搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓝紫光发光二极管中的低频产生-复合噪声行为研究

王党会 许天旱

引用本文:
Citation:

蓝紫光发光二极管中的低频产生-复合噪声行为研究

王党会, 许天旱

Low-frequency generation-recombination noise behaviors of blue/violet-light-emitting diode

Wang Dang-Hui, Xu Tian-Han
PDF
HTML
导出引用
  • 本文对GaN基InGaN/GaN多量子阱结构、蓝紫光发光二极管(light-emitting diode, LED)的电流噪声进行了测试, 电流测试范围为0.1—180 mA. 根据电流噪声的特点, 结合LED中载流子之间的产生-复合机制, 探讨了电流注入下LED中载流子的产生与复合机制和低频噪声产生的机理. 结论表明, 随着电流从0.1 mA逐渐增大到27 mA, LED中的电流噪声具有低频产生-复合(generation-recombination, g-r)噪声的特性; 当电流逐渐增大到50 mA及以上时, 电流噪声的行为接近1/f噪声. 采用电子元器件中公认的电流噪声模型, 拟合了低频电流噪声功率谱密度与频率之间的关系, 结合LED中载流子的输运机理和复合机制, 从理论上分析了LED在电流注入时g-r噪声幅值和转折频率的变化规律. 本文的结果提供了一种检测和表征多量子阱结构蓝紫光LED在电流逐渐增大过程中发光机制转变的有效手段, 为提高其发光量子效率提供理论依据.
    During the past two decades, GaN-based light-emitting diode has been used as a high-quality light-source. Low-frequency noise as a diagnostic tool for quality control and reliability estimation has been widely accepted and used for semiconductor devices. Understanding the origin of efficiency-droop effect is key to developing the ultimate solid-state light source. Various mechanisms that may cause this effect have been suggested, including carriers’ escape, loses due to dislocations, and the Auger effect. In this study, we investigate the low-frequency noise behaviors of GaN-based blue light-emitting diode with InGaN/GaN multiple quantum wells. The measured currents range from 0.1 mA to 180 mA. According to the characteristics of power spectral density of current noise and the generation-combination mechanism between electrons and holes in the active region of light-emitting diode (LED), we adopt the well-known model of low-frequency noise to fit the relationship between power spectral density of current and frequency, and find that there exists a transition between generation-combination and 1/f noise when the light-emitting diode begins to work. In other words, it can be derived that the low-frequency noise behaviors are dominated by generation-combination noise when the currents are between 0.1 mA and 27 mA; with the current gradually increasing, the origin source of low-frequency noise in blue/violet-light LED will transit to the 1/f noise. Through the analysis of the transport and recombination mechanism of the carriers, and combination with the model of low-frequency noise, we analyze the corner frequency of the generation-recombination noise. The results of this paper provide an effective tool and method to study the conversion of light-emitting diodes.
      通信作者: 王党会, wdhyxp@163.com
      Corresponding author: Wang Dang-Hui, wdhyxp@163.com
    [1]

    Ashutosh K, Kumar V, Singh R 2016 J. Phys. D: Appl. Phys. 49 47LT01Google Scholar

    [2]

    Simoen E, Anabela V, Philippe M, Nadine C, Cor C 2018 IEEE Trans. Electron Dev. 65 1487Google Scholar

    [3]

    Hu H P, Zhou S J, Wan H, Liu X T, Li N, Xu H H 2019 Sci. Rep. 9 1Google Scholar

    [4]

    Nafaa B, Cretu B, Ismail N, Touayar O, Carin R, Simoen E, Veloso A 2018 Solid State Electron. 150 1Google Scholar

    [5]

    Islam A B M H, Shim D S, Shim J I 2019 Appl. Sci. 9 871Google Scholar

    [6]

    Kazuhiro O, Fumitaka I, Tomomasa W, Kenichi N, Daisuke I 2019 J. Cryst. Growth 512 69Google Scholar

    [7]

    Song K M, Park J 2013 Semicond. Sci. Technol. 28 015010Google Scholar

    [8]

    Shi Z, Li X, Zhu G Y, Wang Z H, Peter G, Zhu H B, Wang Y J 2014 Appl. Phys. Express 7 082102Google Scholar

    [9]

    Jia C Y, Zhong C T, Yu T J, Wang Z, Tong Y Z, Guo Y 2012 Semicond. Sci. Technol. 27 065008Google Scholar

    [10]

    Xu J, Zhang X, Yang H Q, Guo H, Zheng Y Z, Zhou D B, Cui Y P 2014 Jpn. J. Appl. Phys. 53 022101Google Scholar

    [11]

    Park S H, Moon Y T, Han D S, Park J S, Oh M S, Ahn D 2012 Semicond. Sci. Technol. 27 115003Google Scholar

    [12]

    Tian W, Zhang J, Wang Z J, Wu F, Li Y, Chen S C, Xu J, Dai J N, Fang Y Y, Wu Z H, Chen C Q 2013 Light Emitting Diodes 5 8200609

    [13]

    王党会, 许天旱, 王荣, 雒设计, 姚婷珍 2015 物理学报 64 050701Google Scholar

    Wang D H, Xu T H, Wang R, Luo S J, Yao T Z 2015 Acta Phys. Sin. 64 050701Google Scholar

    [14]

    Yang G F, Zhang Q, Wang J, Gao S M, Zhang R, Zheng Y D 2015 IEEE Photon. J. 7 1

    [15]

    Park J J, Kang T, Woo D, Son J K, Lee J H, Park B G, Shin H 2011 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) Incheon, Korea (South), July 4−7, 2011 p408

    [16]

    Arslan E, Bütün S, Şafak Y, Uslu H, Taşçıoğlu I, Altındal S, Özbay E 2011 Microelectron. Reliab. 51 370Google Scholar

    [17]

    Averkiev N S, Chernyakov A E, Levinshtein M E, Petrov P V, Yakimov E B, Shmidt N M, Shabunina E I 2009 Physica B 404 4896Google Scholar

    [18]

    Bychikhin S, Pogany D, Vandamme L K J, Meneghesso G, Zanoni E 2005 J. Appl. Phys. 97 123714Google Scholar

    [19]

    Jimenez Tejada J A, Godoy A, Palma A, Lopez Villanueva J A 2002 J. Appl. Phys. 92 320Google Scholar

    [20]

    Rumyantsev S L, Shur M S, Bilenko Y, Kosterin P V, Salzberg B M 2004 J. Appl. Phys. 96 966Google Scholar

    [21]

    Boudier D, Cretu B, Simoen E, Veloso A, Collaert N 2018 Solid State Electron. 143 27Google Scholar

    [22]

    Simoen E, Ritzenthaler R, Schram T, et al. 2014 International Conference on Solid-state and Integrated Circuit Technology (ICSICT) Guilin, China, October 28−31, 2014 p1631

    [23]

    Jessen G H, Fitch R C, Gillespie J K, Via G D, White B D, Bradley S T, Walker Jr D E, Brillson L J 2003 Appl. Phys. Lett. 83 485Google Scholar

    [24]

    Wong H 2003 Microelectron. Reliab. 43 585Google Scholar

  • 图 1  p-n结型LED发光原理图

    Fig. 1.  Principle schematic of p-n junction LED.

    图 2  LED低频噪声测试原理图

    Fig. 2.  Measurement schematic of low frequency noise for LED.

    图 3  LED室温PL测试

    Fig. 3.  PL measurement at room temperature.

    图 4  LED的V-I特性测试曲线

    Fig. 4.  V-I characteristic transfer curve of LED.

    图 5  InGaN/GaN LED的电流噪声PSD与频率的关系图

    Fig. 5.  Relationships between current PSD and frequency for InGaN/GaN LED.

    图 6  根据(5)式拟合g-r噪声参数

    Fig. 6.  Fitting results of g-r noise using Eq. (5).

    图 7  电流噪声PSD涨落SI/I2与电流I之间的关系演变

    Fig. 7.  Fluctuation evolution relationships of current PSD SI/I2 and current I.

    表 1  根据(4)式提取出的低频噪声参数

    Table 1.  Extraction results of low-frequency noise using Eq. (4).

    低频噪声类型测试电流/mA
    0.110275080180
    白噪声5.14 × 10–181.10 × 10–176.12 × 10–172.36 × 10–179.23 × 10–189.23 × 10–18
    1/f 噪声$\displaystyle\frac{{4.61 \times {{10}^{ - 16}}}}{{{f^{0.65}}}}$$\displaystyle\frac{{1.82 \times {{10}^{ - 15}}}}{{{f^{0.83}}}}$$\displaystyle\frac{{1.01 \times {{10}^{ - 13}}}}{{{f^{0.90}}}}$$\displaystyle\frac{{5.29 \times {{10}^{ - 13}}}}{{{f^{0.95}}}}$$\displaystyle\frac{{{\rm{3}}.{\rm{32}} \times {{10}^{ - 1{\rm{2}}}}}}{{{f^{{\rm{1}}.{\rm{09}}}}}}$$\displaystyle\frac{{{\rm{5}}.{\rm{04}} \times {{10}^{ - 1{\rm{1}}}}}}{{{f^{{\rm{1}}.{\rm{09}}}}}}$
    g-r噪声$\displaystyle\frac{{{\rm{4}}.{\rm{07}} \times {\rm{1}}{{\rm{0}}^{ - {\rm{19}}}}}}{{{\rm{1}} + (\frac{f}{{14000}}{)^{1.84}}}}$$\displaystyle\frac{{7.38 \times {\rm{1}}{{\rm{0}}^{ - {\rm{18}}}}}}{{{\rm{1}} + (\frac{f}{{990{\rm{0}}}}{)^{1.96}}}}$$\displaystyle\frac{{1.32 \times {\rm{1}}{{\rm{0}}^{ - {\rm{17}}}}}}{{{\rm{1}} + (\frac{f}{{1560}}{)^{2.02}}}}$
    低频噪声起源1/f + g-r噪声1/f + g-r噪声1/f + g-r噪声1/f 噪声1/f 噪声1/f 噪声
    下载: 导出CSV

    表 2  低频1/f噪声和g-r噪声参数与电流之间的指数关系

    Table 2.  Exponent relationships between parameters of 1/f noise and g-r noise and measured currents.

    低频噪声类型测试电流/mA
    0.110275080180
    1/f 噪声幅值$B = {I^{3.834}}$$B = {I^{7.370}}$$B = {I^{8.285}}$$B = {I^{_{^{^{_{9.436}}}}}}$$B = {I^{_{^{10.4647}}}}$$B = {I^{13.8273}}$
    g-r噪声幅值$C = {I^{^{_{4.0980}}}}$$C = {I^{8.5660}}$$C = I{}^{12.0212}$
    g-r噪声时间常数$\tau = {I^{0.9978}}$$\tau = {I^{_{2.3969}}}$$\tau = {I^{3.1520}}$
    下载: 导出CSV
  • [1]

    Ashutosh K, Kumar V, Singh R 2016 J. Phys. D: Appl. Phys. 49 47LT01Google Scholar

    [2]

    Simoen E, Anabela V, Philippe M, Nadine C, Cor C 2018 IEEE Trans. Electron Dev. 65 1487Google Scholar

    [3]

    Hu H P, Zhou S J, Wan H, Liu X T, Li N, Xu H H 2019 Sci. Rep. 9 1Google Scholar

    [4]

    Nafaa B, Cretu B, Ismail N, Touayar O, Carin R, Simoen E, Veloso A 2018 Solid State Electron. 150 1Google Scholar

    [5]

    Islam A B M H, Shim D S, Shim J I 2019 Appl. Sci. 9 871Google Scholar

    [6]

    Kazuhiro O, Fumitaka I, Tomomasa W, Kenichi N, Daisuke I 2019 J. Cryst. Growth 512 69Google Scholar

    [7]

    Song K M, Park J 2013 Semicond. Sci. Technol. 28 015010Google Scholar

    [8]

    Shi Z, Li X, Zhu G Y, Wang Z H, Peter G, Zhu H B, Wang Y J 2014 Appl. Phys. Express 7 082102Google Scholar

    [9]

    Jia C Y, Zhong C T, Yu T J, Wang Z, Tong Y Z, Guo Y 2012 Semicond. Sci. Technol. 27 065008Google Scholar

    [10]

    Xu J, Zhang X, Yang H Q, Guo H, Zheng Y Z, Zhou D B, Cui Y P 2014 Jpn. J. Appl. Phys. 53 022101Google Scholar

    [11]

    Park S H, Moon Y T, Han D S, Park J S, Oh M S, Ahn D 2012 Semicond. Sci. Technol. 27 115003Google Scholar

    [12]

    Tian W, Zhang J, Wang Z J, Wu F, Li Y, Chen S C, Xu J, Dai J N, Fang Y Y, Wu Z H, Chen C Q 2013 Light Emitting Diodes 5 8200609

    [13]

    王党会, 许天旱, 王荣, 雒设计, 姚婷珍 2015 物理学报 64 050701Google Scholar

    Wang D H, Xu T H, Wang R, Luo S J, Yao T Z 2015 Acta Phys. Sin. 64 050701Google Scholar

    [14]

    Yang G F, Zhang Q, Wang J, Gao S M, Zhang R, Zheng Y D 2015 IEEE Photon. J. 7 1

    [15]

    Park J J, Kang T, Woo D, Son J K, Lee J H, Park B G, Shin H 2011 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA) Incheon, Korea (South), July 4−7, 2011 p408

    [16]

    Arslan E, Bütün S, Şafak Y, Uslu H, Taşçıoğlu I, Altındal S, Özbay E 2011 Microelectron. Reliab. 51 370Google Scholar

    [17]

    Averkiev N S, Chernyakov A E, Levinshtein M E, Petrov P V, Yakimov E B, Shmidt N M, Shabunina E I 2009 Physica B 404 4896Google Scholar

    [18]

    Bychikhin S, Pogany D, Vandamme L K J, Meneghesso G, Zanoni E 2005 J. Appl. Phys. 97 123714Google Scholar

    [19]

    Jimenez Tejada J A, Godoy A, Palma A, Lopez Villanueva J A 2002 J. Appl. Phys. 92 320Google Scholar

    [20]

    Rumyantsev S L, Shur M S, Bilenko Y, Kosterin P V, Salzberg B M 2004 J. Appl. Phys. 96 966Google Scholar

    [21]

    Boudier D, Cretu B, Simoen E, Veloso A, Collaert N 2018 Solid State Electron. 143 27Google Scholar

    [22]

    Simoen E, Ritzenthaler R, Schram T, et al. 2014 International Conference on Solid-state and Integrated Circuit Technology (ICSICT) Guilin, China, October 28−31, 2014 p1631

    [23]

    Jessen G H, Fitch R C, Gillespie J K, Via G D, White B D, Bradley S T, Walker Jr D E, Brillson L J 2003 Appl. Phys. Lett. 83 485Google Scholar

    [24]

    Wong H 2003 Microelectron. Reliab. 43 585Google Scholar

  • [1] 吕玲, 邢木涵, 薛博瑞, 曹艳荣, 胡培培, 郑雪峰, 马晓华, 郝跃. 重离子辐射对AlGaN/GaN高电子迁移率晶体管低频噪声特性的影响. 物理学报, 2024, 73(3): 036103. doi: 10.7498/aps.73.20221360
    [2] 朱宇博, 徐华, 李民, 徐苗, 彭俊彪. 镨掺杂铟镓氧化物薄膜晶体管的低频噪声特性分析. 物理学报, 2021, 70(16): 168501. doi: 10.7498/aps.70.20210368
    [3] 闫大为, 田葵葵, 闫晓红, 李伟然, 俞道欣, 李金晓, 曹艳荣, 顾晓峰. GaN肖特基二极管的正向电流输运和低频噪声行为. 物理学报, 2021, 70(8): 087201. doi: 10.7498/aps.70.20201467
    [4] 李雪, 曹宝龙, 王明昊, 冯增勤, 陈淑芬. 基于改性空穴注入层与复合发光层的高效钙钛矿发光二极管. 物理学报, 2021, 70(4): 048502. doi: 10.7498/aps.70.20201379
    [5] 刘远, 何红宇, 陈荣盛, 李斌, 恩云飞, 陈义强. 氢化非晶硅薄膜晶体管的低频噪声特性. 物理学报, 2017, 66(23): 237101. doi: 10.7498/aps.66.237101
    [6] 曹江伟, 王锐, 王颖, 白建民, 魏福林. 隧穿磁电阻效应磁场传感器中低频噪声的测量与研究. 物理学报, 2016, 65(5): 057501. doi: 10.7498/aps.65.057501
    [7] 王凯, 刘远, 陈海波, 邓婉玲, 恩云飞, 张平. 部分耗尽结构绝缘体上硅器件的低频噪声特性. 物理学报, 2015, 64(10): 108501. doi: 10.7498/aps.64.108501
    [8] 刘远, 陈海波, 何玉娟, 王信, 岳龙, 恩云飞, 刘默寒. 电离辐射对部分耗尽绝缘体上硅器件低频噪声特性的影响. 物理学报, 2015, 64(7): 078501. doi: 10.7498/aps.64.078501
    [9] 王党会, 许天旱, 王荣, 雒设计, 姚婷珍. InGaN/GaN多量子阱结构发光二极管发光机理转变的低频电流噪声表征. 物理学报, 2015, 64(5): 050701. doi: 10.7498/aps.64.050701
    [10] 陈伟超, 唐慧丽, 罗平, 麻尉蔚, 徐晓东, 钱小波, 姜大朋, 吴锋, 王静雅, 徐军. GaN基发光二极管衬底材料的研究进展. 物理学报, 2014, 63(6): 068103. doi: 10.7498/aps.63.068103
    [11] 何西, 杜团结, 吴逢铁. 新型发光二极管透镜产生局域空心光束. 物理学报, 2014, 63(7): 074201. doi: 10.7498/aps.63.074201
    [12] 刘远, 吴为敬, 李斌, 恩云飞, 王磊, 刘玉荣. 非晶铟锌氧化物薄膜晶体管的低频噪声特性与分析. 物理学报, 2014, 63(9): 098503. doi: 10.7498/aps.63.098503
    [13] 王爱迪, 刘紫玉, 张培健, 孟洋, 李栋, 赵宏武. Au/SrTiO3/Au界面电阻翻转效应的低频噪声分析. 物理学报, 2013, 62(19): 197201. doi: 10.7498/aps.62.197201
    [14] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究. 物理学报, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [15] 刘玉栋, 杜磊, 孙鹏, 陈文豪. 静电放电对功率肖特基二极管I-V及低频噪声特性的影响. 物理学报, 2012, 61(13): 137203. doi: 10.7498/aps.61.137203
    [16] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [17] 于思瑶, 郭树旭, 郜峰利. 半导体激光器低频噪声的Lyapunov指数计算和混沌状态判定. 物理学报, 2009, 58(8): 5214-5217. doi: 10.7498/aps.58.5214
    [18] 刘乃鑫, 王怀兵, 刘建平, 牛南辉, 韩 军, 沈光地. p型氮化镓的低温生长及发光二极管器件的研究. 物理学报, 2006, 55(3): 1424-1429. doi: 10.7498/aps.55.1424
    [19] 胡 瑾, 杜 磊, 庄奕琪, 包军林, 周 江. 发光二极管可靠性的噪声表征. 物理学报, 2006, 55(3): 1384-1389. doi: 10.7498/aps.55.1384
    [20] 黄杨程, 刘大福, 梁晋穗, 龚海梅. 短波碲镉汞光伏器件的低频噪声研究. 物理学报, 2005, 54(5): 2261-2266. doi: 10.7498/aps.54.2261
计量
  • 文章访问数:  8135
  • PDF下载量:  85
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-07
  • 修回日期:  2019-04-08
  • 上网日期:  2019-06-06
  • 刊出日期:  2019-06-20

/

返回文章
返回