-
本文对GaN基InGaN/GaN多量子阱结构、蓝紫光发光二极管(light-emitting diode, LED)的电流噪声进行了测试, 电流测试范围为0.1—180 mA. 根据电流噪声的特点, 结合LED中载流子之间的产生-复合机制, 探讨了电流注入下LED中载流子的产生与复合机制和低频噪声产生的机理. 结论表明, 随着电流从0.1 mA逐渐增大到27 mA, LED中的电流噪声具有低频产生-复合(generation-recombination, g-r)噪声的特性; 当电流逐渐增大到50 mA及以上时, 电流噪声的行为接近1/f噪声. 采用电子元器件中公认的电流噪声模型, 拟合了低频电流噪声功率谱密度与频率之间的关系, 结合LED中载流子的输运机理和复合机制, 从理论上分析了LED在电流注入时g-r噪声幅值和转折频率的变化规律. 本文的结果提供了一种检测和表征多量子阱结构蓝紫光LED在电流逐渐增大过程中发光机制转变的有效手段, 为提高其发光量子效率提供理论依据.During the past two decades, GaN-based light-emitting diode has been used as a high-quality light-source. Low-frequency noise as a diagnostic tool for quality control and reliability estimation has been widely accepted and used for semiconductor devices. Understanding the origin of efficiency-droop effect is key to developing the ultimate solid-state light source. Various mechanisms that may cause this effect have been suggested, including carriers’ escape, loses due to dislocations, and the Auger effect. In this study, we investigate the low-frequency noise behaviors of GaN-based blue light-emitting diode with InGaN/GaN multiple quantum wells. The measured currents range from 0.1 mA to 180 mA. According to the characteristics of power spectral density of current noise and the generation-combination mechanism between electrons and holes in the active region of light-emitting diode (LED), we adopt the well-known model of low-frequency noise to fit the relationship between power spectral density of current and frequency, and find that there exists a transition between generation-combination and 1/f noise when the light-emitting diode begins to work. In other words, it can be derived that the low-frequency noise behaviors are dominated by generation-combination noise when the currents are between 0.1 mA and 27 mA; with the current gradually increasing, the origin source of low-frequency noise in blue/violet-light LED will transit to the 1/f noise. Through the analysis of the transport and recombination mechanism of the carriers, and combination with the model of low-frequency noise, we analyze the corner frequency of the generation-recombination noise. The results of this paper provide an effective tool and method to study the conversion of light-emitting diodes.
-
Keywords:
- low-frequency noise /
- light-emitting diode /
- generation-recombination noise /
- recombination mechanisms
[1] Ashutosh K, Kumar V, Singh R 2016 J. Phys. D: Appl. Phys. 49 47LT01Google Scholar
[2] Simoen E, Anabela V, Philippe M, Nadine C, Cor C 2018 IEEE Trans. Electron Dev. 65 1487Google Scholar
[3] Hu H P, Zhou S J, Wan H, Liu X T, Li N, Xu H H 2019 Sci. Rep. 9 1Google Scholar
[4] Nafaa B, Cretu B, Ismail N, Touayar O, Carin R, Simoen E, Veloso A 2018 Solid State Electron. 150 1Google Scholar
[5] Islam A B M H, Shim D S, Shim J I 2019 Appl. Sci. 9 871Google Scholar
[6] Kazuhiro O, Fumitaka I, Tomomasa W, Kenichi N, Daisuke I 2019 J. Cryst. Growth 512 69Google Scholar
[7] Song K M, Park J 2013 Semicond. Sci. Technol. 28 015010Google Scholar
[8] Shi Z, Li X, Zhu G Y, Wang Z H, Peter G, Zhu H B, Wang Y J 2014 Appl. Phys. Express 7 082102Google Scholar
[9] Jia C Y, Zhong C T, Yu T J, Wang Z, Tong Y Z, Guo Y 2012 Semicond. Sci. Technol. 27 065008Google Scholar
[10] Xu J, Zhang X, Yang H Q, Guo H, Zheng Y Z, Zhou D B, Cui Y P 2014 Jpn. J. Appl. Phys. 53 022101Google Scholar
[11] Park S H, Moon Y T, Han D S, Park J S, Oh M S, Ahn D 2012 Semicond. Sci. Technol. 27 115003Google Scholar
[12] Tian W, Zhang J, Wang Z J, Wu F, Li Y, Chen S C, Xu J, Dai J N, Fang Y Y, Wu Z H, Chen C Q 2013 Light Emitting Diodes 5 8200609
[13] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍 2015 物理学报 64 050701Google Scholar
Wang D H, Xu T H, Wang R, Luo S J, Yao T Z 2015 Acta Phys. Sin. 64 050701Google Scholar
[14] Yang G F, Zhang Q, Wang J, Gao S M, Zhang R, Zheng Y D 2015 IEEE Photon. J. 7 1
[15] Park J J, Kang T, Woo D, Son J K, Lee J H, Park B G, Shin H 2011 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) Incheon, Korea (South), July 4−7, 2011 p408
[16] Arslan E, Bütün S, Şafak Y, Uslu H, Taşçıoğlu I, Altındal S, Özbay E 2011 Microelectron. Reliab. 51 370Google Scholar
[17] Averkiev N S, Chernyakov A E, Levinshtein M E, Petrov P V, Yakimov E B, Shmidt N M, Shabunina E I 2009 Physica B 404 4896Google Scholar
[18] Bychikhin S, Pogany D, Vandamme L K J, Meneghesso G, Zanoni E 2005 J. Appl. Phys. 97 123714Google Scholar
[19] Jimenez Tejada J A, Godoy A, Palma A, Lopez Villanueva J A 2002 J. Appl. Phys. 92 320Google Scholar
[20] Rumyantsev S L, Shur M S, Bilenko Y, Kosterin P V, Salzberg B M 2004 J. Appl. Phys. 96 966Google Scholar
[21] Boudier D, Cretu B, Simoen E, Veloso A, Collaert N 2018 Solid State Electron. 143 27Google Scholar
[22] Simoen E, Ritzenthaler R, Schram T, et al. 2014 International Conference on Solid-state and Integrated Circuit Technology (ICSICT) Guilin, China, October 28−31, 2014 p1631
[23] Jessen G H, Fitch R C, Gillespie J K, Via G D, White B D, Bradley S T, Walker Jr D E, Brillson L J 2003 Appl. Phys. Lett. 83 485Google Scholar
[24] Wong H 2003 Microelectron. Reliab. 43 585Google Scholar
-
低频噪声类型 测试电流/mA 0.1 10 27 50 80 180 白噪声 5.14 × 10–18 1.10 × 10–17 6.12 × 10–17 2.36 × 10–17 9.23 × 10–18 9.23 × 10–18 1/f 噪声 $\displaystyle\frac{{4.61 \times {{10}^{ - 16}}}}{{{f^{0.65}}}}$ $\displaystyle\frac{{1.82 \times {{10}^{ - 15}}}}{{{f^{0.83}}}}$ $\displaystyle\frac{{1.01 \times {{10}^{ - 13}}}}{{{f^{0.90}}}}$ $\displaystyle\frac{{5.29 \times {{10}^{ - 13}}}}{{{f^{0.95}}}}$ $\displaystyle\frac{{{\rm{3}}.{\rm{32}} \times {{10}^{ - 1{\rm{2}}}}}}{{{f^{{\rm{1}}.{\rm{09}}}}}}$ $\displaystyle\frac{{{\rm{5}}.{\rm{04}} \times {{10}^{ - 1{\rm{1}}}}}}{{{f^{{\rm{1}}.{\rm{09}}}}}}$ g-r噪声 $\displaystyle\frac{{{\rm{4}}.{\rm{07}} \times {\rm{1}}{{\rm{0}}^{ - {\rm{19}}}}}}{{{\rm{1}} + (\frac{f}{{14000}}{)^{1.84}}}}$ $\displaystyle\frac{{7.38 \times {\rm{1}}{{\rm{0}}^{ - {\rm{18}}}}}}{{{\rm{1}} + (\frac{f}{{990{\rm{0}}}}{)^{1.96}}}}$ $\displaystyle\frac{{1.32 \times {\rm{1}}{{\rm{0}}^{ - {\rm{17}}}}}}{{{\rm{1}} + (\frac{f}{{1560}}{)^{2.02}}}}$ 低频噪声起源 1/f + g-r噪声 1/f + g-r噪声 1/f + g-r噪声 1/f 噪声 1/f 噪声 1/f 噪声 表 2 低频1/f噪声和g-r噪声参数与电流之间的指数关系
Table 2. Exponent relationships between parameters of 1/f noise and g-r noise and measured currents.
低频噪声类型 测试电流/mA 0.1 10 27 50 80 180 1/f 噪声幅值 $B = {I^{3.834}}$ $B = {I^{7.370}}$ $B = {I^{8.285}}$ $B = {I^{_{^{^{_{9.436}}}}}}$ $B = {I^{_{^{10.4647}}}}$ $B = {I^{13.8273}}$ g-r噪声幅值 $C = {I^{^{_{4.0980}}}}$ $C = {I^{8.5660}}$ $C = I{}^{12.0212}$ g-r噪声时间常数 $\tau = {I^{0.9978}}$ $\tau = {I^{_{2.3969}}}$ $\tau = {I^{3.1520}}$ -
[1] Ashutosh K, Kumar V, Singh R 2016 J. Phys. D: Appl. Phys. 49 47LT01Google Scholar
[2] Simoen E, Anabela V, Philippe M, Nadine C, Cor C 2018 IEEE Trans. Electron Dev. 65 1487Google Scholar
[3] Hu H P, Zhou S J, Wan H, Liu X T, Li N, Xu H H 2019 Sci. Rep. 9 1Google Scholar
[4] Nafaa B, Cretu B, Ismail N, Touayar O, Carin R, Simoen E, Veloso A 2018 Solid State Electron. 150 1Google Scholar
[5] Islam A B M H, Shim D S, Shim J I 2019 Appl. Sci. 9 871Google Scholar
[6] Kazuhiro O, Fumitaka I, Tomomasa W, Kenichi N, Daisuke I 2019 J. Cryst. Growth 512 69Google Scholar
[7] Song K M, Park J 2013 Semicond. Sci. Technol. 28 015010Google Scholar
[8] Shi Z, Li X, Zhu G Y, Wang Z H, Peter G, Zhu H B, Wang Y J 2014 Appl. Phys. Express 7 082102Google Scholar
[9] Jia C Y, Zhong C T, Yu T J, Wang Z, Tong Y Z, Guo Y 2012 Semicond. Sci. Technol. 27 065008Google Scholar
[10] Xu J, Zhang X, Yang H Q, Guo H, Zheng Y Z, Zhou D B, Cui Y P 2014 Jpn. J. Appl. Phys. 53 022101Google Scholar
[11] Park S H, Moon Y T, Han D S, Park J S, Oh M S, Ahn D 2012 Semicond. Sci. Technol. 27 115003Google Scholar
[12] Tian W, Zhang J, Wang Z J, Wu F, Li Y, Chen S C, Xu J, Dai J N, Fang Y Y, Wu Z H, Chen C Q 2013 Light Emitting Diodes 5 8200609
[13] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍 2015 物理学报 64 050701Google Scholar
Wang D H, Xu T H, Wang R, Luo S J, Yao T Z 2015 Acta Phys. Sin. 64 050701Google Scholar
[14] Yang G F, Zhang Q, Wang J, Gao S M, Zhang R, Zheng Y D 2015 IEEE Photon. J. 7 1
[15] Park J J, Kang T, Woo D, Son J K, Lee J H, Park B G, Shin H 2011 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) Incheon, Korea (South), July 4−7, 2011 p408
[16] Arslan E, Bütün S, Şafak Y, Uslu H, Taşçıoğlu I, Altındal S, Özbay E 2011 Microelectron. Reliab. 51 370Google Scholar
[17] Averkiev N S, Chernyakov A E, Levinshtein M E, Petrov P V, Yakimov E B, Shmidt N M, Shabunina E I 2009 Physica B 404 4896Google Scholar
[18] Bychikhin S, Pogany D, Vandamme L K J, Meneghesso G, Zanoni E 2005 J. Appl. Phys. 97 123714Google Scholar
[19] Jimenez Tejada J A, Godoy A, Palma A, Lopez Villanueva J A 2002 J. Appl. Phys. 92 320Google Scholar
[20] Rumyantsev S L, Shur M S, Bilenko Y, Kosterin P V, Salzberg B M 2004 J. Appl. Phys. 96 966Google Scholar
[21] Boudier D, Cretu B, Simoen E, Veloso A, Collaert N 2018 Solid State Electron. 143 27Google Scholar
[22] Simoen E, Ritzenthaler R, Schram T, et al. 2014 International Conference on Solid-state and Integrated Circuit Technology (ICSICT) Guilin, China, October 28−31, 2014 p1631
[23] Jessen G H, Fitch R C, Gillespie J K, Via G D, White B D, Bradley S T, Walker Jr D E, Brillson L J 2003 Appl. Phys. Lett. 83 485Google Scholar
[24] Wong H 2003 Microelectron. Reliab. 43 585Google Scholar
计量
- 文章访问数: 8135
- PDF下载量: 85
- 被引次数: 0