P 2014 Appl. Phys. B 115 451Google Scholar

    [21]

    Wilson C M, Johansson G, Pourkabirian A, Johansson J R, Duty T, Nori F, Delsing P 2011 Nature 479 376Google Scholar

    [22]

    Plunien G, Schützhold R, Soff G 2000 Phys. Rev. Lett. 84 1882Google Scholar

    [23]

    Yampolskii V A, Savelev S, Mayselis Z A, Apostolov S S, Nori F 2008 Phys. Rev. Lett. 101 096803Google Scholar

    [24]

    Saito H, Hyuga H 2008 Phys. Rev. A 78 033605Google Scholar

  • 图 1  (a)运动的原子和反向传输的激光; (b)吸收光子动量减少的原子; (c)原子随机辐射光子

    Fig. 1.  (a) Moving atoms and counter propagating laser; (b) atoms with reduced momentum after absorbing photons; (c) atoms radiate photons in random directions.

    图 2  偶极力捕获原子示意图 (a)红失谐; (b)蓝失谐

    Fig. 2.  Atoms are trapped by dipole force: (a) Red-detuning case;(b) blue-detuning case.

    图 3  一维、二维和三维光晶格的产生以及原子在晶格中分布的示意图 (a)一维光晶格; (b)二维光晶格; (c)三维光晶格[15,16]

    Fig. 3.  Optical lattice with different dimension and corresponding atomic distributions: (a) One-dimension case; (b) two-dimension case; (c) three-dimension case.

    图 4  $F = 1$旋量凝聚体的自旋畴示意图. 图(b)中, ${m_f} = \pm 1$时凝聚原子会分成三个畴而且有明显的边界, 相互作用会诱导畴边界交叠如图(a)和图(c)所示, 在图(c)中自旋畴已经没有了明显边界[7]

    Fig. 4.  Spin-domain diagrams for condensates with $F = 1$. The cloud is separated into three domains with distinct boundaries in (b), components ${m_f} = \pm 1$ are miscible as shown in (a), all three components are generally miscible in (c).

    图 5  原子自旋链中磁偶极-偶极相互作用诱导的自发磁化[11] 这里纵轴${m_z}$代表$z$方向的自发磁化强度, 横轴${B_\rho }$$x - y$平面上的外磁场强度, 虚线是平均场近似的结果, 数值模拟所得实线对应的是不同的格点填充数$N = 10,15,20$

    Fig. 5.  Spontaneous magnetization of atomic spin chain dominated by magnetic dipole-dipole interaction. ${m_z}$ is the magnetization components in the $z$-axis direction, ${B_\rho }$ is intensity of the external magnetic field. The dashed line represents the mean-field result and the solid lines, from left to right, correspond to the exact numerical results for a two-site lattice with $N = 10,15\;{\rm{ and }}\;20$ atoms.

    图 6  原子自旋链中自旋波的激发. 图的上部分是原子自旋链的铁磁基态示意图, 下部分是偶极-偶极相互作用下自旋进动在晶格方向的传播[18]

    Fig. 6.  Spin waves are excited in atomic spin chain in optical lattice. Top: ferromagnetic ground-state structure of the spinor BEC atomic spin chain. Bottom: spin in each lattice site processes in spin space and spin waves can be excited.

    图 7  通过控制外场实现磁孤子的产生 (a)红失谐光晶格中控制驱动光场和束缚场产生磁孤子, $Q$是驱动光场的强度, $W$是晶格的横向囚禁宽度, 空白的区域对应有磁孤子产生, 反之, 暗的区域不能激发磁孤子; (b)蓝失谐光晶格中调节束缚场来产生磁孤子, 蓝线、绿线和红线分别代表考虑近邻、次近邻和长程的结果, $f(W) > 0$代表有磁孤子激发[19]

    Fig. 7.  Magnetic soliton are excited by tuning external field: (a) Magnetic soliton are produced by tuning driving light field and trapping potential in red-detuning case, the vertical axis $Q$ stands for the intensity of the modulated laser, and thehorizontal axis $W$ represents the transverse width of the condensate, the blank region corresponds to the existence of solitons; (b) magnetic soliton are produced by tuning trapping potential in blue-detuning case, the three lines correspond to the nearest-neighbor approximation (blue), the next-nearest-neighbor approximation (green),and the continuum limit approximation (red), respectively, magnetic solitons occur in the region $f(W) > 0$.

    图 8  通过调节束缚场实现磁振子压缩态 实红线、绿虚线和黑实线分别对应于横向囚禁宽度为$w = 1.5{\lambda _{\rm{L}}},$$1.98{\lambda _{\rm{L}}},3.0{\lambda _{\rm{L}}}$的情况, ${F_k} < 0$代表产生了压缩[19]

    Fig. 8.  Spin waves are excited in atomic spin chain in optical lattice. We choose three transverse trapping widths of the condensate: $w = 1.5{\lambda _{\rm{L}}}$ (solid red line), $1.98{\lambda _{\rm{L}}}$ (dashed blue line), and $3.0{\lambda _{\rm{L}}}$ (dotted black line), respectively, the magnon squeezing states occur when ${F_k} < 0$.

    图 9  外磁场驱动下囚禁势中旋量凝聚体的横向和纵向的磁化随时间的演化 红线是横向的磁化${G_{\rm{T}}}$, 蓝线代表纵向的磁化${G_{\rm{L}}}$, 图中插图显示的是横向磁化被放大的过程[23]

    Fig. 9.  Time evolution of the average squared transverse magnetization ${G_{\rm{T}}}$ (red curve) and longitudinal magnetization ${G_{\rm{L}}}$ (blue curve), the exponential growth of ${G_{\rm{T}}}$ is shown in subgraph.

    图 10  不同强度的驱动场下自旋起伏的放大倍数随有效温度的变化 图中红色圈、绿色方块和蓝色三角分别代表我们选择的不同的驱动光场强度, 通过适当选择光场强度可以使磁振子激发产生指数形式的增长, 也就是动力学卡西米尔效应[18]

    Fig. 10.  Amplification factor as a function of the effective temperature under different intensities of the external modulation laser, the the dynamical Casimir effect at finite temperature take place if the proper parameters are selected.

  • [1]

    Xie Z W, Liu W M 2004 Phys. Rev. A 70 045602Google Scholar

    [2]

    杨树荣, 蔡宏强, 漆伟, 薛具奎 2011 物理学报 60 060304Google Scholar

    Yang S R, Cai H Q, Qi W, Xue J K 2011 Acta Phys. Sin. 60 060304Google Scholar

    [3]

    Cristiani M, Morsch O, Müller J H, Ciampini D, Arimondo E 2002 Phys. Rev. A 65 063612Google Scholar

    [4]

    Kolovsky A R, Maksimov D N 2016 Phys. Rev. A 94 043630Google Scholar

    [5]

    奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文 2010 物理学报 59 3720Google Scholar

    Xi Y D, Wang D L, Yu Y C, Wang F J, Ding J W 2010 Acta Phys. Sin. 59 3720Google Scholar

    [6]

    Li Z D, Li Q Y, He P B, Liang J Q, Liu W M, Fu G S 2010 Phys. Rev. A 81 015602Google Scholar

    [7]

    Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, Ketterle W 1998 Nature 396 345Google Scholar

    [8]

    Li L, Li Z D, Malomed B A, Mihalache D, Liu W M 2005 Phys. Rev. A 72 033611Google Scholar

    [9]

    Ieda J, Miyakawa T, Wadati M 2004 Phys. Rev. Lett. 93 194102Google Scholar

    [10]

    Zhang W P, Pu H, Search C, Meystre P 2002 Phys. Rev. Lett. 88 060401Google Scholar

    [11]

    Pu H, Zhang W P, Meystre P 2001 Phys. Rev. Lett. 87 140405Google Scholar

    [12]

    Gross K, Search C P, Pu H, Zhang W P, Meystre P 2002 Phys. Rev. A 66 033603Google Scholar

    [13]

    Li Z D, He P B, Li L, Liang J Q, Liu W M 2005 Phys. Rev. A 71 053611Google Scholar

    [14]

    Xie Z W, Zhang W P, Chui S T, Liu W M 2004 Phys. Rev. A 69 053609Google Scholar

    [15]

    Hemmerich A, Hänsch T W 1993 Phys. Rev. Lett. 70 410Google Scholar

    [16]

    Grynberg G, Lounis B, Verkerk P, Courtois J Y, Salomon C 1993 Phys. Rev. Lett. 70 2249Google Scholar

    [17]

    Bloch I 2005 Nat. Phys. 1 23

    [18]

    Fried D G, Killian T C, Willmann L, Landhuis D, Moss S C, Kleppner D, Greytak T J 1998 Phys. Rev. Lett. 81 3811Google Scholar

    [19]

    Zhao X D, Zhao X, Jing H, Zhou L, Zhang W P 2013 Phys. Rev. A 87 053627Google Scholar

    [20]

    Zhao X D, Geng Z D, Zhao X, Qian J, Zhou L, Li Y, Zhang W P 2014 Appl. Phys. B 115 451Google Scholar

    [21]

    Wilson C M, Johansson G, Pourkabirian A, Johansson J R, Duty T, Nori F, Delsing P 2011 Nature 479 376Google Scholar

    [22]

    Plunien G, Schützhold R, Soff G 2000 Phys. Rev. Lett. 84 1882Google Scholar

    [23]

    Yampolskii V A, Savelev S, Mayselis Z A, Apostolov S S, Nori F 2008 Phys. Rev. Lett. 101 096803Google Scholar

    [24]

    Saito H, Hyuga H 2008 Phys. Rev. A 78 033605Google Scholar

  • [1] 高吉明, 狄国文, 鱼自发, 唐荣安, 徐红萍, 薛具奎. 人工磁场下各向异性偶极玻色气体的量子相变. 物理学报, 2024, 73(13): 130503. doi: 10.7498/aps.73.20240376
    [2] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展. 物理学报, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [3] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合. 物理学报, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [4] 李婷, 汪涛, 王叶兵, 卢本全, 卢晓同, 尹默娟, 常宏. 浅光晶格中量子隧穿现象的实验观测. 物理学报, 2022, 71(7): 073701. doi: 10.7498/aps.71.20212038
    [5] 张志强. 简谐与光晶格复合势阱中旋转二维玻色-爱因斯坦凝聚体中的涡旋链. 物理学报, 2022, 71(22): 220304. doi: 10.7498/aps.71.20221312
    [6] 陈阳, 张天炀, 郭光灿, 任希锋. 基于集成光芯片的量子模拟研究进展. 物理学报, 2022, 71(24): 244207. doi: 10.7498/aps.71.20221938
    [7] 罗雨晨, 李晓鹏. 相互作用费米子的量子模拟. 物理学报, 2022, 71(22): 226701. doi: 10.7498/aps.71.20221756
    [8] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [9] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性. 物理学报, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [10] 王力, 刘静思, 李吉, 周晓林, 陈向荣, 刘超飞, 刘伍明. 旋量玻色-爱因斯坦凝聚体拓扑性质的研究进展. 物理学报, 2020, 69(1): 010303. doi: 10.7498/aps.69.20191648
    [11] 朱燕清, 张丹伟, 朱诗亮. 用光晶格模拟狄拉克、外尔和麦克斯韦方程. 物理学报, 2019, 68(4): 046701. doi: 10.7498/aps.68.20181929
    [12] 范桁. 量子计算与量子模拟. 物理学报, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [13] 陈海军. 变分法研究二维光晶格中玻色-爱因斯坦凝聚的调制不稳定性. 物理学报, 2015, 64(5): 054702. doi: 10.7498/aps.64.054702
    [14] 李艳. 从光晶格中释放的超冷玻色气体密度-密度关联函数研究. 物理学报, 2014, 63(6): 066701. doi: 10.7498/aps.63.066701
    [15] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性. 物理学报, 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [16] 赵旭, 赵兴东, 景辉. 利用光晶格自旋链中磁振子的激发模拟有限温度下光子的动力学 Casimir 效应. 物理学报, 2013, 62(6): 060302. doi: 10.7498/aps.62.060302
    [17] 杨树荣, 蔡宏强, 漆伟, 薛具奎. 光晶格中超流费米气体的能隙孤子. 物理学报, 2011, 60(6): 060304. doi: 10.7498/aps.60.060304
    [18] 周骏, 任海东, 冯亚萍. 强非局域光晶格中空间孤子的脉动传播. 物理学报, 2010, 59(6): 3992-4000. doi: 10.7498/aps.59.3992
    [19] 黄劲松, 陈海峰, 谢征微. 光晶格中双组分偶极玻色-爱因斯坦凝聚体的调制不稳定性. 物理学报, 2008, 57(6): 3435-3439. doi: 10.7498/aps.57.3435
    [20] 徐志君, 程 成, 杨欢耸, 武 强, 熊宏伟. 三维光晶格中玻色凝聚气体基态波函数及干涉演化. 物理学报, 2004, 53(9): 2835-2842. doi: 10.7498/aps.53.2835
计量
  • 文章访问数:  9492
  • PDF下载量:  208
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-27
  • 修回日期:  2019-02-11
  • 上网日期:  2019-02-19
  • 刊出日期:  2019-02-20

/

返回文章
返回