-
近年来, 金属卤化钙钛矿凭借其优异的光电特性以及可低成本溶液加工的优势得到了学界的广泛关注, 成为了光电子领域的研究热点, 其中, 钙钛矿发光二极管是该领域的一大重要研究方向. 由于钙钛矿材料具有荧光量子效率高、带隙连续可调、发光半峰宽窄等优点, 钙钛矿发光二极管在短短5年时间内, 实现了外量子效率从不足1%到超过20%的重大突破, 成为了发展速度最快的发光技术. 在这5年的发展历程中, 学界主要集中于解决如何实现钙钛矿成膜和结晶过程的控制、如何提高钙钛矿薄膜的荧光量子效率, 以及如何改善钙钛矿发光二极管的稳定性等问题. 而在众多解决方案中, 有机添加剂的使用被认为是一种简单且有效的策略. 本文通过文献综述, 回顾了有机添加剂在钙钛矿发光二极管领域的整体发展和应用情况, 并着重讨论了小分子与聚合物添加剂在钙钛矿中的具体作用, 最后分析了当前钙钛矿发光二极管面临的问题, 并对其未来发展进行了展望.In recent years, metal halide perovskites have received extensive attention due to their superior optoelectronic properties and solution processability, which also become a research hotspot in the field of optoelectronics. Among all the perovskite optoelectronics applications, perovskite light-emitting diode (LED) becomes one of the important research topics because it is likely to be used in the next-generation display technique. Based on the high photoluminescence quantum yield (PLQY), facilely tunable bandgaps, and sharp emission of perovskite material, the external quantum efficiency of perovskite LED has increased from less than 1% to over 20% within only five years, showing the most rapid development speed in the LED field. During the 5-year exploration of perovskite LEDs, researchers have focused their efforts on how to realize the crystal-growth control in the perovskite film formation process, enhance PLQY of the perovskite films, and improve the performance of perovskite LEDs. Among all the approaches, the utilization of organic additives including small molecules and polymers proves to be an effective strategy. Here, in this article, we review the recent advances in metal halide perovskite LEDs based on the strategy of organic-additive treatment. We also analyze and discuss the interaction between organic additive and perovskite crystal as well as its influence on the performance of perovskite LED. In the end, we discuss the challenges remaining in perovskite LEDs and the prospects for perovskite LEDs.
-
Keywords:
- metal halide perovskite /
- light-emitting diodes /
- small molecule additives /
- polymer additives
[1] de Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar
[2] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar
[3] Braly I L, Dequilettes D W, Pazosoutón L M, Burke S, Ziffer M E, Ginger D S, Hillhouse H W 2018 Nat. Photon. 12 355Google Scholar
[4] Akkerman Q A, Rainò G, Kovalenko M V, Manna L 2018 Nat. Mater. 17 394Google Scholar
[5] Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar
[6] Sun H, Tian W, Cao F, Xiong J, Li L 2018 Adv. Mater. 30 1706986
[7] Wang Y, Li X, Song J, Xiao L, Zeng H, Sun H 2015 Adv. Mater. 27 7101Google Scholar
[8] Chen Z, Li Z, Zhang C, Jiang X F, Chen D, Xue Q, Liu M, Su S, Yip H L, Cao Y 2018 Adv. Mater. 30 1801370
[9] Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar
[10] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar
[11] Akkerman Q A, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L 2015 J. Am. Chem. Soc. 137 10276Google Scholar
[12] Li C, Lu X, Ding W, Feng L, Gao Y, Guo Z 2008 Acta Cryst. 64 702Google Scholar
[13] Kieslich G, Sun S, Cheetham A K 2015 Chem. Sci. 6 3430Google Scholar
[14] Milot R L, Eperon G E, Snaith H J, Johnston M B, Herz L M 2015 Adv. Funct. Mater. 25 6218
[15] Correa-Baena J P, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W, Hagfeldt A 2017 Science 358 739Google Scholar
[16] Dunlap-Shohl W A, Zhou Y, Padture N P, Mitzi D B 2019 Chem. Rev. 119 3193Google Scholar
[17] Mao L, Ke W, Pedesseau L, Wu Y, Katan C, Even J, Wasielewski M R, Stoumpos C C, Kanatzidis M G 2018 J. Am. Chem. Soc. 140 3775Google Scholar
[18] Mitzi D B 2001 J. Chem. Soc., Dalton Trans. 1 1
[19] Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676Google Scholar
[20] Era M, Morimoto S, Tsutsui T, Saito S 1995 Synth. Met. 71 2013Google Scholar
[21] Hattori T, Taira T, Era M, Tsutsui T, Saito S 1996 Chem. Phys. Lett. 254 103Google Scholar
[22] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar
[23] Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar
[24] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photon. 10 699Google Scholar
[25] Xiao Z, Kerner R A, Zhao L, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar
[26] Yang X, Zhang X, Deng J, Chu Z, Jiang Q, Meng J, Wang P, Zhang L, Yin Z, You J 2018 Nat. Commun. 9 570Google Scholar
[27] Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar
[28] Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photon. 12 681Google Scholar
[29] Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar
[30] Herz L M 2016 Annu. Rev. Phys. Chem. 67 65Google Scholar
[31] Liang D, Peng Y, Fu Y, Shearer M J, Zhang J, Zhai J, Zhang Y, Hamers R J, Andrew T L, Jin S 2016 ACS Nano 10 6897Google Scholar
[32] Wang Z, Wang F, Sun W, Ni R, Hu S, Liu J, Zhang B, Alsaed A, Hayat T, Tan Z 2018 Adv. Funct. Mater. 28 1804187
[33] Chen Z, Zhang C, Jiang X F, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao Y J, Su S, Yip H L, Cao Y 2017 Adv. Mater. 29 1603157Google Scholar
[34] Chen P, Meng Y, Ahmadi M, Peng Q, Gao C, Xu L, Shao M, Xiong Z, Hu B 2018 Nano Energy 50 615Google Scholar
[35] Zhang S, Yi C, Wang N, Sun Y, Zou W, Wei Y, Cao Y, Miao Y, Li R, Yin Y, Zhao N, Wang J, Huang W 2017 Adv. Mater. 29 1606600
[36] Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar
[37] Chang J, Zhang S, Wang N, Sun Y, Wei Y, Li R, Yi C, Wang J, Huang W 2018 J. Phys. Chem. Lett. 9 881Google Scholar
[38] Yang M, Wang N, Zhang S, Zou W, He Y, Wei Y, Xu M, Wang J, Huang W 2018 J. Phys. Chem. Lett. 9 2038Google Scholar
[39] Wang Y, Zou R, Chang J, Fu Z, Cao Y, Zhang L, Wei Y, Kong D, Zou W, Wen K, Fan N, Wang N, Huang W, Wang J 2019 J. Phys. Chem. Lett. 10 453Google Scholar
[40] He Z, Liu Y, Yang Z, Li J, Cui J, Chen D, Fang Z, He H, Ye Z, Zhu H, Wang N, Wang J, Jin Y 2019 ACS Photon. 6 587Google Scholar
[41] Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761Google Scholar
[42] Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J 2014 Energy Environ. Sci. 7 2619Google Scholar
[43] 薛启帆, 孙辰, 胡志诚, 黄飞, 叶轩立, 曹镛 2015 化学学报 73 179
Xue Q F, Sun C, Hu Z C, Huang F, Yip H L, Cao Y 2015 Acta Chim. Sin. 73 179
[44] Cheng L P, Huang J S, Shen Y, Li G P, Liu X K, Li W, Wang Y H, Li Y Q, Jiang Y, Gao F, Lee C S, Tang J X 2019 Adv. Opt. Mater. 7 1801534
[45] Huang M Y, Veeramuthu L, Kuo C C, Liao Y C, Jiang D H, Liang F C, Yan Z L, Borsali R, Chueh C C 2019 Org. Electron. 67 294Google Scholar
[46] Tian Y, Zhou C, Worku M, Wang X, Ling Y, Gao H, Zhou Y, Miao Y, Guan J, Ma B 2018 Adv. Mater. 30 1707093
[47] Park M H, Jeong S H, Seo H K, Wolf C, Kim Y H, Kim H, Byun J, Kim J S, Cho H, Lee T W 2017 Nano Energy 42 157Google Scholar
[48] Yantara N, Bhaumik S, Yan F, Sabba D, Dewi H A, Mathews N, Boix P P, Demir H V, Mhaisalkar S 2015 J. Phys. Chem. Lett. 6 4360Google Scholar
[49] Ng Y F, Jamaludin N F, Yantara N, Li M, Irukuvarjula V K R, Demir H V, Sum T C, Mhaisalkar S, Mathews N 2017 ACS Omega 2 2757Google Scholar
[50] Ng Y F, Kulkarni S A, Parida S, Jamaludin N F, Yantara N, Bruno A, Soci C, Mhaisalkar S, Mathews N 2017 Chem. Commun. 53 12004Google Scholar
[51] Sun S Q, Hua X C, Liu Q W, Wang T T, Luo W, Zhang Y J, Liao L S, Fung M K 2019 J. Mater. Chem. C 7 2905Google Scholar
[52] Ban M, Zou Y, Rivett J P H, Yang Y, Thomas T H, Tan Y, Song T, Gao X, Credgington D, Deschler F, Sirringhaus H, Sun B 2018 Nat. Commun. 9 3892Google Scholar
[53] Zhao L, Rolston N, Lee K M, Zhao X, Reyes-Martinez M A, Tran N L, Yeh Y W, Yao N, Scholes G D, Loo Y L, Selloni A, Dauskardt R H, Rand B P 2018 Adv. Funct. Mater. 28 1802060
[54] Xiao Z, Kerner R A, Tran N, Zhao L, Scholes G D, Rand B P 2019 Adv. Funct. Mater. 29 1807284Google Scholar
[55] Zhang W, Yan X, Gao W, Dong J, Ma R, Liu L, Zhang M 2019 Org. Electron. 65 56Google Scholar
[56] Li G, Tan Z K, Di D, Lai M L, Jiang L, Lim J H W, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar
[57] Ling Y, Tian Y, Wang X, Wang J C, Knox J M, Perez-Orive F, Du Y, Tan L, Hanson K, Ma B, Gao H 2016 Adv. Mater. 28 8983
[58] Meng F, Zhang C, Chen D, Zhu W, Yip H L, Su S J 2017 J. Mater. Chem. C 5 6169Google Scholar
[59] Wu S, Zhao S, Xu Z, Song D, Qiao B, Yue H, Yang J, Zheng X, Wei P 2018 Appl. Phys. Lett. 113 213501Google Scholar
[60] Kim Y C, Baek S D, Myoung J M 2019 J. Alloys Compd. 786 11
[61] Cai W, Chen Z, Li Z, Yan L, Zhang D, Liu L, Xu Q H, Ma Y, Huang F, Yip H L, Cao Y 2018 ACS Appl. Mater. Interfaces 10 42564Google Scholar
[62] Lee J, Chen H F, Batagoda T, Coburn C, Djurovich P I, Thompson M E, Forrest S R 2016 Nat. Mater. 15 92
[63] Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X 2014 Nature 515 96Google Scholar
[64] Lee Y J, Kim S H, Huh J, Kim G H, Lee Y H, Cho S H, Kim Y C, Do Y R 2003 Appl. Phys. Lett. 82 3779Google Scholar
[65] Bulović V, Khalfin V B, Gu G, Burrows P E, Garbuzov D Z, Forrest S R 1998 Phys. Rev. B 58 3730Google Scholar
[66] Kang J, Wang L W 2017 J. Phys. Chem. Lett. 8 489Google Scholar
[67] Meggiolaro D, Motti S G, Mosconi E, Barker A J, Ball J, Andrea Riccardo Perini C, deschler F, Petrozza A, De Angelis F 2018 Energy Environ. Sci. 11 702Google Scholar
[68] Huang H, Bodnarchuk M I, Kershaw S V, Kovalenko M V, Rogach A L 2017 ACS Energy Lett. 2 2071Google Scholar
[69] Zakutayev A, Caskey C M, Fioretti A N, Ginley D S, Vidal J, Stevanovic V, Tea E, Lany S 2014 J. Phys. Chem. Lett. 5 1117Google Scholar
[70] Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653
[71] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar
[72] Stranks S D, Burlakov V M, Leijtens T, Ball J M, Goriely A, Snaith H J 2014 Phys. Rev. Appl. 2 034007Google Scholar
[73] Manser J S, Kamat P V 2014 Nat. Photon. 8 737Google Scholar
[74] Samiee M, Konduri S, Ganapathy B, Kottokkaran R, Abbas H A, Kitahara A, Joshi P, Zhang L, Noack M, Dalal V 2014 Appl. Phys. Lett. 105 153502Google Scholar
[75] de Quilettes D W, Vorpahl S M, Stranks S D, Nagaoka H, Eperon G E, Ziffer M E, Snaith H J, Ginger D S 2015 Science 348 683Google Scholar
[76] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D 2015 Science 347 522Google Scholar
[77] Uratani H, Yamashita K 2017 J. Phys. Chem. Lett. 8 742Google Scholar
[78] Yan F, Xing J, Xing G, Quan L, Tan S T, Zhao J, Su R, Zhang L, Chen S, Zhao Y, Huan A, Sargent E H, Xiong Q, Demir H V 2018 Nano Lett. 18 3157Google Scholar
[79] Yang D, Li X, Zeng H 2018 Adv. Mater. Interfaces 5 1701662
[80] Lee S, Park J H, Lee B R, Jung E D, Yu J C, Di Nuzzo D, Friend R H, Song M H 2017 J. Phys. Chem. Lett. 8 1784Google Scholar
[81] Song L, Guo X, Hu Y, Lv Y, Lin J, Fan Y, Zhang N, Liu X 2018 Nanoscale 10 18315Google Scholar
[82] Sun X, Han C, Wang K, Yu H, Li J, Lu K, Qin J, Yang H, Deng L, Zhao F, Yang Q, Hu B 2018 ACS Appl. Energy Mater. 1 6992Google Scholar
[83] Gao Z, Zheng Y, Zhao D, Yu J 2018 Nanomaterials 8 787Google Scholar
[84] Ke Y, Wang N, Kong D, Cao Y, He Y, Zhu L, Wang Y, Xue C, Peng Q, Gao F, Huang W, Wang J 2019 J. Phys. Chem. Lett. 10 380Google Scholar
[85] Levermore P, Schenk T, Tseng H R, Wang H J, Heil H, Jatsch A, Buchholz H, Böhm E 2016 SID Symp. Dig. Tech. Pap. 47 484Google Scholar
[86] Yamada T, Akino N, Tsubata Y, Fukushima D, Amamiya S, Sekihachi J I 2017 SID Symp. Dig. Tech. Pap. 48 845Google Scholar
[87] Chen S, Cao W, Liu T, Tsang S W, Yang Y, Yan X, Qian L 2019 Nat. Commun. 10 765Google Scholar
[88] Cho H, Kim Y H, Wolf C, Lee H D, Lee T W 2018 Adv. Mater. 30 1704587
[89] Quan L N, Yuan M, Comin R, Voznyy O, Beauregard E M, Hoogland S, Buin A, Kirmani A R, Zhao K, Amassian A, Kim D H, Sargent E H 2016 J. Am. Chem. Soc. 138 2649Google Scholar
[90] Yu M, Yi C, Wang N, Zhang L, Zou R, Tong Y, Chen H, Cao Y, He Y, Wang Y, Xu M, Liu Y, Jin Y, Huang W, Wang J 2019 Adv. Opt. Mater. 7 1801575
[91] Qiu W, Xiao Z, Roh K, Noel N K, Shapiro A, Heremans P, Rand B P 2019 Adv. Mater. 31 1806105
[92] Han B, Cai B, Shan Q, Song J, Li J, Zhang F, Chen J, Fang T, Ji Q, Xu X, Zeng H 2018 Adv. Funct. Mater. 28 1804285
[93] Azpiroz J M, Mosconi E, Bisquert J, De Angelis F 2015 Energy Environ. Sci. 8 2118Google Scholar
[94] Haruyama J, Sodeyama K, Han L, Tateyama Y 2015 J. Am. Chem. Soc. 137 10048Google Scholar
[95] Eames C, Frost J M, Barnes B R F, O’Regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar
[96] Yuan Y, Huang J 2016 Acc. Chem. Res. 49 286Google Scholar
[97] Zhang F, Zhong H, Chen C, Wu X G, Hu X, Huang H, Han J, Zou B, Dong Y 2015 ACS Nano 9 4533Google Scholar
[98] Vashishtha P, Halpert J E 2017 Chem. Mater. 29 5965Google Scholar
[99] Wang Y, He J, Chen H, Chen J, Zhu R, Ma P, Towers A, Lin Y, Gesquiere A J, Wu S T, Dong Y 2016 Adv. Mater. 28 10710Google Scholar
[100] Wu C, Zou Y, Wu T, Ban M, Pecunia V, Han Y, Liu Q, Song T, Duhm S, Sun B 2017 Adv. Funct. Mater. 27 1700338
[101] Liu X, Guo X, Lv Y, Hu Y, Fan Y, Lin J, Liu X, Liu X 2018 Adv. Opt. Mater. 6 1801245
[102] Bade S G R, Shan X, Hoang P T, Li J, Geske T, Cai L, Pei Q, Wang C, Yu Z 2017 Adv. Mater. 29 1607053Google Scholar
[103] Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228Google Scholar
[104] Zhao B, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L, Alsari M, She X J, Liang L, Zhang J, Lilliu S, Gao P, Snaith H J, Wang J, Greenham N C, Friend R H, Di D 2018 Nat. Photon. 12 783Google Scholar
[105] Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, Yao L, Fu Y, Gao L, Dong Q, Zhao C, Leng M, Ma F, Liang W, Wang L, Jin S, Han J, Zhang L, Etheridge J, Wang J, Yan Y, Sargent E H, Tang J 2018 Nature 563 541Google Scholar
[106] 陈亮, 张利伟, 陈永生 2018 物理学报 67 028801Google Scholar
Chen L, Zhang L W, Chen Y S 2018 Acta Phys. Sin. 67 028801Google Scholar
-
图 1 (a)立方相钙钛矿晶体结构; (b) A位阳离子尺寸与钙钛矿容忍因子的关系[15]; (c) n值不同的RP型二维钙钛矿在
$ \left\langle 100\right\rangle$ 方向上的排列方式[16]; (d) n值不同的DJ型二维钙钛矿在$\left\langle 100\right\rangle $ 方向上的排列方式[17]Fig. 1. (a) Crystal structure of cubic perovskite; (b) relationship between sizes of A cations and tolerance factor of perovskite [15]; (c) the
$\left\langle 100\right\rangle $ oriented layered perovskite series, named as (RNH3)2An–1BnX3n+1 [16]; (d) the$ \left\langle 100\right\rangle$ oriented layered perovskite series, named as (NH3-R-NH3)An–1BnX3n+1 [17]图 4 (a)不同浓度的POEA与MAPbBr3制备的钙钛矿薄膜的扫描电子显微镜(SEM)图与维度调控示意图[33]; (b)不同浓度的POEA与MAPbBr3制备的钙钛矿薄膜的XRD图案[33]; (c)不同浓度的POEA与MAPbBr3制备的钙钛矿薄膜PL以及器件EL的色坐标图[33]
Fig. 4. (a) SEM images of perovskite films fabricated from MAPbBr3 precursor solutions with different ratio of POEA and a schematic diagram of structural change of perovskite from bulk to layered structure upon increasing POEA concentration [33]; (b) XRD pattern of perovskite thin films fabricated from MAPbBr3 precursor solutions with different ratio of POEA [33]; (c) color coordinates of the EL of perovskite LEDs and PL of perovskite films plotted in the CIE chromaticity diagram [33].
图 5 (a)不同浓度的PEABr与CsPbCl0.9Br2.1制备的薄膜的PL光谱图[29]; (b)不同浓度的PEABr与CsPbCl0.9Br2.1制备的LED的EL光谱图[29]; (c)
$\left\langle n \right\rangle $ = 3准二维钙钛矿不同时间尺度的PL光谱[23]; (d)$\left\langle n \right\rangle $ = 5准二维钙钛矿晶粒间的电荷转移[23]; (e)多晶PEA2MAn–1PbnI3n+1准二维钙钛矿的电荷转移示意图[23]; (f) PA2(CsPbBr3)n–1PbBr4钙钛矿薄膜的吸收与PL光谱[34]; (g) PA2(CsPbBr3)n–1PbBr4钙钛矿LED的EL光谱与工作电压为6 V时的照片[34]; (h) PA2(CsPbBr3)n–1PbBr4量子阱中的电荷转移示意图[34]; (i)基于钙钛矿量子阱的钙钛矿LED能级图[24]; (j)钙钛矿多量子阱结构的级联式能量传递效应示意图[24]Fig. 5. (a) PL spectra of CsPbCl0.9Br2.1 thin films with different ratios of PEABr [29]; (b) EL spectra of CsPbCl0.9Br2.1 thin films with different ratios of PEABr [29]; (c) PL for an
$\left\langle n \right\rangle $ = 3 perovskite at different timescales [23]; (d) the carrier transfer process in$ \left\langle n \right\rangle$ = 5 perovskite crystals [23]; (e) carrier transfer process in multi-phase PEA2MAn–1PbnI3n+1 perovskite crystals [23]; (f) UV-Vis absorption and PL spectra of the PA2(CsPbBr3)n–1PbBr4 film [34]; (g) EL spectrum of PeLEDs fabricated with PA2(CsPbBr3)n–1PbBr4 film and the photograph of a working device at 6 V [34]; (h) schematic diagram of charge carrier cascade in PA2(CsPbBr3)n–1PbBr4 MQWs [34]; (i) flat-band energy level diagram of the PeLED with perovskite MQWs [24]; (j) schematic diagram of cascade energy transfer in perovskite multi quantum wells [24].图 6 (a) NMA2FAPb2I7薄膜的激发功率密度依赖PLQE曲线[24]; (b)不同组分的NMA2FAn–1PbnI3n+1薄膜的激发功率密度依赖PLQE曲线[36]; (c)不同组分的NMA2(FAxCs1–x)Pb2I7薄膜的激发功率密度依赖PLQE曲线[38]; (d)三维与二维量子阱钙钛矿薄膜的激发功率密度依赖PLQE曲线[39]; (e)不同组分的NMA2FAn–1PbnI3n+1制备器件的EQE-电流密度曲线[36]; (f)不同组分的NMA2(FAxCs1–x)Pb2I7制备器件的EQE-电流密度曲线[38]; (g) PBA2Csn–1PbnI3n+1薄膜的激发功率密度依赖PLQE曲线[40]; (h) PBA2Csn–1PbnI3n+1制备器件的EQE-电流密度曲线[40]
Fig. 6. (a) Excitation-intensity-dependent PLQE of the NMA2FAPb2I7 thin film [24]; (b) excitation-intensity-dependent PLQE of NMA2FAn–1PbnI3n+1 thin films with different composition [36]; (c) excitation-intensity-dependent PLQE of NMA2(FAxCs1–x)Pb2I7 thin films with different composition [38]; (d) excitation-intensity-dependent PLQE of perovskite with three-dimensional and two-dimensional quantum wells [39]; (e) EQE versus current density curves of NMA2FAn–1PbnI3n+1 thin films with different composition [36]; (f) EQE versus current density curves of NMA2(FAxCs1–x)Pb2I7 thin films with different composition [38]; (g) excitation-intensity-dependent PLQE of PBA2Csn–1PbnI3n+1 thin films [40]; (h) EQE versus current density curves of PBA2Csn–1PbnI3n+1 thin films [40].
图 7 (a)经过含有不同浓度TPBi的氯仿作为反溶剂处理的MAPbBr3薄膜的SEM图以及晶粒尺寸分布曲线[47]; (b)不同比例的PEABr与CsPbBr3制备的钙钛矿薄膜的表面与横截面SEM图[50]; (c)不同比例的卵磷脂添加剂与CsPbBr3制备的钙钛矿薄膜的表面SEM图[51]; (d)有或没有冠醚添加剂处理的40% PEABr+CsPbBr3的二维掠入射小角XRD与表面SEM图[52]
Fig. 7. (a) SEM images of MAPbBr3 films treated with different concentration of TPBi and grain size distribution graph of MAPbBr3 films treated with TPBi or not [47]; (b) top-view and cross-section SEM images of CsPbBr3 perovskite films prepared with different PEABr:CsPbBr3 molar ratios [50]; (c) top-view SEM images of CsPbBr3 perovskite films prepared with different concentration of lecithin additive[51]; (d) two-dimensional grazing incidence XRD and SEM images of CsPbBr3 + 40% PEABr with or without adding crown additive[52].
图 8 (a)不同浓度PVP与MAPbBr3混合后的薄膜SEM图[60]; (b)不同浓度PEOXA与MAPbI3混合后的薄膜SEM图[8]; (c)不同浓度PEOXA与MAPbI3所制备器件的EQE与电流密度曲线[8]; (d)加入45% PEOXA的CsPbBr0.6I2.4薄膜在不同退火温度下的XRD图案[61]; (e)加入45% PEOXA的CsPbBr0.6I2.4薄膜的TEM图[61]; (f)聚合物诱导的原位钙钛矿纳米晶形成过程示意图[61]
Fig. 8. (a) SEM images of MAPbI3 films with different ratio of PVP[60]; (b) SEM images of MAPbI3 films with different ratio of PEOXA[8]; (c) EQE versus current density curves of MAPbI3 films with different ratio of PEOXA[8]; (d) XRD patterns of CsPbBr0.6I2.4 films with 45% PEOXA annealed at different temperatures[61]; (e) TEM image of CsPbBr0.6I2.4 films with 45% PEOXA[61]; (f) schematic diagram of polymer-induced in situ perovskite nanocrystal formation process[61].
图 9 (a)钙钛矿LED截面的STEM图[27]; (b)钙钛矿薄膜的表面SEM图[27]; (c)钙钛矿薄膜的AFM高度图[27]; (d)具有自散射钙钛矿亚微米结构可提高光取出效率的示意图[27]; (e) 5-氨基戊酸在ZnO-PEIE表面发生脱水反应机理示意图[27]
Fig. 9. (a) STEM image of the fabricated device[27]; (b) top-view SEM image of the perovskite[27]; (c) AFM height image of the perovskite[27]; (d) schematic diagram of the enhanced light outcoupling efficiency originated by the submicrometre-scale structure of perovskite[27]; (e) dehydration reaction of 5AVA on top of the ZnO-PEIE surface[27].
图 10 (a) MAPbI3钙钛矿中各种类型点缺陷的形成能与转变能级计算值[70]; (b) MAPbBr3钙钛矿中激子辐射复合效率与双分子辐射复合效率随载流子密度的变化[78]; (c)常用的路易斯碱含有的官能团类型
Fig. 10. (a) Calculated formation energies and transition energy levels of various point defects in MAPbI3 [70]; (b) calculated carrier density dependence of radiative efficiency for excitonic emission and bimolecular emission in MAPbBr3 [78]; (c) structures of various Lewis base passivating materials in perovskite.
图 11 (a)没有添加剂处理的MAPbBr3钙钛矿薄膜的共聚焦PL图[80]; (b)乙二胺处理的MAPbBr3钙钛矿薄膜的共聚焦PL图[80]; (c)添加TBAB前后的CsPbBr3钙钛矿薄膜的时间分辨荧光衰减曲线[81]; (d)添加TBAB前后的CsPbBr3钙钛矿薄膜的温度依赖荧光强度曲线[81]; (e) BCP修饰前后的LED缺陷密度-能量分布曲线[82]; (f)不同浓度的5-氨基戊酸添加剂对FA0.47Cs0.53Pb(I0.87Br0.13)3的激发功率密度依赖PLQY曲线[83]; (g)不同浓度PEABr修饰的CsPbCl0.9Br2.1薄膜的缺陷密度与PLQY[29]; (h)不同浓度PEABr修饰的CsPbCl0.9Br2.1薄膜的荧光寿命测试[29]
Fig. 11. (a) Confocal PL image of MAPbBr3 thin film without amine treatment [80]; (b) confocal PL image of MAPbBr3 thin film with EDA treatment [80]; (c) PL decay curves for pure CsPbBr3 and TBAB:CsPbBr3 films [81]; (d) temperature-dependent PL intensities of pristine CsPbBr3 and TBAB:CsPbBr3 films [81]; (e) trap density versus energies for PeLEDs with and without BCP molecules [82]; (f) excitation-intensity-dependent PLQE of FA0.47Cs0.53Pb(I0.87Br0.13)3 thin films with different ratio of 5AVA [83]; (g) trap densities and PLQYs of CsPbCl0.9Br2.1 thin films with different ratios of PEABr [29]; (h) PL lifetime measurement of CsPbCl0.9Br2.1 perovskites with various concentrations of PEABr [29].
图 12 (a)基于NMA2FAPb2I7钙钛矿的LED寿命测试, 测试条件为10 mA·cm–2 [24]; (b)基于NMA2CsPb2I6Cl钙钛矿的LED寿命测试, 测试条件为10 mA·cm–2 [35]; (c)基于NMA2FA0.93Cs0.07Pb2I7钙钛矿的LED寿命测试, 测试条件为10 mA·cm–2 [38]; (d)基于(BIZ)2FAn–1PbnBr3n+1钙钛矿的LED寿命测试, 测试条件为5 mA·cm–2 [90]; (e)基于FPMAI-MAPb0.6Sn0.4I3钙钛矿不同测试时间的EL光谱, 测试条件为1 mA·cm–2 [91]; (f)基于FPMAI-MAPb0.6Sn0.4I3钙钛矿不同测试时间的归一化EL强度, 测试条件分别为0.5, 1, 5 mA·cm–2 [91]; (g)基于PEAI-CsSnI3钙钛矿的LED寿命测试, 测试条件为10 mA cm–2 [39]; (h)基于NEA-CsPbI3钙钛矿的LED放置稳定性与连续工作稳定性测试[92]
Fig. 12. (a) Stability test for the NMA2FAPb2I7 based LED under a constant current density of 10 mA·cm–2[24]; (b) normalized EQE for the NMA2CsPb2I6Cl based LED tested under a constant current density of 10 mA·cm–2[35]; (c) normalized EQE for the NMA2FA0.93Cs0.07Pb2I7 based LED tested under a constant current density of 10 mA·cm–2[38]; (d) stability test for the (BIZ)2FAn–1PbnBr3n+1 based LED under a constant current density of 5 mA·cm–2[90]; (e) EL spectra at different measuring time under a constant current density of 1 mA·cm–2 for the FPMAI-MAPb0.6Sn0.4I3 based LED [91]; (f) normalized EL intensity of FPMAI-MAPb0.6Sn0.4I3 based LED under constant current densities of 0.5, 1, and 5 mA·cm–2[91]; (g) stability test for the PEAI-CsSnI3 based LED under a constant current density of 10 mA·cm–2[39]; (h) storage and continuous operating stability test for the NEA-CsPbI3 based LED [92].
图 13 (a)不同处理方式的CsPbBr3钙钛矿LED在大气中的亮度衰减曲线[100]; (b)加入Tween20前后的钙钛矿LED的亮度衰减曲线[101]; (c)钙钛矿LED的亮度随拉伸次数的变化[102]; (d) 45% PEOXA修饰的CsPbBr0.6I2.4钙钛矿LED的EL光谱[61]; (e) 45% PEOXA修饰的CsPbBr0.6I2.4钙钛矿LED的亮度衰减曲线[61]; (f)经过poly-HEMA修饰的钙钛矿LED的稳定性测试[104]
Fig. 13. (a) Stability test of the PeLEDs based on pristine CsPbBr3, CsPbBr3-PEO, and CsPbBr3-PEO-CF films at ambient conditions [100]; (b) stability test of the PeLEDs based on pristine CsPbBr3 and Tween 20:CsPbBr3 films [101]; (c) luminance of the device after repetitive stretching cycles for strain of 0–40% [102]; (d) EL spectra of the CsPbBr0.6I2.4 LED with 45% PEOXA measuring at different voltages [61]; (e) stability test of CsPbBr0.6I2.4 LED with 45% PEOXA [61]; (f) stability test for the poly-HEMA based PeLED under a constant current density of 0.1 mA·cm–2 [104].
-
[1] de Wolf S, Holovsky J, Moon S J, Löper P, Niesen B, Ledinsky M, Haug F J, Yum J H, Ballif C 2014 J. Phys. Chem. Lett. 5 1035Google Scholar
[2] Stranks S D, Eperon G E, Grancini G, Menelaou C, Alcocer M J P, Leijtens T, Herz L M, Petrozza A, Snaith H J 2013 Science 342 341Google Scholar
[3] Braly I L, Dequilettes D W, Pazosoutón L M, Burke S, Ziffer M E, Ginger D S, Hillhouse H W 2018 Nat. Photon. 12 355Google Scholar
[4] Akkerman Q A, Rainò G, Kovalenko M V, Manna L 2018 Nat. Mater. 17 394Google Scholar
[5] Luo D, Yang W, Wang Z, Sadhanala A, Hu Q, Su R, Shivanna R, Trindade G F, Watts J F, Xu Z, Liu T, Chen K, Ye F, Wu P, Zhao L, Wu J, Tu Y, Zhang Y, Yang X, Zhang W, Friend R H, Gong Q, Snaith H J, Zhu R 2018 Science 360 1442Google Scholar
[6] Sun H, Tian W, Cao F, Xiong J, Li L 2018 Adv. Mater. 30 1706986
[7] Wang Y, Li X, Song J, Xiao L, Zeng H, Sun H 2015 Adv. Mater. 27 7101Google Scholar
[8] Chen Z, Li Z, Zhang C, Jiang X F, Chen D, Xue Q, Liu M, Su S, Yip H L, Cao Y 2018 Adv. Mater. 30 1801370
[9] Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar
[10] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V 2015 Nano Lett. 15 3692Google Scholar
[11] Akkerman Q A, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, Manna L 2015 J. Am. Chem. Soc. 137 10276Google Scholar
[12] Li C, Lu X, Ding W, Feng L, Gao Y, Guo Z 2008 Acta Cryst. 64 702Google Scholar
[13] Kieslich G, Sun S, Cheetham A K 2015 Chem. Sci. 6 3430Google Scholar
[14] Milot R L, Eperon G E, Snaith H J, Johnston M B, Herz L M 2015 Adv. Funct. Mater. 25 6218
[15] Correa-Baena J P, Saliba M, Buonassisi T, Grätzel M, Abate A, Tress W, Hagfeldt A 2017 Science 358 739Google Scholar
[16] Dunlap-Shohl W A, Zhou Y, Padture N P, Mitzi D B 2019 Chem. Rev. 119 3193Google Scholar
[17] Mao L, Ke W, Pedesseau L, Wu Y, Katan C, Even J, Wasielewski M R, Stoumpos C C, Kanatzidis M G 2018 J. Am. Chem. Soc. 140 3775Google Scholar
[18] Mitzi D B 2001 J. Chem. Soc., Dalton Trans. 1 1
[19] Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676Google Scholar
[20] Era M, Morimoto S, Tsutsui T, Saito S 1995 Synth. Met. 71 2013Google Scholar
[21] Hattori T, Taira T, Era M, Tsutsui T, Saito S 1996 Chem. Phys. Lett. 254 103Google Scholar
[22] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar
[23] Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogland S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H, Sargent E H 2016 Nat. Nanotechnol. 11 872Google Scholar
[24] Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photon. 10 699Google Scholar
[25] Xiao Z, Kerner R A, Zhao L, Tran N L, Lee K M, Koh T W, Scholes G D, Rand B P 2017 Nat. Photon. 11 108Google Scholar
[26] Yang X, Zhang X, Deng J, Chu Z, Jiang Q, Meng J, Wang P, Zhang L, Yin Z, You J 2018 Nat. Commun. 9 570Google Scholar
[27] Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar
[28] Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photon. 12 681Google Scholar
[29] Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar
[30] Herz L M 2016 Annu. Rev. Phys. Chem. 67 65Google Scholar
[31] Liang D, Peng Y, Fu Y, Shearer M J, Zhang J, Zhai J, Zhang Y, Hamers R J, Andrew T L, Jin S 2016 ACS Nano 10 6897Google Scholar
[32] Wang Z, Wang F, Sun W, Ni R, Hu S, Liu J, Zhang B, Alsaed A, Hayat T, Tan Z 2018 Adv. Funct. Mater. 28 1804187
[33] Chen Z, Zhang C, Jiang X F, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao Y J, Su S, Yip H L, Cao Y 2017 Adv. Mater. 29 1603157Google Scholar
[34] Chen P, Meng Y, Ahmadi M, Peng Q, Gao C, Xu L, Shao M, Xiong Z, Hu B 2018 Nano Energy 50 615Google Scholar
[35] Zhang S, Yi C, Wang N, Sun Y, Zou W, Wei Y, Cao Y, Miao Y, Li R, Yin Y, Zhao N, Wang J, Huang W 2017 Adv. Mater. 29 1606600
[36] Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar
[37] Chang J, Zhang S, Wang N, Sun Y, Wei Y, Li R, Yi C, Wang J, Huang W 2018 J. Phys. Chem. Lett. 9 881Google Scholar
[38] Yang M, Wang N, Zhang S, Zou W, He Y, Wei Y, Xu M, Wang J, Huang W 2018 J. Phys. Chem. Lett. 9 2038Google Scholar
[39] Wang Y, Zou R, Chang J, Fu Z, Cao Y, Zhang L, Wei Y, Kong D, Zou W, Wen K, Fan N, Wang N, Huang W, Wang J 2019 J. Phys. Chem. Lett. 10 453Google Scholar
[40] He Z, Liu Y, Yang Z, Li J, Cui J, Chen D, Fang Z, He H, Ye Z, Zhu H, Wang N, Wang J, Jin Y 2019 ACS Photon. 6 587Google Scholar
[41] Docampo P, Ball J M, Darwich M, Eperon G E, Snaith H J 2013 Nat. Commun. 4 2761Google Scholar
[42] Xiao Z, Bi C, Shao Y, Dong Q, Wang Q, Yuan Y, Wang C, Gao Y, Huang J 2014 Energy Environ. Sci. 7 2619Google Scholar
[43] 薛启帆, 孙辰, 胡志诚, 黄飞, 叶轩立, 曹镛 2015 化学学报 73 179
Xue Q F, Sun C, Hu Z C, Huang F, Yip H L, Cao Y 2015 Acta Chim. Sin. 73 179
[44] Cheng L P, Huang J S, Shen Y, Li G P, Liu X K, Li W, Wang Y H, Li Y Q, Jiang Y, Gao F, Lee C S, Tang J X 2019 Adv. Opt. Mater. 7 1801534
[45] Huang M Y, Veeramuthu L, Kuo C C, Liao Y C, Jiang D H, Liang F C, Yan Z L, Borsali R, Chueh C C 2019 Org. Electron. 67 294Google Scholar
[46] Tian Y, Zhou C, Worku M, Wang X, Ling Y, Gao H, Zhou Y, Miao Y, Guan J, Ma B 2018 Adv. Mater. 30 1707093
[47] Park M H, Jeong S H, Seo H K, Wolf C, Kim Y H, Kim H, Byun J, Kim J S, Cho H, Lee T W 2017 Nano Energy 42 157Google Scholar
[48] Yantara N, Bhaumik S, Yan F, Sabba D, Dewi H A, Mathews N, Boix P P, Demir H V, Mhaisalkar S 2015 J. Phys. Chem. Lett. 6 4360Google Scholar
[49] Ng Y F, Jamaludin N F, Yantara N, Li M, Irukuvarjula V K R, Demir H V, Sum T C, Mhaisalkar S, Mathews N 2017 ACS Omega 2 2757Google Scholar
[50] Ng Y F, Kulkarni S A, Parida S, Jamaludin N F, Yantara N, Bruno A, Soci C, Mhaisalkar S, Mathews N 2017 Chem. Commun. 53 12004Google Scholar
[51] Sun S Q, Hua X C, Liu Q W, Wang T T, Luo W, Zhang Y J, Liao L S, Fung M K 2019 J. Mater. Chem. C 7 2905Google Scholar
[52] Ban M, Zou Y, Rivett J P H, Yang Y, Thomas T H, Tan Y, Song T, Gao X, Credgington D, Deschler F, Sirringhaus H, Sun B 2018 Nat. Commun. 9 3892Google Scholar
[53] Zhao L, Rolston N, Lee K M, Zhao X, Reyes-Martinez M A, Tran N L, Yeh Y W, Yao N, Scholes G D, Loo Y L, Selloni A, Dauskardt R H, Rand B P 2018 Adv. Funct. Mater. 28 1802060
[54] Xiao Z, Kerner R A, Tran N, Zhao L, Scholes G D, Rand B P 2019 Adv. Funct. Mater. 29 1807284Google Scholar
[55] Zhang W, Yan X, Gao W, Dong J, Ma R, Liu L, Zhang M 2019 Org. Electron. 65 56Google Scholar
[56] Li G, Tan Z K, Di D, Lai M L, Jiang L, Lim J H W, Friend R H, Greenham N C 2015 Nano Lett. 15 2640Google Scholar
[57] Ling Y, Tian Y, Wang X, Wang J C, Knox J M, Perez-Orive F, Du Y, Tan L, Hanson K, Ma B, Gao H 2016 Adv. Mater. 28 8983
[58] Meng F, Zhang C, Chen D, Zhu W, Yip H L, Su S J 2017 J. Mater. Chem. C 5 6169Google Scholar
[59] Wu S, Zhao S, Xu Z, Song D, Qiao B, Yue H, Yang J, Zheng X, Wei P 2018 Appl. Phys. Lett. 113 213501Google Scholar
[60] Kim Y C, Baek S D, Myoung J M 2019 J. Alloys Compd. 786 11
[61] Cai W, Chen Z, Li Z, Yan L, Zhang D, Liu L, Xu Q H, Ma Y, Huang F, Yip H L, Cao Y 2018 ACS Appl. Mater. Interfaces 10 42564Google Scholar
[62] Lee J, Chen H F, Batagoda T, Coburn C, Djurovich P I, Thompson M E, Forrest S R 2016 Nat. Mater. 15 92
[63] Dai X, Zhang Z, Jin Y, Niu Y, Cao H, Liang X, Chen L, Wang J, Peng X 2014 Nature 515 96Google Scholar
[64] Lee Y J, Kim S H, Huh J, Kim G H, Lee Y H, Cho S H, Kim Y C, Do Y R 2003 Appl. Phys. Lett. 82 3779Google Scholar
[65] Bulović V, Khalfin V B, Gu G, Burrows P E, Garbuzov D Z, Forrest S R 1998 Phys. Rev. B 58 3730Google Scholar
[66] Kang J, Wang L W 2017 J. Phys. Chem. Lett. 8 489Google Scholar
[67] Meggiolaro D, Motti S G, Mosconi E, Barker A J, Ball J, Andrea Riccardo Perini C, deschler F, Petrozza A, De Angelis F 2018 Energy Environ. Sci. 11 702Google Scholar
[68] Huang H, Bodnarchuk M I, Kershaw S V, Kovalenko M V, Rogach A L 2017 ACS Energy Lett. 2 2071Google Scholar
[69] Zakutayev A, Caskey C M, Fioretti A N, Ginley D S, Vidal J, Stevanovic V, Tea E, Lany S 2014 J. Phys. Chem. Lett. 5 1117Google Scholar
[70] Yin W J, Shi T, Yan Y 2014 Adv. Mater. 26 4653
[71] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S, Sum T C 2014 Nat. Mater. 13 476Google Scholar
[72] Stranks S D, Burlakov V M, Leijtens T, Ball J M, Goriely A, Snaith H J 2014 Phys. Rev. Appl. 2 034007Google Scholar
[73] Manser J S, Kamat P V 2014 Nat. Photon. 8 737Google Scholar
[74] Samiee M, Konduri S, Ganapathy B, Kottokkaran R, Abbas H A, Kitahara A, Joshi P, Zhang L, Noack M, Dalal V 2014 Appl. Phys. Lett. 105 153502Google Scholar
[75] de Quilettes D W, Vorpahl S M, Stranks S D, Nagaoka H, Eperon G E, Ziffer M E, Snaith H J, Ginger D S 2015 Science 348 683Google Scholar
[76] Nie W, Tsai H, Asadpour R, Blancon J C, Neukirch A J, Gupta G, Crochet J J, Chhowalla M, Tretiak S, Alam M A, Wang H L, Mohite A D 2015 Science 347 522Google Scholar
[77] Uratani H, Yamashita K 2017 J. Phys. Chem. Lett. 8 742Google Scholar
[78] Yan F, Xing J, Xing G, Quan L, Tan S T, Zhao J, Su R, Zhang L, Chen S, Zhao Y, Huan A, Sargent E H, Xiong Q, Demir H V 2018 Nano Lett. 18 3157Google Scholar
[79] Yang D, Li X, Zeng H 2018 Adv. Mater. Interfaces 5 1701662
[80] Lee S, Park J H, Lee B R, Jung E D, Yu J C, Di Nuzzo D, Friend R H, Song M H 2017 J. Phys. Chem. Lett. 8 1784Google Scholar
[81] Song L, Guo X, Hu Y, Lv Y, Lin J, Fan Y, Zhang N, Liu X 2018 Nanoscale 10 18315Google Scholar
[82] Sun X, Han C, Wang K, Yu H, Li J, Lu K, Qin J, Yang H, Deng L, Zhao F, Yang Q, Hu B 2018 ACS Appl. Energy Mater. 1 6992Google Scholar
[83] Gao Z, Zheng Y, Zhao D, Yu J 2018 Nanomaterials 8 787Google Scholar
[84] Ke Y, Wang N, Kong D, Cao Y, He Y, Zhu L, Wang Y, Xue C, Peng Q, Gao F, Huang W, Wang J 2019 J. Phys. Chem. Lett. 10 380Google Scholar
[85] Levermore P, Schenk T, Tseng H R, Wang H J, Heil H, Jatsch A, Buchholz H, Böhm E 2016 SID Symp. Dig. Tech. Pap. 47 484Google Scholar
[86] Yamada T, Akino N, Tsubata Y, Fukushima D, Amamiya S, Sekihachi J I 2017 SID Symp. Dig. Tech. Pap. 48 845Google Scholar
[87] Chen S, Cao W, Liu T, Tsang S W, Yang Y, Yan X, Qian L 2019 Nat. Commun. 10 765Google Scholar
[88] Cho H, Kim Y H, Wolf C, Lee H D, Lee T W 2018 Adv. Mater. 30 1704587
[89] Quan L N, Yuan M, Comin R, Voznyy O, Beauregard E M, Hoogland S, Buin A, Kirmani A R, Zhao K, Amassian A, Kim D H, Sargent E H 2016 J. Am. Chem. Soc. 138 2649Google Scholar
[90] Yu M, Yi C, Wang N, Zhang L, Zou R, Tong Y, Chen H, Cao Y, He Y, Wang Y, Xu M, Liu Y, Jin Y, Huang W, Wang J 2019 Adv. Opt. Mater. 7 1801575
[91] Qiu W, Xiao Z, Roh K, Noel N K, Shapiro A, Heremans P, Rand B P 2019 Adv. Mater. 31 1806105
[92] Han B, Cai B, Shan Q, Song J, Li J, Zhang F, Chen J, Fang T, Ji Q, Xu X, Zeng H 2018 Adv. Funct. Mater. 28 1804285
[93] Azpiroz J M, Mosconi E, Bisquert J, De Angelis F 2015 Energy Environ. Sci. 8 2118Google Scholar
[94] Haruyama J, Sodeyama K, Han L, Tateyama Y 2015 J. Am. Chem. Soc. 137 10048Google Scholar
[95] Eames C, Frost J M, Barnes B R F, O’Regan B C, Walsh A, Islam M S 2015 Nat. Commun. 6 7497Google Scholar
[96] Yuan Y, Huang J 2016 Acc. Chem. Res. 49 286Google Scholar
[97] Zhang F, Zhong H, Chen C, Wu X G, Hu X, Huang H, Han J, Zou B, Dong Y 2015 ACS Nano 9 4533Google Scholar
[98] Vashishtha P, Halpert J E 2017 Chem. Mater. 29 5965Google Scholar
[99] Wang Y, He J, Chen H, Chen J, Zhu R, Ma P, Towers A, Lin Y, Gesquiere A J, Wu S T, Dong Y 2016 Adv. Mater. 28 10710Google Scholar
[100] Wu C, Zou Y, Wu T, Ban M, Pecunia V, Han Y, Liu Q, Song T, Duhm S, Sun B 2017 Adv. Funct. Mater. 27 1700338
[101] Liu X, Guo X, Lv Y, Hu Y, Fan Y, Lin J, Liu X, Liu X 2018 Adv. Opt. Mater. 6 1801245
[102] Bade S G R, Shan X, Hoang P T, Li J, Geske T, Cai L, Pei Q, Wang C, Yu Z 2017 Adv. Mater. 29 1607053Google Scholar
[103] Zhao Y, Wei J, Li H, Yan Y, Zhou W, Yu D, Zhao Q 2016 Nat. Commun. 7 10228Google Scholar
[104] Zhao B, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L, Alsari M, She X J, Liang L, Zhang J, Lilliu S, Gao P, Snaith H J, Wang J, Greenham N C, Friend R H, Di D 2018 Nat. Photon. 12 783Google Scholar
[105] Luo J, Wang X, Li S, Liu J, Guo Y, Niu G, Yao L, Fu Y, Gao L, Dong Q, Zhao C, Leng M, Ma F, Liang W, Wang L, Jin S, Han J, Zhang L, Etheridge J, Wang J, Yan Y, Sargent E H, Tang J 2018 Nature 563 541Google Scholar
[106] 陈亮, 张利伟, 陈永生 2018 物理学报 67 028801Google Scholar
Chen L, Zhang L W, Chen Y S 2018 Acta Phys. Sin. 67 028801Google Scholar
计量
- 文章访问数: 19371
- PDF下载量: 456
- 被引次数: 0