搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤耦合宽带LED光源的Herriott池 测量NO2的研究

曹渊 田兴 程刚 刘锟 王贵师 朱公栋 高晓明

引用本文:
Citation:

基于光纤耦合宽带LED光源的Herriott池 测量NO2的研究

曹渊, 田兴, 程刚, 刘锟, 王贵师, 朱公栋, 高晓明

NO2 measurement using fiber coupled broadband LED source combining a Herriott multi-pass cell

Cao Yuan, Tian Xing, Cheng Gang, Liu Kun, Wang Gui-Shi, Zhu Gong-Dong, Gao Xiao-Ming
PDF
HTML
导出引用
  • 本文针对气溶胶吸收光声光谱仪需用较高浓度二氧化氮(NO2)进行标定的需求, 开展了基于光纤耦合宽带LED光源的Herriott型多通池测量NO2的研究, 解决了NO2的简便、快速和高精度测量问题. 首先依据光线传输理论、仿真分析了Herriott型多通池, 并采用优化的仿真结果设计了有效光程为26.1 m的光学多通吸收池, 以增强吸收池内待测NO2气体的光吸收. 针对LED光源的发光面、发散角大, 常规准直的输出光难于在Herriott型多通池内来回传输的问题, 本研究中将LED光源的输出光耦合进入一根单模光纤, 然后用透镜准直后导入光学多通吸收池中, 实现基于光学多通吸收池的宽带LED吸收光谱测量NO2浓度, 最终实现了对NO2检测浓度极限1 μmol/mol的预期设计值, 对46 μmol/mol的NO2测量结果表明, 测量精度达到0.1%. 最后开展了此NO2测量系统与气溶胶吸收光声光谱仪同时测量不同浓度NO2的观测研究, 结果表明所测量NO2浓度与光声光谱信号呈现出很好的线性关系, 线性度优于99.9%. 基于宽带LED光源和Herriott型多通池的NO2测量系统, 具有价格低廉、结构简单和易用的特点, 可以满足NO2吸收法标定气溶胶吸收光声光谱仪的需求, 也可用于化工领域对NO2的快速分析测量.
    An NO2 sensor based on a fiber coupled broadband LED source with a Herriott multi-pass cell is developed and demonstrated for calibrating aerosol absorption photoacoustic (PA) spectrometer. At first, a Herriott multi-pass cell with an effective optical path of 26.1 m is designed based on the theory of light transmission, for increasing the light absorption of NO2 in the cell. It is difficult to obtain a high-quality beam of LED by using the conventional collimating method that enables the collimated output beam to transmit back and forth in the multi-pass cell, due to the large emitting surface and divergence angle of the LED. So, in the present work, the emission of the LED is coupled into a single model fiber, and then collimated by using a lens. The LED spectrum does not change before and after fiber coupling. The collimated beam with a central wavelength of 438.5 nm is coupled into the multi-pass cell. The output beam passing through the multi-pass cell is detected by using a spectrometer for retrieving the NO2 concentration. Finally, an expected concentration detection limit of 1 μmol/mol (3σ) is achieved within 1 s acquisition time and the signal-to-noise ratio (SNR) is 40. By analyzing the result measured with 46 μmol/mol NO2, a measurement precision of 0.1% is achieved. In order to calibrate the aerosol absorption PA spectrometer, the NO2 sensor and the aerosol absorption PA spectrometer based on 450 nm are used to measure different concentrations of NO2, simultaneously. The results show that the measured NO2 concentration has a good linear relationship with the PA spectrum signal, and the linearity is better than 99.9%. This good linear relationship further shows the feasibility and reliability of the NO2 sensor. The slope of calibration curve after normalizing the power is 0.95 nV/(mW·Mm-1). Using this calibration result, the PA signal measured with aerosol absorption PA spectrometer is transformed into the absorption coefficient. The developed NO2 measuring system based on a broadband LED light source and Herriott multi-pass cell has the advantages of low cost, simple structure and easy use. It can be used to calibrate the aerosol absorption PA spectrometer, and also to measure NO2 in industry.
      通信作者: 刘锟, liukun@aiofm.ac.cn ; 高晓明, xmgao@aiofm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 41475023, 41575030, 61775221)资助的课题.
      Corresponding author: Liu Kun, liukun@aiofm.ac.cn ; Gao Xiao-Ming, xmgao@aiofm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 41475023, 41575030, 61775221).
    [1]

    Jacobson M Z 2001 Nature 409 695Google Scholar

    [2]

    Ramanathan V, Carmichael G H 2008 Nat. Geosci. 1 221Google Scholar

    [3]

    Ackerman A S, Toon O B, Stevens D E, Heymsfield A J, Ramanathan V, Welton E J 2000 Science 288 1042Google Scholar

    [4]

    Lohmann U, Feichter J 2005 Atmos. Chem. Phys. 5 715Google Scholar

    [5]

    Ajtai T, Filep Á, Schnaiter M, Linke C, Vragel M, Bozóki Z, Szabó G, Leisner T 2010 J. Aerosol Sci. 41 1020Google Scholar

    [6]

    Sheridan P J, Arnott W P, Ogren J A, Andrews E, Atkinson D B, Covert D S, Moosmüller H, Petzold A, Schmid B, Strawa A W, Varma R, Virkkula A 2005 Aerosol Sci. Technol. 39 1Google Scholar

    [7]

    Petzold A, Schloesser H, Sheridan P J, Arnott W P, Ogren J A, Virkkula A 2005 Aerosol Sci. Technol. 39 40Google Scholar

    [8]

    Tomberg T, Vainio M, Hieta T, Halonen L 2018 Sci. Rep. 8 1848Google Scholar

    [9]

    Havey D K, Bueno P A, Gillis K A, Hodges J T, Mulholland G W, Zee R D, Zachariah M R 2010 Anal. Chem. 82 7935Google Scholar

    [10]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594Google Scholar

    [11]

    Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sens. Actuator, B 251 632Google Scholar

    [12]

    Liu Q, Huang H H, Wang Y, Wang G S, Cao Z S, Liu K, Chen W D, Gao X M 2014 Chin. Phys. B 23 064205Google Scholar

    [13]

    Tian G X, Moosmüller H, Arnott W P 2009 Aerosol Sci. Technol. 43 1084Google Scholar

    [14]

    Lack D A, Lovejoy E R, Baynard T, Pettersson A, Ravishankara A R 2006 Aerosol Sci. Technol. 40 697Google Scholar

    [15]

    Arnott W P, Moosmüller H, Walker J W 2000 Rev. Sci. Instrum. 71 4545Google Scholar

    [16]

    吴涛, 赵卫雄, 李劲松, 张为俊, 陈卫东, 高晓明 2008 光谱学与光谱分析 28 2469Google Scholar

    Wu T, Zhao W X, Li J S, Zhang W J, Chen W D, Gao X M 2008 Spectrosc. Spectr. Anal. 28 2469Google Scholar

    [17]

    董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊 2012 物理学报 61 060702

    Dong M L, Zhao W X, Cheng Y, Hu C J, Gu X J, Zhang W J 2012 Acta Phys. Sin. 61 060702

    [18]

    Wu T, Zhao W X, Chen W D, Zhang W J, Gao X M 2008 Appl. Phys. B 94 85

    [19]

    Gherman T, Venables D S, Vaughan S, Orphai J, Ruth A A 2008 Environ. Sci. Technol. 42 890Google Scholar

    [20]

    Liu K, Lewicki R, Tittel F K 2016 Sens. Actuator, B 237 887Google Scholar

    [21]

    The HITRAN database: http://hitran.iao.ru [2019-2-25]

    [22]

    Herriott D, Kogelnik H, Kompfner R 1964 Appl. Opt. 3 523Google Scholar

    [23]

    Robert C 2007 Appl. Opt. 46 5408Google Scholar

    [24]

    Fang B, Zhao W X, Xu X Z, Zhou J C, Ma X, Wang S, Zhang W J, Venables D S, Chen W D 2017 Opt. Express 25 26910Google Scholar

  • 图 1  基于光学模拟软件的模拟结果

    Fig. 1.  Simulation results based on optical simulation software.

    图 2  研制的NO2测量吸收池实物图

    Fig. 2.  Photo of developed absorption cell for NO2 measurement.

    图 3  实验装置图

    Fig. 3.  Experimental setup.

    图 4  通过光纤耦合前后的归一化的光强分布

    Fig. 4.  Normalized light intensity distribution before and after fiber coupling.

    图 5  LED的发射谱(蓝线)和NO2的吸收截面(黑线)

    Fig. 5.  LED emission spectrum (blue line) and the absorption cross section of NO2 (black line).

    图 6  通过多通池后的光强分布, N2(蓝线), NO2(红线)

    Fig. 6.  Light intensity after passing the multi-pass cell in N2(blue line) and in 42.14 μmol/mol NO2(red line).

    图 7  (a)实验中42.14 $\rm{\mu mol}/\rm{mol}$ NO2的吸收光谱(蓝线)及拟合光谱(红线); (b)拟合残差

    Fig. 7.  (a)Experimental absorption spectra of NO2(blue line) and the fitted absorption spectrum for 42.14 μmol/mol NO2(red line); (b)fit residual.

    图 8  宽带LED光谱(红线)和光声光谱(蓝线)同时、连续测量NO2结果

    Fig. 8.  NO2 measurement continuously with broadband LED absorption spectroscopy (red line) and PA spectroscopy (blue line), simultaneously.

    图 9  光声光谱仪的标定结果

    Fig. 9.  The calibration results of PA spectrometer.

  • [1]

    Jacobson M Z 2001 Nature 409 695Google Scholar

    [2]

    Ramanathan V, Carmichael G H 2008 Nat. Geosci. 1 221Google Scholar

    [3]

    Ackerman A S, Toon O B, Stevens D E, Heymsfield A J, Ramanathan V, Welton E J 2000 Science 288 1042Google Scholar

    [4]

    Lohmann U, Feichter J 2005 Atmos. Chem. Phys. 5 715Google Scholar

    [5]

    Ajtai T, Filep Á, Schnaiter M, Linke C, Vragel M, Bozóki Z, Szabó G, Leisner T 2010 J. Aerosol Sci. 41 1020Google Scholar

    [6]

    Sheridan P J, Arnott W P, Ogren J A, Andrews E, Atkinson D B, Covert D S, Moosmüller H, Petzold A, Schmid B, Strawa A W, Varma R, Virkkula A 2005 Aerosol Sci. Technol. 39 1Google Scholar

    [7]

    Petzold A, Schloesser H, Sheridan P J, Arnott W P, Ogren J A, Virkkula A 2005 Aerosol Sci. Technol. 39 40Google Scholar

    [8]

    Tomberg T, Vainio M, Hieta T, Halonen L 2018 Sci. Rep. 8 1848Google Scholar

    [9]

    Havey D K, Bueno P A, Gillis K A, Hodges J T, Mulholland G W, Zee R D, Zachariah M R 2010 Anal. Chem. 82 7935Google Scholar

    [10]

    Liu K, Guo X Y, Yi H M, Chen W D, Zhang W J, Gao X M 2009 Opt. Lett. 34 1594Google Scholar

    [11]

    Liu K, Mei J X, Zhang W J, Chen W D, Gao X M 2017 Sens. Actuator, B 251 632Google Scholar

    [12]

    Liu Q, Huang H H, Wang Y, Wang G S, Cao Z S, Liu K, Chen W D, Gao X M 2014 Chin. Phys. B 23 064205Google Scholar

    [13]

    Tian G X, Moosmüller H, Arnott W P 2009 Aerosol Sci. Technol. 43 1084Google Scholar

    [14]

    Lack D A, Lovejoy E R, Baynard T, Pettersson A, Ravishankara A R 2006 Aerosol Sci. Technol. 40 697Google Scholar

    [15]

    Arnott W P, Moosmüller H, Walker J W 2000 Rev. Sci. Instrum. 71 4545Google Scholar

    [16]

    吴涛, 赵卫雄, 李劲松, 张为俊, 陈卫东, 高晓明 2008 光谱学与光谱分析 28 2469Google Scholar

    Wu T, Zhao W X, Li J S, Zhang W J, Chen W D, Gao X M 2008 Spectrosc. Spectr. Anal. 28 2469Google Scholar

    [17]

    董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊 2012 物理学报 61 060702

    Dong M L, Zhao W X, Cheng Y, Hu C J, Gu X J, Zhang W J 2012 Acta Phys. Sin. 61 060702

    [18]

    Wu T, Zhao W X, Chen W D, Zhang W J, Gao X M 2008 Appl. Phys. B 94 85

    [19]

    Gherman T, Venables D S, Vaughan S, Orphai J, Ruth A A 2008 Environ. Sci. Technol. 42 890Google Scholar

    [20]

    Liu K, Lewicki R, Tittel F K 2016 Sens. Actuator, B 237 887Google Scholar

    [21]

    The HITRAN database: http://hitran.iao.ru [2019-2-25]

    [22]

    Herriott D, Kogelnik H, Kompfner R 1964 Appl. Opt. 3 523Google Scholar

    [23]

    Robert C 2007 Appl. Opt. 46 5408Google Scholar

    [24]

    Fang B, Zhao W X, Xu X Z, Zhou J C, Ma X, Wang S, Zhang W J, Venables D S, Chen W D 2017 Opt. Express 25 26910Google Scholar

  • [1] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算. 物理学报, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [2] 陶蒙蒙, 王亚民, 吴昊龙, 李国华, 王晟, 陶波, 叶景峰, 冯国斌, 叶锡生, 陈卫标. 基于宽带可调谐、窄线宽掺铥光纤激光器的2 μm波段水的超光谱吸收测量. 物理学报, 2022, 71(11): 114203. doi: 10.7498/aps.71.20212127
    [3] 孟凡昊, 秦敏, 方武, 段俊, 唐科, 张鹤露, 邵豆, 廖知堂, 谢品华. 基于迭代算法的大气HONO和NO2开放光路宽带腔增强吸收光谱测量. 物理学报, 2022, 71(12): 120701. doi: 10.7498/aps.71.20220150
    [4] 熊枫, 彭志敏, 丁艳军, 杜艳君. NO紫外宽带吸收光谱的非线性响应及实验. 物理学报, 2022, 71(20): 203302. doi: 10.7498/aps.71.20220975
    [5] 张鹤露, 秦敏, 方武, 唐科, 段俊, 孟凡昊, 邵豆, 华卉, 廖知堂, 谢品华. 基于非相干宽带腔增强吸收光谱技术对碘氧自由基的定量研究. 物理学报, 2021, 70(15): 150702. doi: 10.7498/aps.70.20210312
    [6] 段俊, 唐科, 秦敏, 王丹, 王牧笛, 方武, 孟凡昊, 谢品华, 刘建国, 刘文清. 宽带腔增强吸收光谱技术应用于大气NO3自由基的测量. 物理学报, 2021, 70(1): 010702. doi: 10.7498/aps.70.20201066
    [7] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量. 物理学报, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [8] 李闯, 蔡理, 李伟伟, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 李成, 危波. 水合肼还原的氧化石墨烯吸附NO2的实验研究. 物理学报, 2019, 68(11): 118102. doi: 10.7498/aps.68.20182242
    [9] 朱冰, 冯灏. 运用R矩阵方法研究低能电子与NO2分子的散射. 物理学报, 2017, 66(24): 243401. doi: 10.7498/aps.66.243401
    [10] 刘进, 邹莹, 司福祺, 周海金, 窦科, 王煜, 刘文清. 基于差分吸收光谱技术的大气痕量气体二维观测方法. 物理学报, 2015, 64(16): 164209. doi: 10.7498/aps.64.164209
    [11] 凌六一, 谢品华, 林攀攀, 黄友锐, 秦敏, 段俊, 胡仁志, 吴丰成. 基于O2-O2吸收的非相干宽带腔增强吸收光谱浓度反演方法研究. 物理学报, 2015, 64(13): 130705. doi: 10.7498/aps.64.130705
    [12] 段俊, 秦敏, 方武, 凌六一, 胡仁志, 卢雪, 沈兰兰, 王丹, 谢品华, 刘建国, 刘文清. 非相干宽带腔增强吸收光谱技术应用于实际大气亚硝酸的测量. 物理学报, 2015, 64(18): 180701. doi: 10.7498/aps.64.180701
    [13] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [14] 程巳阳, 徐亮, 高闽光, 金岭, 李胜, 冯书香, 刘建国, 刘文清. 直射太阳光红外吸收光谱技术遥测大气中二氧化碳柱浓度. 物理学报, 2013, 62(12): 124206. doi: 10.7498/aps.62.124206
    [15] 胡明, 刘青林, 贾丁立, 李明达. n型有序多孔硅基氧化钨室温气敏性能研究. 物理学报, 2013, 62(5): 057102. doi: 10.7498/aps.62.057102
    [16] 董美丽, 赵卫雄, 程跃, 胡长进, 顾学军, 张为俊. 宽带腔增强吸收光谱技术应用于痕量气体探测及气溶胶消光系数测量. 物理学报, 2012, 61(6): 060702. doi: 10.7498/aps.61.060702
    [17] 凌六一, 秦敏, 谢品华, 胡仁志, 方武, 江宇, 刘建国, 刘文清. 基于LED光源的非相干宽带腔增强吸收光谱技术探测HONO和NO2. 物理学报, 2012, 61(14): 140703. doi: 10.7498/aps.61.140703
    [18] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [19] 黄锡毅. 红宝石吸收宽带的强度. 物理学报, 1964, 20(3): 241-251. doi: 10.7498/aps.20.241
    [20] 严济慈, 锺盛標. 臭氧之紫外吸收光谱. 物理学报, 1933, 1(1): 38-50. doi: 10.7498/aps.1.38
计量
  • 文章访问数:  8220
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-25
  • 修回日期:  2019-05-13
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回