搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓝紫光发光二极管中的低频产生-复合噪声行为研究

王党会 许天旱

张文涛, 朱保华, 熊显名, 黄静. 原子运动速度对激光驻波场作用下纳米光栅沉积特性的影响. 物理学报, 2011, 60(6): 063202. doi: 10.7498/aps.60.063202
引用本文: 张文涛, 朱保华, 熊显名, 黄静. 原子运动速度对激光驻波场作用下纳米光栅沉积特性的影响. 物理学报, 2011, 60(6): 063202. doi: 10.7498/aps.60.063202
Zhang Wen-Tao, Zhu Bao-Hua, Xiong Xian-Ming, Huang Jing. Characteristics of deposition for neutral atoms in laser standing wave with different velocities. Acta Phys. Sin., 2011, 60(6): 063202. doi: 10.7498/aps.60.063202
Citation: Zhang Wen-Tao, Zhu Bao-Hua, Xiong Xian-Ming, Huang Jing. Characteristics of deposition for neutral atoms in laser standing wave with different velocities. Acta Phys. Sin., 2011, 60(6): 063202. doi: 10.7498/aps.60.063202

蓝紫光发光二极管中的低频产生-复合噪声行为研究

王党会, 许天旱

Low-frequency generation-recombination noise behaviors of blue/violet-light-emitting diode

Wang Dang-Hui, Xu Tian-Han
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 本文对GaN基InGaN/GaN多量子阱结构、蓝紫光发光二极管(light-emitting diode, LED)的电流噪声进行了测试, 电流测试范围为0.1—180 mA. 根据电流噪声的特点, 结合LED中载流子之间的产生-复合机制, 探讨了电流注入下LED中载流子的产生与复合机制和低频噪声产生的机理. 结论表明, 随着电流从0.1 mA逐渐增大到27 mA, LED中的电流噪声具有低频产生-复合(generation-recombination, g-r)噪声的特性; 当电流逐渐增大到50 mA及以上时, 电流噪声的行为接近1/f噪声. 采用电子元器件中公认的电流噪声模型, 拟合了低频电流噪声功率谱密度与频率之间的关系, 结合LED中载流子的输运机理和复合机制, 从理论上分析了LED在电流注入时g-r噪声幅值和转折频率的变化规律. 本文的结果提供了一种检测和表征多量子阱结构蓝紫光LED在电流逐渐增大过程中发光机制转变的有效手段, 为提高其发光量子效率提供理论依据.
    During the past two decades, GaN-based light-emitting diode has been used as a high-quality light-source. Low-frequency noise as a diagnostic tool for quality control and reliability estimation has been widely accepted and used for semiconductor devices. Understanding the origin of efficiency-droop effect is key to developing the ultimate solid-state light source. Various mechanisms that may cause this effect have been suggested, including carriers’ escape, loses due to dislocations, and the Auger effect. In this study, we investigate the low-frequency noise behaviors of GaN-based blue light-emitting diode with InGaN/GaN multiple quantum wells. The measured currents range from 0.1 mA to 180 mA. According to the characteristics of power spectral density of current noise and the generation-combination mechanism between electrons and holes in the active region of light-emitting diode (LED), we adopt the well-known model of low-frequency noise to fit the relationship between power spectral density of current and frequency, and find that there exists a transition between generation-combination and 1/f noise when the light-emitting diode begins to work. In other words, it can be derived that the low-frequency noise behaviors are dominated by generation-combination noise when the currents are between 0.1 mA and 27 mA; with the current gradually increasing, the origin source of low-frequency noise in blue/violet-light LED will transit to the 1/f noise. Through the analysis of the transport and recombination mechanism of the carriers, and combination with the model of low-frequency noise, we analyze the corner frequency of the generation-recombination noise. The results of this paper provide an effective tool and method to study the conversion of light-emitting diodes.
      PACS:
      32.80.pj
      42.50.Wk(Mechanical effects of light on material media, microstructures and particles)
      通信作者: 王党会, wdhyxp@163.com
      Corresponding author: Wang Dang-Hui, wdhyxp@163.com

    为了开发一种在高β下具有良好能量约束和良好磁流体动力学(MHD)稳定性的等离子体, 一种实现方案是, 使等离子体芯部处于第二稳定区, 且其芯部区域具有反磁剪切(s=(r/q)dq/dr<0)位形, 同时具有边缘输运垒[1-3]. 这里β=2μ0p/B2是等离子体压强与磁压强之比, s代表磁剪切, qr分别为安全因子和小半径; μ0指真空磁导率, p代表热压力, B表示磁场. 在实验上已证实这种反磁剪切位形有助于增强约束性能和保持等离子体稳定性[4]. 因为通过将反磁剪切与强环向旋转相结合, 可以使高β等离子体对短波长模和长波长模的稳定性得到增强. 磁剪切为负时, 短波长气球模得以进入第二稳定区. 反磁剪切还可稳定漂移型微观不稳定性, 从而改善等离子体芯部的能量约束[5]. 在形成反磁剪切、改善粒子输运和能量输运等方面, 中心为中空或零电流的等离子体具有许多优势. 迄今为止, 在JET[6,7], TFTR[8]和JT-60U[9]托卡马克上, 业已实现中空电流放电. 在DIII-D中空电流放电实验[1]中的等离子体电流上升阶段, 进行中性束加热和电子回旋加热, 也得到了中心为零或接近零电流密度的等离子体, 其持续时间长达1.1 s.

    另一方面, 利用气体加料技术, 在限制器托卡马克上能产生高密度放电, 但其能量约束时间较短. 利用弹丸注入来产生高密度等离子体, 则可以避免边缘处粒子再循环率的增加, 能够增进能量约束时间, 这是弹丸注入加料优于喷气加料之处[10]. 各国在这方面都开展过理论与实验研究. 其中, 在HL-1M和HL-2A装置上, 多次进行与弹丸注入放电相关的实验研究, 比如研究H模放电过程中辅以弹丸注入以稳定边缘局域模实验等[11-14]. 在托卡马克装置中, 可以通过深部弹丸注入获得性能增强的区域, 从而在芯部加热的等离子体中产生强峰值密度分布[15]. 在JET[16]装置上, 通过离子回旋共振频率加热, 将氘丸注入L型限制器等离子体中, 实现了增强性能的放电, 称为弹丸增强性能(PEP)模式. 早期在DIII[10]和JT-60[17]中使用中性束注入也获得了类似的结果. 与类似的非PEP脉冲相比, PEP模式的特点是中子率大幅度增加(约5倍), 电子密度ne和等离子体中心附近的动能峰值非常强, 整体能量约束时间可增加约20%. PEP模式是一种瞬态现象, 通常持续1—2 s, 最后会因中心压力的快速损失而终止[16].

    一般的中空电流是在电子密度低而电子温度高的条件下产生的. 在DIII-D[18]等大型托卡马克装置中, 通过使等离子体外部区域存在驱动电流, 同时生成一个高电子温度的核心区, 以此来获得中空电流等离子体. 一般是通过在放电早期应用中性束和ECR加热来实现中空电流放电, 同时可以使等离子体电流增大. 但这要求等离子体密度足够低, 以便获得射频穿透, 并获得较高的电子温度. 我们在HL-2A欧姆放电中, 采用冷冻弹丸分多次连续注入到等离子体芯部, 实现了中空电流和反剪切位形[12,19,20]. 与别的装置通过中心电子温度高度峰化的等离子体来实现中空电流放电不同, 冷冻弹丸注入会形成核心电子温度为弱中空的等离子体, 但中心密度很高. 这一实验的成功表明, 在核心区具有弱空心电子温度的等离子体在一定条件下, 如电子密度剖面中心峰化程度很高时, 也能产生中空电流. 这一过程及其物理值得深入研究, 这是本文研究的第一个出发点.

    如前所述, 中空电流放电可产生反转q剖面. 等离子体芯部负磁剪切区域被认为是由大量的自举电流造成的. 根据实验数据得出的中心电子和离子热导率比通常的反常值降低了1/3到1/2[21]. 输运系数的降低可能是由于等离子体中心存在负磁剪切[21,22]. 因为托卡马克最佳的q剖面应能最大限度地提高聚变性能[23], 同时还应提供MHD稳定的等离子体和良好的约束. 一般在电流等离子体刚刚形成、电流处于爬升阶段时, 进行辅助加热或辅助电流驱动[6,24], 以形成并维持中空电流剖面位形. 这个阶段的辅助加热简称“前期加热(preheating)”. 与此不同的是, HL-2A弹丸注入放电只有欧姆加热, 而并无辅助加热, 也无外加电流驱动, 但实验中电子热输运系数显著降低, 实现了弹丸增强性能放电. 这是一个值得研究的现象. 可以预期由中空电流导致的反转q剖面及反磁剪切位形在性能改善中起着关键作用. 本文将对此进行仔细研究.

    HL-2A装置典型弹丸注入放电的主要等离子体参数时间演化过程如图1所示. 其中, 等离子体电流Ip约为370 kA, 纵向磁场Bt= 2—2.4 T, 等离子体大半径R1.65 m, 小半径r0.4 m. 上述参数以及环电压Vloop、欧姆电流的时间演化如图1(a)(d)所示. 此外, 本实验垂直场线圈电流(Iv)和水平场线圈电流(Ir)分别约为23 kA和0.55 kA, 如图1(e)图1(f)所示. 弹丸发射器安装在弱场侧. 实验中, 连续发射3个冷冻弹丸, 分别在t=610,660710 ms时到达等离子体柱核心区. 由单道HCN激光干涉仪测量得到线平均电子密度, 如图1(g)所示, ˉne611,661711 ms这3个时间片处出现3个台阶, 表示随着每一次弹丸注入, 弹丸消融使电子密度跳跃式上升. 另外, 电子温度剖面由电子回旋辐射仪测量, 离子温度由电荷交换中性粒子分析仪测量. 磁探针所测量的信号在本文的平衡重建中也会用到. 在PEP脉冲中, 大部分MHD活动发生在等离子体的中心区域. MHD活动的研究涉及到许多不同极向和环向位置的诊断. 软X射线就是一种强大的局部诊断工具, 被用于本实验过程中MHD活动的诊断研究[12]. 本次实验放电中平均电子线密度从2.7×1019m3增加到5.1×1019m3.

    图 1 典型弹丸注入放电(4050炮)参数的时间演化 (a)等离子体电流$ {I}_{\mathrm{p}} $; (b)环电压$ {V}_{\mathrm{l}\mathrm{o}\mathrm{o}\mathrm{p}} $; (c)纵向磁场$ {B}_{\mathrm{t}} $; (d)欧姆电流$ {I}_{\mathrm{o}\mathrm{h}} $; (e) 垂直场线圈电流$ {I}_{\mathrm{v}} $; (f) 水平场线圈电流$ {I}_{\mathrm{r}} $; (g) 线平均电子密度$ {\bar {n}}_{\mathrm{e}} $\r\nFig. 1. Temporal evolutions of the typical pellet injection discharge: (a) Plasma current $ {I}_{\mathrm{p}} $; (b) loop voltage $ {V}_{\mathrm{l}\mathrm{o}\mathrm{o}\mathrm{p}} $; (c) longitudinal magnetic field $ {B}_{\mathrm{t}} $; (d) Ohmic current $ {I}_{\mathrm{o}\mathrm{h}} $; (e) vertical field coil current $ {I}_{\mathrm{v}} $; (f) horizontal field coil current $ {I}_{\mathrm{r}} $; (g) average line electron density $ {\bar {n}}_{\mathrm{e}} $.
    图 1  典型弹丸注入放电(4050炮)参数的时间演化 (a)等离子体电流Ip; (b)环电压Vloop; (c)纵向磁场Bt; (d)欧姆电流Ioh; (e) 垂直场线圈电流Iv; (f) 水平场线圈电流Ir; (g) 线平均电子密度ˉne
    Fig. 1.  Temporal evolutions of the typical pellet injection discharge: (a) Plasma current Ip; (b) loop voltage Vloop; (c) longitudinal magnetic field Bt; (d) Ohmic current Ioh; (e) vertical field coil current Iv; (f) horizontal field coil current Ir; (g) average line electron density ˉne.

    图2示出了典型弹丸注入放电性能参数. 如图2(a)图2(b)所示, 在t=710 ms第3次弹丸注入后, 极向βp有所降低, 在t=900 ms后才开始显著上升, 能量约束时间τE也同时有较大幅度的增加. 图2(c)是电子热扩散系数χe的时间演化. 从图2(c)可以看到, 在3次弹丸注入之后, χe值显著降低, 表明能量约束得到显著增强. 这也说明中空电流放电增强约束性能, 实现了弹丸增强性能放电.

    图 2 性能参数图 (a)极向$ {\beta }_{\mathrm{p}} $和能量约束时间$ {\tau }_{\mathrm{E}} $的时间演化; (b)离子温度$ {T}_{\mathrm{i}} $和热辐射强度$ {I}_{\mathrm{b}\mathrm{o}\mathrm{l}} $的时间演化; (c)电子热扩散系数$ {\chi }_{\mathrm{e}} $的时间演化, 其中阴影部分表示3次弹丸注入时间段\r\nFig. 2. Performance parameters: (a) The Poloidal $ {\beta }_{\mathrm{p}} $ and energy confinement time $ {\tau }_{\mathrm{E}} $; (b) ion temperature $ {T}_{\mathrm{i}} $ and thermal radiation intensity $ {I}_{\mathrm{b}\mathrm{o}\mathrm{l}} $; (c) electron thermal diffusivity $ {\chi }_{\mathrm{e}} $, where the shaded area represents the time period of the three pellet injections.
    图 2  性能参数图 (a)极向βp和能量约束时间τE的时间演化; (b)离子温度Ti和热辐射强度Ibol的时间演化; (c)电子热扩散系数χe的时间演化, 其中阴影部分表示3次弹丸注入时间段
    Fig. 2.  Performance parameters: (a) The Poloidal βp and energy confinement time τE; (b) ion temperature Ti and thermal radiation intensity Ibol; (c) electron thermal diffusivity χe, where the shaded area represents the time period of the three pellet injections.

    实验测量的软X射线强度如图3所示, 从上到下曲线对应的小半径r=2.5, 7.3, 12 和16.3 cm. 可见无锯齿放电持续时间约100 ms. 从t=820 ms开始出现锯齿. 从图3以及后面的研究中都会看到, 从t=713 ms开始, q = 1通量面被排除在等离子体外, 这种状态一直维持到815 ms. 在这之间约100ms长的时间间隔内, 连续地实现了中空电流放电. 而在820 ms后, q=1通量面开始常规地进入等离子体, 可以观察到蛇形扰动[19].

    图 3 不同通道的软X射线强度图, 从上到下曲线对应的$ r=2.5 $, $ 7.3 $, 12 和$ 16.3 $ cm\r\nFig. 3. Soft X-ray intensity diagram of different channels, where the curves from top to bottom correspond to $ r=2.5\;, $ $ 7.3\;, $  12 and 6.3 cm.
    图 3  不同通道的软X射线强度图, 从上到下曲线对应的r=2.5, 7.3, 12 和16.3 cm
    Fig. 3.  Soft X-ray intensity diagram of different channels, where the curves from top to bottom correspond to r=2.5, 7.3, 12 and 6.3 cm.

    为了分析弹丸注入放电的位形演化, 拟用EFIT平衡代码[25,26]来重建平衡位形[27]. 通过最小化1个成本函数来确定平衡. 该函数在Grad-Shafranov方程的约束下, 对模拟测量值和观测测量值之间的偏差进行评估, 通过使总的偏差最小化, 来得到平衡位形. HL-2A实验中, 可以测量真空室内的4个磁通环和18个极向场线圈信号, 以及等离子体电流、抗磁信号、总压力和离散点的安全因子. 磁通环位置的磁通量直接作为Grad-Shafranov方程的边界条件, 等离子体总电流等于电流密度的表面积分. 所有其他数量都通过成本函数的最小化来进行确定. 通过求磁通的极值来确定磁轴位置. 需要限定等离子体最后1个闭合磁面处压强为零, 压强梯度及其在轴上的导数也需限定为零值. 另外, 值得指出的是, 必须采用动理学拟合[25]来进行平衡重建. 在本研究中, 根据实验测量得到的压强剖面, 对全部可能的平衡位形进行了扫描和重建. 然后利用GATO程序[28]进行稳定性分析. 因此, 本文图例中涉及的所有位形都取自弹丸注入放电过程中稳定的平衡位形. 其中, 重建的放电位形均为限制器位形, 如图4所示.

    图 4 放电位形图\r\nFig. 4. Discharge configuration diagram.
    图 4  放电位形图
    Fig. 4.  Discharge configuration diagram.

    本次实验放电中弹丸注入导致电子密度和温度剖面剧烈变化, 如图5所示. 从第1个弹丸注入(t=610 ms)开始, 芯部电子密度剖面中心峰化程度越来越高, 在t=713 ms时达到最高, 然后峰度又逐渐降低. 从t613 ms开始, 芯部电子温度开始形成弱中空剖面, 在t=713 ms处中空度达到最高值, 此后, 电子温度剖面中空度逐渐变弱. 在t902 ms处, 电子密度剖面与电子温度剖面都完全恢复为中心峰化型. 后面的分析将揭示, 在t = 713 ms时形成“中空电流”密度分布, 持续时间约为100 ms.

    图 5 电子密度(a) 与电子温度(b) 的空间分布图\r\nFig. 5. Spatial distribution of electron density (a) and electron temperature (b).
    图 5  电子密度(a) 与电子温度(b) 的空间分布图
    Fig. 5.  Spatial distribution of electron density (a) and electron temperature (b).

    实验中, t=702,713,782902 ms四个时刻的电子温度剖面和电子密度剖面分别如图6(a)图6(b)所示. 因为弹丸注入导致粒子间的碰撞率很高, 于是, 离子密度与电子密度、离子温度与电子温度可看作近似相等. 由于等离子体的温度很高, 在注入前两个弹丸后, 等离子体没有充分冷却下来. 等离子体的中心温度分布在t=702 ms时仍然是平坦的, 如图6(a)中的蓝色点虚线所示. 在注入第3个弹丸后, 等离子体边缘的密度略有变化. 同时, 等离子体电子温度显著降低, 中心温度明显低于外围. 在图6(a)中用绿色虚线画出了t=713 ms时的电子温度剖面. 相较于此前(702 ms)和此后(782 和 902 ms), 713 ms时芯部电子温度最低, 电子密度峰值最高, 电子密度剖面如图6(b)所示.

    图 6 $ t=702, \;713, \;782, \;902 $ ms时的(a)电子温度剖面、(b)电子密度剖面和(c)电流剖面\r\nFig. 6. Electron temperature (a), electron density (b) and current (c) profiles at $ t=\mathrm{702, 713}, \;782 $ and $ 902 $ ms.
    图 6  t=702,713,782,902 ms时的(a)电子温度剖面、(b)电子密度剖面和(c)电流剖面
    Fig. 6.  Electron temperature (a), electron density (b) and current (c) profiles at t=702,713,782 and 902 ms.

    在此基础上进行了平衡重建. EFIT程序可以求解Grad-Shafranov方程, 得到的平衡将极向磁通和环向磁通函数映射到物理空间坐标系. 平衡重建以环向磁通的归一化平方根(ψ)作为归一化径向坐标, 所求得的各参数剖面是径向坐标ψ的函数. 图6(c)所示为重建计算出的电流剖面, 为方便比较, 在这里依然采用归一化小半径ρ作为横坐标. 由图6(c)可以看到: t=713 ms时, 在等离子体中形成了中空电流密度分布. 在t=782 ms时, 中心电子温度显著升高, 压强也升高, 压强剖面中心略显平坦, 电流密度呈更显著的中空分布; t=782 ms时的位形是最有代表性的稳定的中空电流放电阶段. 在此之后, 由于没有中空电流维持机制, 中空电流逐渐变窄, 到902 ms时, 电流密度剖面又再次恢复到尖峰剖面形态, 中空电流放电结束, 但欧姆放电继续进行.

    在典型托卡马克等离子体中, 等离子体核心区存在显著的电流, 电流密度在轴上达到峰值. 在本实验中, 冷冻弹丸注入后, 随着弹丸消融, 中心电子温度降低, 电子密度快速升高. EFIT重建结果表明, 芯部电流有较大幅度降低. 然而, 在中空电流的边缘, 极向场急剧上升, 从而形成了强烈的温度、密度和压强梯度, 如图6(a)图6(b)所示. 物理上, 由于放电中心有足够高的密度, 同时有暂时性低的在轴温度, 使得温度剖面是中空的, 从而构成了高的离轴压强梯度, 压强梯度驱动离轴自举电流, 电流在冷等离子体中扩散很快, 形成中空电流. 但是, 由于自举电流份额不足, 上述因素并不是弹丸注入放电中空电流形成的主要方面. 对于这种放电, 中空电流形成的另一个原因是, 由于冷冻弹丸注入到等离子体中心, 使电流向内扩散受到抑制, 造成中心等离子体电流减弱或部分消失, 电流更多地分布在外部区域.

    作为对比, 给出t=702713 ms时的两个稳定平衡位形的动理学参数剖面, 如图7所示. 其中横坐标ρ是归一化小半径(图7(a)(d)), 另一横坐标是归一化磁通ψ (图7(e)(h)). 需要注意的是, 在这里q-剖面被限制为与实验的总等离子体电流相匹配, 这基本上决定了边缘q值. 如图7所示, t=702 ms时电流密度为中心峰化剖面, 电子密度呈中心峰化, 安全因子剖面是随ψ单调增加的. 而在t=713 ms, 中心电子密度从702 ms时的4.5×1019m3增加到约7.05×1019m3, q剖面反转, 最小值qmin约为1.6, 位于ψ=0.22处, q0q95分别为1.83. 这是一种反剪切位形.

    图 7 $ t=702 $和$ 713 $ ms时的动理学剖面图 (a), (b) 电子温度; (c), (d) 电子密度; (e), (f) q剖面; (g), (h) 平均电流密度$ \left\langle{{j}_{t}}\right\rangle $\r\nFig. 7. Kinetic profiles at t = 702 and 713 ms: (a), (b) Electron temperature; (c), (d) electron density; (e), (f) q profiles; (g), (h) average current density $ \left\langle{{j}_{t}}\right\rangle $ profile.
    图 7  t=702713 ms时的动理学剖面图 (a), (b) 电子温度; (c), (d) 电子密度; (e), (f) q剖面; (g), (h) 平均电流密度jt
    Fig. 7.  Kinetic profiles at t = 702 and 713 ms: (a), (b) Electron temperature; (c), (d) electron density; (e), (f) q profiles; (g), (h) average current density jt profile.

    t=702 ms时电流剖面是峰状的, 这有利于稳定外扭曲模. t=713 ms时芯部电子密度很高, 有较高的梯度, 但芯部电子温度宽平, 略呈中空分布, 导致压强剖面变平并略带中空型, 这样的压强剖面有利于稳定气球模, 以及离子温度梯度(ITG)模、俘获电子模(TEM)等微观不稳定性模. 中空电流等离子体可以形成负中心剪切(negative central shear, NCS). 强的密度和温度梯度可产生显著的自举电流, 这些梯度的建立同时也扩大了中空电流. 与此同时, 中空电流的出现导致压强剖面在芯部进一步变平, 而平的和宽的压强剖面有利于MHD稳定性. 上述这些因素有利于等离子体约束性能的提高.

    为了分析反磁剪切位形及其在PEP中的作用, 给出750,782,902 ms时的电流剖面、q剖面和压强梯度剖面, 如图8所示. 图8(b)表明t=750, 782 ms时形成了反磁剪切位形. 此时, 等离子体电流呈中空分布(图8(a)), q分布呈弱反转剖面, 最小qqmin分别位于ψ0.21,0.3处, 在qmin所在小半径处有最大的压强梯度(图8(b)图8(c)中竖直虚线所示). 在t=902 ms时等离子体电流呈常规的中心峰化分布, q剖面呈单调上升分布, 如图中蓝色短划线曲线所示; q0约为0.95—1.05, 比本图另两例的轴安全因子小得多. 我们已经知道, 在t = 713—820 ms阶段, 密度剖面峰化程度高, 压强剖面足够尖, 具备形成PEP放电的条件. 图8(c)示出了压强梯度峰化情况. 由实际实验结果可知, t=750782 ms时, 最小的梯度相关长度:

    图 8 $ t=750, 782, 902 $ ms 时, (a) 电流密度$ \left\langle{{j}_{t}}\right\rangle $、(b) 安全因子q、(c)压强梯度$ \mathrm{d}P/\mathrm{d}\psi $剖面图. (b)中的“o”表示$ 900 $ ms时刻q测量值, 与重建的q剖面相应点基本重合\r\nFig. 8. : (a) Current density $ \left\langle{{j}_{\mathrm{t}}}\right\rangle $, (b) safety factor q, (c) pressure gradient $ \mathrm{d}P/\mathrm{d}\psi $ at $ t=710, \;782 $ and $ 902 $ ms. And the symbols “o” in panel (b) represent the measured q values.
    图 8  t=750,782,902 ms 时, (a) 电流密度jt、(b) 安全因子q、(c)压强梯度dP/dψ剖面图. (b)中的“o”表示900 ms时刻q测量值, 与重建的q剖面相应点基本重合
    Fig. 8.  : (a) Current density jt, (b) safety factor q, (c) pressure gradient dP/dψ at t=710,782 and 902 ms. And the symbols “o” in panel (b) represent the measured q values.
    lp=(|1pdpdψ|)10.1<a/2.

    并且, 这种小的梯度相关长度是因弹丸注入造成尖峰化密度剖面而形成的. 显然, 本阶段可以归类于PEP放电[29]. 虽然可以看到在qmin所在位置附近有内部输运垒(ITB)形成的趋势, 但是, 并没有ITB已经形成的明显迹象. 需要说明, 图8(b)中的“o”表示实验测量的900 ms时刻的q值, 与重建的q剖面(蓝色虚线所示)基本重合.

    JET实验证实了前期辅助加热阶段的ITB主要由剪切s控制[18], 在s0的区域内, ITB大致是存在的. 本实验中, t=750782 ms时都存在反剪切(s0)区域, 但没有明显的ITB形成. 事实上, 欧姆加热要形成明显的ITB, 需要很高的加热功率. 显然, 对于像本实验这类无辅助加热的中空电流放电, 不能单纯以s0作为判断ITB存在的唯一依据.

    为进一步分析可能存在的反磁剪切位形, 给出在t=782ms,q0=3.2时, 对不同βp进行理论计算得到的平衡位形的q分布, 如图9(a)所示. 其中A, B, C, D曲线分别对应于βp=0.45,0.565,0.6150.7四种个例. 同时给出βp对应平衡的GATO稳定性计算结果, 如图9(b)所示, 其中归一化增长率ˆγ2=γ2/ω2A, ωA指阿尔芬频率. 图9(b)还给出另外两个点(βp=0.550.575)处的归一化增长率.

    图 9 $ t=782\;\mathrm{m}\mathrm{s}, {q}_{0}=3.2 $时, (a)不同$ {\beta }_{\mathrm{p}} $平衡位形的q剖面、(b)归一化增长率.\r\nFig. 9. (a) Different q profiles and (b) normalized growth rates for different $ {\beta }_{\mathrm{p}} $ at $ t=782\;\mathrm{m}\mathrm{s} $ and $ {q}_{0}=3.2 $.
    图 9  t=782ms,q0=3.2时, (a)不同βp平衡位形的q剖面、(b)归一化增长率.
    Fig. 9.  (a) Different q profiles and (b) normalized growth rates for different βp at t=782ms and q0=3.2.

    结合图9(a)图9(b), 看到两种q剖面位形. 一种是深反转的(A, B), 特征为q0>q95; 另一种是弱反转的(C, D), 特征是qmin<q0<q95. 深度反转q -剖面的优点是形成宽半径ITB的功率阈值低, 还可以减少各种类型的湍流, 如使电子温度梯度(ETG)湍流和TEM湍流强度减弱. βp=0.45与0.565 都对应深反转位形, 其中, βp=0.565的平衡位形归一化增长率最接近临界稳定值(ˆγ2103). 反转越深, 宏观MHD不稳定性越强, 如βp=0.45事例的增长率达O(0.1)量级, 相较βp=0.565事例, 其增长率大得多, 此时等离子体已经处于很不稳定的状态. 需要说明的是, q反转越深, 越容易引起杂质在等离子体芯部积聚. PEP放电等离子体杂质主要是轻杂质(C, Be)加少量重杂质. 杂质向中心集聚, 使主离子密度降低, 并导致离子密度与电子密度之比持续降低. 有时有效电荷数Zeff在芯部可以由1.0增至4.0[29]. 杂质在等离子体芯中的积累是另一个严重的问题[30,31]. 另外, 在文献[20]中, 图7图8所示理论上的平衡计算结果中最稳定的深度反转q位形的归一化增长率都O(0.1), 这是由于其轴安全因子相对较小(q0=2.7<3), 相应深反转位形中q95更小. 而在此处, 轴安全因子q0=3.2, 相应最稳定的深度反转位形(对应βp=0.565事例)已经接近临界稳定状态. 可以预期, 如果q0进一步增加, 则可以得到完全稳定的深度反转位形.

    在实际放电中, 可重建得到q0>3的深度反转位形, 如图10所示. 图10同时给出了平均电流密度分布剖面. 根据实验测得的压强剖面重建的位形中, 有q0=3.2, qmin=1.71, 最小q值远小于图9中红色实线所示最稳定位形对应的qmin值(约2.495), 相应归一化增长率也降低了两三个数量级. 可见, 对于反转q位形, q0qmin值大小也与平衡的MHD稳定性相关. 为得到更加稳定的等离子体, 实验上倾向于实现q0, qsq0qmin取值都足够大的放电过程[20].

    图 10 EFIT重建的稳定平衡的深反转q剖面及平均电流密度$ \left\langle{{j}_{t}}\right\rangle $分布\r\nFig. 10. Stable equilibrium deeply inverted q profile and average current density $ \left\langle{{j}_{t}}\right\rangle $ for the stable equilibrium reconstructed by EFIT.
    图 10  EFIT重建的稳定平衡的深反转q剖面及平均电流密度jt分布
    Fig. 10.  Stable equilibrium deeply inverted q profile and average current density jt for the stable equilibrium reconstructed by EFIT.

    另一方面, βp=0.6150.7事例对应平衡具有弱反转q剖面, 由于其缺乏基于大负磁剪切的湍流稳定机制, 因此是很不稳定的, 归一化增长率在~O(0.1) 量级. 同时, 弱反转q位形对于许多湍流分支(TEM和ETG等)的稳定性也相对较差. 但若是稳定的弱反转位形, 则很容易维持住. 如果既可能存在弱反转q剖面, 也可能存在强反转q剖面, 则实际放电倾向于前者. 本次弹丸注入放电实验实际实现的就是可维持的、稳定的弱反转q剖面, 其特征是qs>3, 而q0qmin的数值大小取决于具体放电参数.

    弹丸注入放电增强等离子体性能与反磁剪切位形的关系, 可以通过引入某些等离子体模型[32]来解释. 另外, 还可以做如下理解. 首先, 反剪切位形可以稳定气球模; 当负磁剪切s<0时, 气球模进入第二稳定区, 对n=理想磁流体气球模具有完全稳定性. 其次, 反磁剪切位形也能够稳定微观不稳定性. 磁剪切影响输运的方式有多种, 其中包括ITB的形成和维持. 负磁剪切还降低了微观不稳定性—如ITG模、TEM和高n气球模—的测地曲率驱动力, 并降低了磁应力. 对一些高k湍流, 如ETG湍流, 也可以通过使等离子体具备负磁剪切区域来稳定之[33].

    反磁剪切位形对实现先进托卡马克运行非常必要, 是聚变界研究的一个热点. 要维持反磁剪切位形, 有赖于主加热阶段所应用的加热方式和驱动方式及其功率大小, 一般还需要有自举电流, 以及要求自举电流与外电流驱动有良好的组合方式, 以共同维持理想的总电流模式. 在HL-2A装置上, 考虑用LHCD控制电流剖面以维持NS位形. 这方面的详细分析在此从略, 有兴趣的读者可参考文献[34].

    一般地, NCS放电中的β是很低的. 归一化βN(定义βNβt/(Ip/aBt))是表征托卡马克装置运行水平的1个重要指标. 计算了t=702,713,750,782,850902 ms这6个时间片处的归一化βN值, 如图11所示. 在t=702 ms处, βN=0.48. 而当t=713 ms时, 弹丸完全消融, 形成很尖的电子密度剖面, 虽然中心温度显著降低, 但依然形成了中空电流分布, 约束性能增强, βN升至0.492. 其后, 电子温度逐渐回升, q剖面反转深度加大, 最后在稳定的中空电流阶段, 如当t=782 ms时, 强的中空电流使βN大幅降低到0.4, 这是由于尖的电流剖面才有利于稳定外扭曲模, 提高βN极限[35]. 而中空电流位形不利于稳定理想模. 随后中空电流逐渐变窄, 因为到t=820 ms时出现MHD不稳定性, 中空电流崩塌, 在软X射线中观察到锯齿信号出现. 但βN转而上升, 到902 ms时, 达到βN=0.496. 因为此时中空电流早已完全消失, 代之以中心峰状电流剖面. βN的这个变化过程与图2(a)所示[702,902] ms区间内βp的变化过程类似.

    图 11 $ {\beta }_{\mathrm{N}} $随时间演化图\r\nFig. 11. Temporal evolution of $ {\beta }_{\mathrm{N}} $.
    图 11  βN随时间演化图
    Fig. 11.  Temporal evolution of βN.

    本文分析了HL-2A弹丸注入放电中空电流与反磁剪切位形, 及其对等离子体性能改善的影响. HL-2A弹丸注入放电实验分3次连续注入冷冻弹丸, 形成弱中空压强分布和高的中心密度分布. 利用EFIT代码得到了高质量的平衡. 结合MHD稳定性分析, 结果表明放电形成了中空电流位形, 持续时间约为100 ms. 在第3个弹丸注入之前, 稳定的平衡位形具有的特征是其轴安全因子在1附近. 第3个弹丸注入后, 弹丸消融引起中心电子温度下降, 而电子密度急剧升高, 电流密度呈中空分布. 实验中观察到, 在弹丸注入后, 电子热扩散系数显著降低. 输运参数的降低可能是由于等离子体中心存在负磁剪切. 弹丸深度注入改善了能量约束. 中空电流位形有利于实现高密度等离子体的稳定性, 其βN近似等于低密度等离子体时的值. 弹丸注入造成中心高度峰化的电子密度剖面, 有利于粒子约束时间的提高, 同时在增进能量约束时间方面起着重要作用.

    HL-2A弹丸注入成功形成了中空电流分布. 在稳定的中空电流放电阶段(例如t=782 ms), 有很弱的、不太明显内部输运垒生成的趋势. 事实上, 在没有辅助加热的情况下, 单凭欧姆加热要想形成明显的输运垒, 需要很高的加热功率. 在HL-2A弹丸注入中空电流放电期间, 等离子体比压总体略有下降, 这主要是由于中空电流不利于理想模稳定性, 从而造成βN降低. 另一方面, 在反剪切区域可以稳定压强梯度驱动不稳定性和微观不稳定性, 从而使系统的微观不稳定性减弱. 上述两个因素联合作用、相互影响. 但是, 总的说来, NCS位形实际上β水平是很低的. 若要切实提高中空电流放电的βN极限, 需要在等离子体边界附近放置一个导电壁[35], 这样可以有效稳定外扭曲模.

    本次放电中空电流剖面维持时间仅约100 ms, 维持时间较短. 物理上, 弹丸注入使中空电流得以形成, 主要是因为冷冻弹丸的注入, 使电流向内扩散受到抑制, 造成中心等离子体的电流减弱或部分消失; 另一方面, 压强梯度驱动的自举电流和PS电流也形成并维持着部分中空电流. 若要长期维持中空电流放电, 建议采用辅助加热和辅助电流驱动. 中空电流维持机制一般是“自举电流+辅助加热”. 在HL-2A装置上, 采用LHCD来控制电流位形, 以维持能稳定运行的反磁剪切等离子体[34,36]. 在HL-2M上实现长期维持的中空电流放电是另一个有意义的课题, 留待以后进一步研究.

    [1]

    Ashutosh K, Kumar V, Singh R 2016 J. Phys. D: Appl. Phys. 49 47LT01Google Scholar

    [2]

    Simoen E, Anabela V, Philippe M, Nadine C, Cor C 2018 IEEE Trans. Electron Dev. 65 1487Google Scholar

    [3]

    Hu H P, Zhou S J, Wan H, Liu X T, Li N, Xu H H 2019 Sci. Rep. 9 1Google Scholar

    [4]

    Nafaa B, Cretu B, Ismail N, Touayar O, Carin R, Simoen E, Veloso A 2018 Solid State Electron. 150 1Google Scholar

    [5]

    Islam A B M H, Shim D S, Shim J I 2019 Appl. Sci. 9 871Google Scholar

    [6]

    Kazuhiro O, Fumitaka I, Tomomasa W, Kenichi N, Daisuke I 2019 J. Cryst. Growth 512 69Google Scholar

    [7]

    Song K M, Park J 2013 Semicond. Sci. Technol. 28 015010Google Scholar

    [8]

    Shi Z, Li X, Zhu G Y, Wang Z H, Peter G, Zhu H B, Wang Y J 2014 Appl. Phys. Express 7 082102Google Scholar

    [9]

    Jia C Y, Zhong C T, Yu T J, Wang Z, Tong Y Z, Guo Y 2012 Semicond. Sci. Technol. 27 065008Google Scholar

    [10]

    Xu J, Zhang X, Yang H Q, Guo H, Zheng Y Z, Zhou D B, Cui Y P 2014 Jpn. J. Appl. Phys. 53 022101Google Scholar

    [11]

    Park S H, Moon Y T, Han D S, Park J S, Oh M S, Ahn D 2012 Semicond. Sci. Technol. 27 115003Google Scholar

    [12]

    Tian W, Zhang J, Wang Z J, Wu F, Li Y, Chen S C, Xu J, Dai J N, Fang Y Y, Wu Z H, Chen C Q 2013 Light Emitting Diodes 5 8200609

    [13]

    王党会, 许天旱, 王荣, 雒设计, 姚婷珍 2015 物理学报 64 050701Google Scholar

    Wang D H, Xu T H, Wang R, Luo S J, Yao T Z 2015 Acta Phys. Sin. 64 050701Google Scholar

    [14]

    Yang G F, Zhang Q, Wang J, Gao S M, Zhang R, Zheng Y D 2015 IEEE Photon. J. 7 1

    [15]

    Park J J, Kang T, Woo D, Son J K, Lee J H, Park B G, Shin H 2011 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) Incheon, Korea (South), July 4−7, 2011 p408

    [16]

    Arslan E, Bütün S, Şafak Y, Uslu H, Taşçıoğlu I, Altındal S, Özbay E 2011 Microelectron. Reliab. 51 370Google Scholar

    [17]

    Averkiev N S, Chernyakov A E, Levinshtein M E, Petrov P V, Yakimov E B, Shmidt N M, Shabunina E I 2009 Physica B 404 4896Google Scholar

    [18]

    Bychikhin S, Pogany D, Vandamme L K J, Meneghesso G, Zanoni E 2005 J. Appl. Phys. 97 123714Google Scholar

    [19]

    Jimenez Tejada J A, Godoy A, Palma A, Lopez Villanueva J A 2002 J. Appl. Phys. 92 320Google Scholar

    [20]

    Rumyantsev S L, Shur M S, Bilenko Y, Kosterin P V, Salzberg B M 2004 J. Appl. Phys. 96 966Google Scholar

    [21]

    Boudier D, Cretu B, Simoen E, Veloso A, Collaert N 2018 Solid State Electron. 143 27Google Scholar

    [22]

    Simoen E, Ritzenthaler R, Schram T, et al. 2014 International Conference on Solid-state and Integrated Circuit Technology (ICSICT) Guilin, China, October 28−31, 2014 p1631

    [23]

    Jessen G H, Fitch R C, Gillespie J K, Via G D, White B D, Bradley S T, Walker Jr D E, Brillson L J 2003 Appl. Phys. Lett. 83 485Google Scholar

    [24]

    Wong H 2003 Microelectron. Reliab. 43 585Google Scholar

  • 图 1  p-n结型LED发光原理图

    Fig. 1.  Principle schematic of p-n junction LED.

    图 2  LED低频噪声测试原理图

    Fig. 2.  Measurement schematic of low frequency noise for LED.

    图 3  LED室温PL测试

    Fig. 3.  PL measurement at room temperature.

    图 4  LED的V-I特性测试曲线

    Fig. 4.  V-I characteristic transfer curve of LED.

    图 5  InGaN/GaN LED的电流噪声PSD与频率的关系图

    Fig. 5.  Relationships between current PSD and frequency for InGaN/GaN LED.

    图 6  根据(5)式拟合g-r噪声参数

    Fig. 6.  Fitting results of g-r noise using Eq. (5).

    图 7  电流噪声PSD涨落SI/I2与电流I之间的关系演变

    Fig. 7.  Fluctuation evolution relationships of current PSD SI/I2 and current I.

    表 1  根据(4)式提取出的低频噪声参数

    Table 1.  Extraction results of low-frequency noise using Eq. (4).

    低频噪声类型测试电流/mA
    0.110275080180
    白噪声5.14 × 10–181.10 × 10–176.12 × 10–172.36 × 10–179.23 × 10–189.23 × 10–18
    1/f 噪声4.61×1016f0.651.82×1015f0.831.01×1013f0.905.29×1013f0.953.32×1012f1.095.04×1011f1.09
    g-r噪声4.07×10191+(f14000)1.847.38×10181+(f9900)1.961.32×10171+(f1560)2.02
    低频噪声起源1/f + g-r噪声1/f + g-r噪声1/f + g-r噪声1/f 噪声1/f 噪声1/f 噪声
    下载: 导出CSV

    表 2  低频1/f噪声和g-r噪声参数与电流之间的指数关系

    Table 2.  Exponent relationships between parameters of 1/f noise and g-r noise and measured currents.

    低频噪声类型测试电流/mA
    0.110275080180
    1/f 噪声幅值B=I3.834B=I7.370B=I8.285B=I9.436B=I10.4647B=I13.8273
    g-r噪声幅值C=I4.0980C=I8.5660C=I12.0212
    g-r噪声时间常数τ=I0.9978τ=I2.3969τ=I3.1520
    下载: 导出CSV
  • [1]

    Ashutosh K, Kumar V, Singh R 2016 J. Phys. D: Appl. Phys. 49 47LT01Google Scholar

    [2]

    Simoen E, Anabela V, Philippe M, Nadine C, Cor C 2018 IEEE Trans. Electron Dev. 65 1487Google Scholar

    [3]

    Hu H P, Zhou S J, Wan H, Liu X T, Li N, Xu H H 2019 Sci. Rep. 9 1Google Scholar

    [4]

    Nafaa B, Cretu B, Ismail N, Touayar O, Carin R, Simoen E, Veloso A 2018 Solid State Electron. 150 1Google Scholar

    [5]

    Islam A B M H, Shim D S, Shim J I 2019 Appl. Sci. 9 871Google Scholar

    [6]

    Kazuhiro O, Fumitaka I, Tomomasa W, Kenichi N, Daisuke I 2019 J. Cryst. Growth 512 69Google Scholar

    [7]

    Song K M, Park J 2013 Semicond. Sci. Technol. 28 015010Google Scholar

    [8]

    Shi Z, Li X, Zhu G Y, Wang Z H, Peter G, Zhu H B, Wang Y J 2014 Appl. Phys. Express 7 082102Google Scholar

    [9]

    Jia C Y, Zhong C T, Yu T J, Wang Z, Tong Y Z, Guo Y 2012 Semicond. Sci. Technol. 27 065008Google Scholar

    [10]

    Xu J, Zhang X, Yang H Q, Guo H, Zheng Y Z, Zhou D B, Cui Y P 2014 Jpn. J. Appl. Phys. 53 022101Google Scholar

    [11]

    Park S H, Moon Y T, Han D S, Park J S, Oh M S, Ahn D 2012 Semicond. Sci. Technol. 27 115003Google Scholar

    [12]

    Tian W, Zhang J, Wang Z J, Wu F, Li Y, Chen S C, Xu J, Dai J N, Fang Y Y, Wu Z H, Chen C Q 2013 Light Emitting Diodes 5 8200609

    [13]

    王党会, 许天旱, 王荣, 雒设计, 姚婷珍 2015 物理学报 64 050701Google Scholar

    Wang D H, Xu T H, Wang R, Luo S J, Yao T Z 2015 Acta Phys. Sin. 64 050701Google Scholar

    [14]

    Yang G F, Zhang Q, Wang J, Gao S M, Zhang R, Zheng Y D 2015 IEEE Photon. J. 7 1

    [15]

    Park J J, Kang T, Woo D, Son J K, Lee J H, Park B G, Shin H 2011 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) Incheon, Korea (South), July 4−7, 2011 p408

    [16]

    Arslan E, Bütün S, Şafak Y, Uslu H, Taşçıoğlu I, Altındal S, Özbay E 2011 Microelectron. Reliab. 51 370Google Scholar

    [17]

    Averkiev N S, Chernyakov A E, Levinshtein M E, Petrov P V, Yakimov E B, Shmidt N M, Shabunina E I 2009 Physica B 404 4896Google Scholar

    [18]

    Bychikhin S, Pogany D, Vandamme L K J, Meneghesso G, Zanoni E 2005 J. Appl. Phys. 97 123714Google Scholar

    [19]

    Jimenez Tejada J A, Godoy A, Palma A, Lopez Villanueva J A 2002 J. Appl. Phys. 92 320Google Scholar

    [20]

    Rumyantsev S L, Shur M S, Bilenko Y, Kosterin P V, Salzberg B M 2004 J. Appl. Phys. 96 966Google Scholar

    [21]

    Boudier D, Cretu B, Simoen E, Veloso A, Collaert N 2018 Solid State Electron. 143 27Google Scholar

    [22]

    Simoen E, Ritzenthaler R, Schram T, et al. 2014 International Conference on Solid-state and Integrated Circuit Technology (ICSICT) Guilin, China, October 28−31, 2014 p1631

    [23]

    Jessen G H, Fitch R C, Gillespie J K, Via G D, White B D, Bradley S T, Walker Jr D E, Brillson L J 2003 Appl. Phys. Lett. 83 485Google Scholar

    [24]

    Wong H 2003 Microelectron. Reliab. 43 585Google Scholar

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响. 物理学报, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析. 物理学报, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [3] 闫大为, 田葵葵, 闫晓红, 李伟然, 俞道欣, 李金晓, 曹艳荣, 顾晓峰. GaN肖特基二极管的正向电流输运和低频噪声行为. 物理学报, 2021, 70(8): 087201. doi: 10.7498/aps.70.20201467
    [4] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管. 物理学报, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [5] 刘远, 何红宇, 陈荣盛, 李斌, 恩云飞, 陈义强. 氢化非晶硅薄膜晶体管的低频噪声特性. 物理学报, 2017, 66(23): 237101. doi: 10.7498/aps.66.237101
    [6] 曹江伟, 王锐, 王颖, 白建民, 魏福林. 隧穿磁电阻效应磁场传感器中低频噪声的测量与研究. 物理学报, 2016, 65(5): 057501. doi: 10.7498/aps.65.057501
    [7] 王凯, 刘远, 陈海波, 邓婉玲, 恩云飞, 张平. 部分耗尽结构绝缘体上硅器件的低频噪声特性. 物理学报, 2015, 64(10): 108501. doi: 10.7498/aps.64.108501
    [8] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [9] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征. 物理学报, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [10] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [11] 何西, 杜团结, 吴逢铁. 新型发光二极管透镜产生局域空心光束. 物理学报, 2014, 63(7): 074201. doi: 10.7498/aps.63.074201
    [12] 刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣. 非晶铟锌氧化物薄膜晶体管的低频噪声特性与分析. 物理学报, 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [13] 王爱迪, 刘紫玉, 张培健, 孟洋, 李栋, 赵宏武. Au/SrTiO3/Au界面电阻翻转效应的低频噪声分析. 物理学报, 2013, 62(19): 197201. doi: 10.7498/aps.62.197201
    [14] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究. 物理学报, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [15] 刘玉栋, 杜磊, 孙鹏, 陈文豪. 静电放电对功率肖特基二极管I-V及低频噪声特性的影响. 物理学报, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [16] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [17] 于思瑶, 郭树旭, 郜峰利. 半导体激光器低频噪声的Lyapunov指数计算和混沌状态判定. 物理学报, 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [18] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [19] 胡 瑾, 杜 磊, 庄奕琪, 包军林, 周 江. 发光二极管可靠性的噪声表征. 物理学报, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [20] 黄杨程, 刘大福, 梁晋穗, 龚海梅. 短波碲镉汞光伏器件的低频噪声研究. 物理学报, 2005, 54(5): 2261-2266. doi: 10.7498/aps.54.2261
计量
  • 文章访问数:  9281
  • PDF下载量:  93
出版历程
  • 收稿日期:  2019-02-07
  • 修回日期:  2019-04-08
  • 上网日期:  2019-06-06
  • 刊出日期:  2019-06-20

/

返回文章
返回