搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面等离激元增强的光和物质相互作用

虞华康 刘伯东 吴婉玲 李志远

引用本文:
Citation:

表面等离激元增强的光和物质相互作用

虞华康, 刘伯东, 吴婉玲, 李志远

Surface plasmaons enhanced light-matter interactions

Yu Hua-Kang, Liu Bo-Dong, Wu Wan-Ling, Li Zhi-Yuan
PDF
HTML
导出引用
  • 表面等离激元近年来受到了广泛的关注. 得益于表面等离激元的强局域约束作用, 光场和能量被限制在亚波长尺度上, 因而各种光和物质相互作用可得到显著的增强. 表面等离激元的特性与材料、形貌、结构密切相关, 相应的共振波长可覆盖紫外、可见光、近红外到远红外的光谱波段. 由于表面等离激元的强局域电场, 光与物质的相互作用, 如荧光、拉曼散射、非线性光学、光热转换、光-声效应、催化、光伏转换等, 都得以显著增强. 本文简要回顾了表面等离激元的物理特性, 具体讨论了各种基于表面等离激元增强的光和物质相互作用机理及相关应用, 并探讨了存在的问题和进一步发展的方向. 本文旨在为构造更高性能的表面等离激元器件, 发展相关技术, 进一步拓展表面等离激元的应用领域提供有益的参考.
    Surface plasmon polaritons (SPPs) have been widely investigated in the past decades. Due to their unique feature of field localization, optical energy can be strongly confined in the subwavelength and even nanoscale space. This strong confinement gives rise to dramatically increased electromagnetic field strength, leading to greatly enhanced light-matter interactions. The properties of SPP are strongly dependent on material, morphology and structure. The wavelength of surface plasmon resonance can be readily manipulated over broadband optical spectra, covering ultraviolet, visible, near infrared to far infrared. In this review article, both working principle and applications of surface plasmon enhanced light-matter interactions, such as fluorescence, Raman scattering, nonlinear optics, heat effects, photoacoustic effects, photo-catalysis, and photovoltaic conversion, are comprehensively reviewed. Besides, the current problems and future research directions of surface plasmons are discussed. Our paper provides valuable reference for future high-performance plasmonic device and technology applications.
      通信作者: 李志远, phzyli@scut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0306200)、国家自然科学基金(批准号: 1434017, 11604230, 91850107)和广东省创新创业研究团队项目(批准号: 2016ZT06C594)资助的课题.
      Corresponding author: Li Zhi-Yuan, phzyli@scut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0306200), the National Natural Science Foundation of China (Grant Nos. 511434017, 11604230, 91850107), and the Innovative and Entrepreneurial Research Team Program of Guangdong Province, China (Grant No. 2016ZT06C594).
    [1]

    Link S, El-Sayed M A 2000 Int. Rev. Phys. Chem. 19 409Google Scholar

    [2]

    Tian Z Q, Ren B, Wu D Y 2002 J. Phys. Chem. B 106 9463

    [3]

    Atwater H A 2005 J. Appl. Phys. 98 011101Google Scholar

    [4]

    Willets K A, van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar

    [5]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2008 Acc. Chem. Res. 41 1578Google Scholar

    [6]

    Skrabalak S E, Chen J, Sun Y, Lu X, Au L, Cobley C M, Xia Y 2008 Acc. Chem. Res. 41 1587Google Scholar

    [7]

    Stiles P L, Dieringer J A, Shah N C, van Duyne R P 2008 Annu. Rev. Anal. Chem. 1 601Google Scholar

    [8]

    Xia Y, Xiong Y, Lim B, Skrabalak S E 2009 Angew. Chem. Int. Ed. 48 60Google Scholar

    [9]

    Li Z Y 2018 Adv. Opt. Mater. 6 1701097Google Scholar

    [10]

    Yu H K, Peng Y S, Yang Y, Li Z Y 2019 npj Comput. Mater 5 45Google Scholar

    [11]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [12]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev. 4 795Google Scholar

    [13]

    Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 4 1600430Google Scholar

    [14]

    Wiley B J, Im S H, Li Z Y, McLellan J, Siekkinen A, Xia Y 2006 J. Phys. Chem. B 110 15666Google Scholar

    [15]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [16]

    Nie S 1997 Science 275 1102Google Scholar

    [17]

    Zhang J, Irannejad M, Cui B 2015 Plasmonics 10 831Google Scholar

    [18]

    Fang J, Du S, Lebedkin S, Li Z, Kruk R, Kappes M, Hahn H 2010 Nano Lett. 10 5006Google Scholar

    [19]

    Liu Z, Yang Z, Peng B, Cao C, Zhang C, You H, Xiong Q, Li Z, Fang J 2014 Adv. Mater. 26 2431Google Scholar

    [20]

    Li J F, Li C Y, Aroca R F 2017 Chem. Soc. Rev. 46 3962Google Scholar

    [21]

    Lu G, Zhang T, Li W, Hou L, Liu J, Gong Q 2011 J. Phys. Chem. C 115 15822Google Scholar

    [22]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002Google Scholar

    [23]

    Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 17402Google Scholar

    [24]

    Chou R Y, Lu G, Shen H, He Y, Cheng Y, Perriat P, Martini M, Tillement O, Gong Q 2014 J. Appl. Phys. 115 244310Google Scholar

    [25]

    Chen H, Ming T, Zhao L, Wang F, Sun L D, Wang J, Yan C H 2010 Nano Today 5 494Google Scholar

    [26]

    Chen Y, Munechika K, Ginger D S 2007 Nano Lett. 7 690Google Scholar

    [27]

    Wiley B J, Chen Y, Mclellan J M, Xiong Y, Li Z, Ginger D S, Xia Y 2007 Nano Lett. 7 1032Google Scholar

    [28]

    Liu S Y, Huang L, Li J F, Wang C, Li Q, Xu H X, Guo H L, Meng Z M, Shi Z, Li Z Y 2013 J. Phys. Chem. C 117 10636Google Scholar

    [29]

    Zhang H, Zhu J, Zhu Z, Jin Y, Li Q, Jin G 2013 Opt. Express 21 13492Google Scholar

    [30]

    Shen Y R 1984 The Principles of Nonlinear Optics (New Yeak: Wiley-Interscience) pp141−184

    [31]

    Boyd R W 2008 Nonlinear optics (Third Ed.) (Burlington: Academic Press) pp479−488

    [32]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [33]

    Wang X, Huang S C, Huang T X, Su H S, Zhong J H, Zeng Z C, Li M H, Ren B 2017 Chem. Soc. Rev. 46 4020Google Scholar

    [34]

    Otto A, Mrozek I, Grabhorn H, Akemann W 1992 J. Phys. Condens. Matter 4 1143Google Scholar

    [35]

    Campion A, Kambhampati P 1998 Chem. Soc. Rev. 27 241Google Scholar

    [36]

    Pettinger B, Schambach P, Villagómez C J, Scott N 2012 Annu. Rev. Phys. Chem. 63 379Google Scholar

    [37]

    Schmid T, Opilik L, Blum C, Zenobi R 2013 Angew. Chem. Int. Ed. 52 5940Google Scholar

    [38]

    Zhang Z, Sheng S, Wang R, Sun M 2016 Anal. Chem. 88 9328Google Scholar

    [39]

    Zrimsek A B, Chiang N, Mattei M, Zaleski S, McAnally M O, Chapman C T, Henry A I, Schatz G C, van Duyne R P 2017 Chem. Rev. 117 7583Google Scholar

    [40]

    Shi X, Coca-López N, Janik J, Hartschuh A 2017 Chem. Rev. 117 4945Google Scholar

    [41]

    Verma P 2017 Chem. Rev. 117 6447Google Scholar

    [42]

    Richard-Lacroix M, Zhang Y, Dong Z, Deckert V 2017 Chem. Soc. Rev. 46 3922Google Scholar

    [43]

    Li Z Y, Xia Y 2010 Nano Lett. 10 243Google Scholar

    [44]

    Liu S Y, Li J, Zhou F, Gan L, Li Z Y 2011 Opt. Lett. 36 1296Google Scholar

    [45]

    Shan Y, Zheng Z, Liu J, Yang Y, Li Z, Huang Z, Jiang D 2017 npj Comput. Mater. 3 11Google Scholar

    [46]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar

    [47]

    Duan S, Tian G, Ji Y, Shao J, Dong Z, Luo Y 2015 J. Am. Chem. Soc. 137 9515Google Scholar

    [48]

    Zhang C, Chen B Q, Li Z Y 2015 J. Phys. Chem. C 119 11858

    [49]

    Zhang C, Chen B Q, Li Z Y 2016 Chin. Phys. B 25 95203Google Scholar

    [50]

    Chen B Q, Zhang C, Li J, Li Z Y, Xia Y 2016 Nanoscale 8 15730Google Scholar

    [51]

    Kauranen M, Zayats A V 2012 Nat. Photonics 6 737Google Scholar

    [52]

    Brown F, Parks R E, Sleeper A M 1965 Phys. Rev. Lett. 14 1029Google Scholar

    [53]

    Bloembergen N, Chang R K, Jha S S, Lee C H 1968 Phys. Rev. 174 813Google Scholar

    [54]

    Butet J, Brevet P F, Martin O J F 2015 ACS Nano 9 10545Google Scholar

    [55]

    Shen Y R 1999 Appl. Phys. B 68 295Google Scholar

    [56]

    Superfine R, Guyot-Sionnest P, Hunt J H, Kao C T, Shen Y R 1988 Surf. Sci. 200 L445Google Scholar

    [57]

    Baldelli S, Eppler A S, Anderson E, Shen Y R, Somorjai G A 2000 J. Chem. Phys. 113 5432Google Scholar

    [58]

    Liu W T, Shen Y R 2014 Proc. Natl. Acad. Sci. 111 1293Google Scholar

    [59]

    Bennink R S, Yoon Y K, Boyd R W, Sipe J E 1999 Opt. Lett. 24 1416Google Scholar

    [60]

    Zharov A A, Shadrivov I V, Kivshar Y S 2003 Phys. Rev. Lett. 91 37401Google Scholar

    [61]

    O’Brien S, McPeake D, Ramakrishna S, Pendry J 2004 Phys. Rev. B 69 241101Google Scholar

    [62]

    Klein M W, Enkrich C, Wegener M, Linden S 2006 Science 313 502Google Scholar

    [63]

    Kim E, Wang F, Wu W, Yu Z, Shen Y R 2008 Phys. Rev. B 78 113102Google Scholar

    [64]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonics Rev. 9 195Google Scholar

    [65]

    Li G, Zhang S, Zentgraf T 2017 Nat. Rev. Mater. 2 17010Google Scholar

    [66]

    Govorov A O, Richardson H H 2007 Nano Today 2 30

    [67]

    Baffou G, Quidant R 2013 Laser Photonics Rev. 7 171Google Scholar

    [68]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnol. 10 25Google Scholar

    [69]

    Link S, Burda C, Mohamed M B, Nikoobakht B, El-Sayed M A 1999 J. Phys. Chem. A 103 1165Google Scholar

    [70]

    Link S, Burda C, Nikoobakht B, El-Sayed M A 2000 J. Phys. Chem. B 104 6152

    [71]

    Richardson H H, Thomas A C, Carlson M T, Kordesch M E, Govorov A O 2007 J. Electron. Mater. 36 1587Google Scholar

    [72]

    Wang J, Chen Y, Chen X, Hao J, Yan M, Qiu M 2011 Opt. Express 19 14726Google Scholar

    [73]

    Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550Google Scholar

    [74]

    González-Rubio G, González-Izquierdo J, Bañares L, Tardajos G, Rivera A, Altantzis T, Bals S, Peña-Rodríguez O, Guerrero-Martínez A, Liz-Marzán L M 2015 Nano Lett. 15 8282Google Scholar

    [75]

    González-Rubio G, Díaz-Núñez P, Rivera A, Prada A, Tardajos G, González-Izquierdo J, Bañares L, Llombart P, Macdowell L G, Alcolea Palafox M, Liz-Marzán L M, Peña-Rodríguez O, Guerrero-Martínez A 2017 Science 358 640Google Scholar

    [76]

    Boyer D, Tamarat P, Maali A, Lounis B, Orrit M 2002 Science 297 1160Google Scholar

    [77]

    Zharov V P, Lapotko D O 2005 IEEE J. Sel. Top. Quantum Electron. 11 733Google Scholar

    [78]

    Hu M, Chen J, Li Z Y, Au L, Hartland G V, Li X, Marquez M, Xia Y 2006 Chem. Soc. Rev. 35 1084Google Scholar

    [79]

    Volkov A N, Sevilla C 2007 Appl. Surf. Sci. 253 6394Google Scholar

    [80]

    Doane T L, Burda C 2012 Chem. Soc. Rev. 41 2885Google Scholar

    [81]

    Kim C, Favazza C, Wang L V 2010 Chem. Rev. 110 2756Google Scholar

    [82]

    Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L 2003 Proc. Natl. Acad. Sci. 100 13549Google Scholar

    [83]

    Huang X, El-Sayed I H, Qian W, El-Sayed M A 2006 J. Am. Chem. Soc. 128 2115Google Scholar

    [84]

    Pissuwan D, Valenzuela S M, Cortie M B 2006 Trends Biotechnol. 24 62Google Scholar

    [85]

    Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, Li Z Y, Zhang H, Xia Y, Li X 2007 Nano Lett. 7 1318Google Scholar

    [86]

    Gobin A M, Lee M H, Halas N J, James W D, Drezek R A, West J L 2007 Nano Lett. 7 1929Google Scholar

    [87]

    Au L, Zheng D, Zhou F, Li Z Y, Li X, Xia Y 2008 ACS Nano 2 1645Google Scholar

    [88]

    Wang Y, Black K C L, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu S Y, Li M, Kim P, Li Z Y, Wang L V, Liu Y, Xia Y 2013 ACS Nano 7 2068Google Scholar

    [89]

    Sershen S R, Westcott S L, Halas N J, West J L 2000 J. Biomed. Mater. Res. 51 293Google Scholar

    [90]

    Skirtach A G, Dejugnat C, Braun D, Susha A S, Rogach A L, Parak W J, Möhwald H, Sukhorukov G B 2005 Nano Lett. 5 1371Google Scholar

    [91]

    Zharov V P, Mercer K E, Galitovskaya E N, Smeltzer M S 2006 Biophys. J. 90 619Google Scholar

    [92]

    Liu G L, Kim J, Lu Y, Lee L P 2005 Nat. Mater. 5 27

    [93]

    Boyd D A, Adleman J R, Goodwin D G, Psaltis D 2008 Anal. Chem. 80 2452Google Scholar

    [94]

    Neumann O, Feronti C, Neumann A D, Dong A, Schell K, Lu B, Kim E, Quinn M, Thompson S, Grady N, Nordlander P, Oden M, Halas N J 2013 Proc. Natl. Acad. Sci. 110 11677Google Scholar

    [95]

    Baffou G, Quidant R, Girard C 2009 Appl. Phys. Lett. 94 153109Google Scholar

    [96]

    Chen H, Shao L, Li Q, Wang J 2013 Chem. Soc. Rev. 42 2679Google Scholar

    [97]

    Selmke M, Braun M, Cichos F 2012 ACS Nano 6 2741Google Scholar

    [98]

    Berciaud S, Cognet L, Blab A G, Lounis B 2005 Phys. Rev. Lett. 93 257402

    [99]

    Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B 2003 Proc. Natl. Acad. Sci. 100 11350Google Scholar

    [100]

    Litzinger D C, Buiting A M J, van Rooijen N, Huang L 1994 Biochim. Biophys. Acta, Biomembr. 1190 99Google Scholar

    [101]

    Jain P K, El-Sayed I H, El-Sayed M A 2007 Nano Today 2 18

    [102]

    Copland J A, Eghtedari M, Popov V L, Kotov N, Mamedova N, Motamedi M, Oraevsky A A 2004 Mol. Imag. Biol. 6 341Google Scholar

    [103]

    Chen Y S, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S 2011 Nano Lett. 11 348Google Scholar

    [104]

    Yang X, Skrabalak S E, Li Z Y, Xia Y N, Wang L V 2007 Nano Lett. 7 3798Google Scholar

    [105]

    Tian C, Qian W, Shao X, Xie Z, Cheng X, Liu S, Cheng Q, Liu B, Wang X 2016 Adv. Sci. 3 1600237Google Scholar

    [106]

    Porosoff M D, Yan B, Chen J G 2016 Energy Environ. Sci. 9 62Google Scholar

    [107]

    Zhou N, López-Puente V, Wang Q, Polavarapu L, Pastoriza-Santos I, Xu Q H 2015 RSC Adv. 5 29076Google Scholar

    [108]

    Lee J, Mubeen S, Ji X, Stucky G D, Moskovits M 2012 Nano Lett. 12 5014Google Scholar

    [109]

    Zhou X, Liu G, Yu J, Fan W 2012 J. Mater. Chem. 22 21337Google Scholar

    [110]

    Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J 2014 Nano Lett. 14 4640Google Scholar

    [111]

    Mukherjee S, Libisch F, Large N, Neumann O, Brown L V, Cheng J, Lassiter J B, Carter E A, Nordlander P, Halas N J 2013 Nano Lett. 13 240Google Scholar

    [112]

    Mukherjee S, Zhou L, Goodman A M, Large N, Ayala-Orozco C, Zhang Y, Nordlander P, Halas N J 2014 J. Am. Chem. Soc. 136 64Google Scholar

    [113]

    Hou C, Zhao G, Ji Y, Niu Z, Wang D, Li Y 2014 Nano Res. 7 1364Google Scholar

    [114]

    Chambers M B, Wang X, Elgrishi N, Hendon C H, Walsh A, Bonnefoy J, Canivet J, Quadrelli E A, Farrusseng D, Mellot-Draznieks C, Fontecave M 2015 ChemSusChem 8 603Google Scholar

    [115]

    Xie S, Liu X Y, Xia Y 2015 Nano Res. 8 82Google Scholar

    [116]

    Zhang X, Li X, Reish M E, Zhang D, Su N Q, Gutiérrez Y, Moreno F, Yang W, Everitt H O, Liu J 2018 Nano Lett. 18 1714Google Scholar

    [117]

    Zhang Y, He S, Guo W, Hu Y, Huang J, Mulcahy J R, Wei W D 2018 Chem. Rev. 118 2927Google Scholar

    [118]

    Turner J A 1999 Science 285 687Google Scholar

    [119]

    Catchpole K R, Polman A 2008 Opt. Express 16 21793Google Scholar

    [120]

    Smith J G, Faucheaux J A, Jain P K 2015 Nano Today 10 67Google Scholar

    [121]

    Gangadharan D T, Xu Z, Liu Y, Izquierdo R, Ma D 2016 Nanophotonics 6 153Google Scholar

    [122]

    Lim E L, Yap C C, Mat Teridi M A, Teh C H, Mohd Yusoff A R bin, Hj Jumali M H 2016 Org. Electron. 36 12Google Scholar

    [123]

    Rho W Y, Song D H, Yang H Y, Kim H S, Son B S, Suh J S, Jun B H 2018 J. Solid State Chem. 258 271Google Scholar

    [124]

    Bai Y, Zhang H, Wang J, Chen N, Yao J, Huang T, Zhang X, Yin Z, Fu Z 2011 Chin. Opt. Lett. 9 32901Google Scholar

  • 图 1  LSPP和PSPP的物理性质 (a) 在入射光的电场作用下金属纳米颗粒表面等离激元振荡示意图, 显示了自由电子气团在外界光场的电场作用下产生相对于核心的位移, 激发了LSPP; (b) 电场作用下金属-电介质界面表面等离子体振荡示意图, 显示了PSPP被外界光场所激发, 在金属和电介质内部电场均可以被局域亚波长尺度内; (c) 金纳米棒的吸收光谱, 显示出存在着横向共振(短波)和径向共振(长波)两个LSPP共振峰; (d) 金属-电介质界面PSPP的色散关系(实线), 同时显示真空中光色散关系(虚线)

    Fig. 1.  Basic physical properties of LSPP and PSPP: (a) Oscillation of free electrons in metal nanoparticle with respect to the particle center when driven by the electric field of incident light, indicating ignition of surface plasmon resonance and excitation of LSPP; (b) surface charge (minus electrons and positive ions) oscillation with respect to each other at the metal-dielectric interface when driven by the electric field of TM-polarized incident light, indicating the excitation of PSPP and the subwavelength localization of electric field around the interface; (c) absorption spectrum of gold nanorod, indicating the existence of short-wavelength transverse LSPP and long- wavelength longitudinal LSPP mode simultaneously in this nanoparticle system; (d) the dispersion curve for a PSPP mode at the metal-dielectric interface (solid curve) together with the dispersion of light in vacuum (dashed curve).

    图 2  银纳米颗粒在紫外波段的消光光谱(黑线)、吸收光谱(红线)和散射光谱(蓝线) (a) 球体; (b) 立方体; (c) 四面体; (d) 正八面体; (e) 空心球体(壳厚度为10 nm); (f) 薄球壳(壳厚度为5 nm)[14]

    Fig. 2.  Calculated UV−vis extinction (black), absorption (red), and scattering (blue) spectra of silver nanostructures: (a) Anisotropic sphere; (b) anisotropic cubes; (c) tetrahedra; (d) octahedra; (e) hollow sphere (with 10 nm shell); (f) thinner shell walls (with 5 nm shell) (Fig. 2 adapted from Ref. [14] with permission)

    图 3  (a) 在Si3N4薄膜上, 呈蝴蝶结型的纳米颗粒结构的扫描电子显微镜(SEM)照片, 几个蝴蝶结的间隙大小不一样; 用时域有限差分方法计算得到的(b) 785 nm和(c) 632.8 nm两种激光照射时, 间隙为6 nm的蝴蝶结型金纳米结构上的电场强度(${\left| E \right|^2}$)分布; (d) 海胆型纳米颗粒的SEM照片; (e) 633 nm激光照射时, 海胆型纳米颗粒在轴面上的电场强度(${\left| E \right|^2}$)分布. 图(a)−(c)来源于文献[17]; 图(d)−(e)来源于文献[18]

    Fig. 3.  (a) The SEM image of bowtie nanoantenna exposed on the Si3N4 membrane with varied gap sizes in the range of 3 to 24 nm; the FDTD calculated electric field intensity, ${\left| E \right|^2}$, of the gold bowtie nanoantenna with 6 nm gap at an excitation wavelength of (b) 785 nm and (c) 632.8 nm; (d) the SEM image of a sea urchin-like nanoparticle with an external diameter of 400 nm; (e) the typical distributions of the electric field strength (${\left| E \right|^2}$) calculated in a plane across a vertical axis of particles irradiated at 633 nm(Fig. 3(a)-(c) adapted from Ref. [17] and (d)−(e) adapted from Ref. [18] with permission).

    图 4  (a) 银纳米棒的SEM照片; (b) 纳米棒在可见光-近红外波段的消光光谱[27]

    Fig. 4.  (a) The SEM image of silver nanobars; (b) the Vis-NIR extinction spectrum of nanobars (Fig. 4 adapted from Ref. [27] with permission).

    图 5  (a) 不同长径比的纳米棒的SEM照片, 及其相应的归一化散射光谱; (b) 宽度、高度均保持50 nm不变, 长度分别为100, 150和200 nm的纳米棒, 用DDA方法计算得的散射光谱[27]

    Fig. 5.  (a) The SEM images of individual nanobars and the corresponding normalized scattering spectra; (b) DDA calculated scattering spectra of nanobars with varied lengths in 100, 150, and 200 nm, keeping width in 55 nm and height in 50 nm (Fig. 5 adapted from Ref. [27] with permission).

    图 6  用经典理论分析拉曼散射的(a) 激发过程和(b) 辐射过程; 用多重瑞利散射效应分析拉曼散射的(c) 激发过程和(d) 辐射过程[48]

    Fig. 6.  (a) The excitation process and (b) the radiation process of normal spontaneous Raman enhancement; (d) the excitation process and (d) the radiation process of spontaneous Raman enhancement (Fig. 6 adapted from Ref. [48] with permission).

    图 7  活癌细胞成像的(a) 亮视场、(b) 荧光显微成像图; (c) 无金纳米颗粒的成像对比图; (d)−(f) 基于特殊金纳米颗粒的癌细胞成像及相应的放大图像, 可以看出光声信号对比度很高, 足以识别出单个癌细胞, 如虚线圆圈所示[105]

    Fig. 7.  (a) Bright-field and (b) fluorescence microscopic imaging of single live cancer cells; (c) control image shows no obvious photoacoustic signals for cancer cell not treated with gold nanoparticles; (d)−(f) typical images and corresponding enlarged images for cells treated with gold nanoparticles, showing photoacoustic signals strong enough to identify single cancer cells in dashed circles (Fig. 7 adapted from Ref. [105] with permission).

    图 8  表面等离激元光学的研究现状和进一步发展的展望分析路线图

    Fig. 8.  Analysis and roadmap for the current state and future development perspective of plasmonics.

  • [1]

    Link S, El-Sayed M A 2000 Int. Rev. Phys. Chem. 19 409Google Scholar

    [2]

    Tian Z Q, Ren B, Wu D Y 2002 J. Phys. Chem. B 106 9463

    [3]

    Atwater H A 2005 J. Appl. Phys. 98 011101Google Scholar

    [4]

    Willets K A, van Duyne R P 2007 Annu. Rev. Phys. Chem. 58 267Google Scholar

    [5]

    Jain P K, Huang X, El-Sayed I H, El-Sayed M A 2008 Acc. Chem. Res. 41 1578Google Scholar

    [6]

    Skrabalak S E, Chen J, Sun Y, Lu X, Au L, Cobley C M, Xia Y 2008 Acc. Chem. Res. 41 1587Google Scholar

    [7]

    Stiles P L, Dieringer J A, Shah N C, van Duyne R P 2008 Annu. Rev. Anal. Chem. 1 601Google Scholar

    [8]

    Xia Y, Xiong Y, Lim B, Skrabalak S E 2009 Angew. Chem. Int. Ed. 48 60Google Scholar

    [9]

    Li Z Y 2018 Adv. Opt. Mater. 6 1701097Google Scholar

    [10]

    Yu H K, Peng Y S, Yang Y, Li Z Y 2019 npj Comput. Mater 5 45Google Scholar

    [11]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824Google Scholar

    [12]

    West P R, Ishii S, Naik G V, Emani N K, Shalaev V M, Boltasseva A 2010 Laser Photonics Rev. 4 795Google Scholar

    [13]

    Li Y, Li Z, Chi C, Shan H, Zheng L, Fang Z 2017 Adv. Sci. 4 1600430Google Scholar

    [14]

    Wiley B J, Im S H, Li Z Y, McLellan J, Siekkinen A, Xia Y 2006 J. Phys. Chem. B 110 15666Google Scholar

    [15]

    Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R R, Feld M S 1997 Phys. Rev. Lett. 78 1667Google Scholar

    [16]

    Nie S 1997 Science 275 1102Google Scholar

    [17]

    Zhang J, Irannejad M, Cui B 2015 Plasmonics 10 831Google Scholar

    [18]

    Fang J, Du S, Lebedkin S, Li Z, Kruk R, Kappes M, Hahn H 2010 Nano Lett. 10 5006Google Scholar

    [19]

    Liu Z, Yang Z, Peng B, Cao C, Zhang C, You H, Xiong Q, Li Z, Fang J 2014 Adv. Mater. 26 2431Google Scholar

    [20]

    Li J F, Li C Y, Aroca R F 2017 Chem. Soc. Rev. 46 3962Google Scholar

    [21]

    Lu G, Zhang T, Li W, Hou L, Liu J, Gong Q 2011 J. Phys. Chem. C 115 15822Google Scholar

    [22]

    Anger P, Bharadwaj P, Novotny L 2006 Phys. Rev. Lett. 96 113002Google Scholar

    [23]

    Kühn S, Håkanson U, Rogobete L, Sandoghdar V 2006 Phys. Rev. Lett. 97 17402Google Scholar

    [24]

    Chou R Y, Lu G, Shen H, He Y, Cheng Y, Perriat P, Martini M, Tillement O, Gong Q 2014 J. Appl. Phys. 115 244310Google Scholar

    [25]

    Chen H, Ming T, Zhao L, Wang F, Sun L D, Wang J, Yan C H 2010 Nano Today 5 494Google Scholar

    [26]

    Chen Y, Munechika K, Ginger D S 2007 Nano Lett. 7 690Google Scholar

    [27]

    Wiley B J, Chen Y, Mclellan J M, Xiong Y, Li Z, Ginger D S, Xia Y 2007 Nano Lett. 7 1032Google Scholar

    [28]

    Liu S Y, Huang L, Li J F, Wang C, Li Q, Xu H X, Guo H L, Meng Z M, Shi Z, Li Z Y 2013 J. Phys. Chem. C 117 10636Google Scholar

    [29]

    Zhang H, Zhu J, Zhu Z, Jin Y, Li Q, Jin G 2013 Opt. Express 21 13492Google Scholar

    [30]

    Shen Y R 1984 The Principles of Nonlinear Optics (New Yeak: Wiley-Interscience) pp141−184

    [31]

    Boyd R W 2008 Nonlinear optics (Third Ed.) (Burlington: Academic Press) pp479−488

    [32]

    Moskovits M 1985 Rev. Mod. Phys. 57 783Google Scholar

    [33]

    Wang X, Huang S C, Huang T X, Su H S, Zhong J H, Zeng Z C, Li M H, Ren B 2017 Chem. Soc. Rev. 46 4020Google Scholar

    [34]

    Otto A, Mrozek I, Grabhorn H, Akemann W 1992 J. Phys. Condens. Matter 4 1143Google Scholar

    [35]

    Campion A, Kambhampati P 1998 Chem. Soc. Rev. 27 241Google Scholar

    [36]

    Pettinger B, Schambach P, Villagómez C J, Scott N 2012 Annu. Rev. Phys. Chem. 63 379Google Scholar

    [37]

    Schmid T, Opilik L, Blum C, Zenobi R 2013 Angew. Chem. Int. Ed. 52 5940Google Scholar

    [38]

    Zhang Z, Sheng S, Wang R, Sun M 2016 Anal. Chem. 88 9328Google Scholar

    [39]

    Zrimsek A B, Chiang N, Mattei M, Zaleski S, McAnally M O, Chapman C T, Henry A I, Schatz G C, van Duyne R P 2017 Chem. Rev. 117 7583Google Scholar

    [40]

    Shi X, Coca-López N, Janik J, Hartschuh A 2017 Chem. Rev. 117 4945Google Scholar

    [41]

    Verma P 2017 Chem. Rev. 117 6447Google Scholar

    [42]

    Richard-Lacroix M, Zhang Y, Dong Z, Deckert V 2017 Chem. Soc. Rev. 46 3922Google Scholar

    [43]

    Li Z Y, Xia Y 2010 Nano Lett. 10 243Google Scholar

    [44]

    Liu S Y, Li J, Zhou F, Gan L, Li Z Y 2011 Opt. Lett. 36 1296Google Scholar

    [45]

    Shan Y, Zheng Z, Liu J, Yang Y, Li Z, Huang Z, Jiang D 2017 npj Comput. Mater. 3 11Google Scholar

    [46]

    Zhang R, Zhang Y, Dong Z C, Jiang S, Zhang C, Chen L G, Zhang L, Liao Y, Aizpurua J, Luo Y, Yang J L, Hou J G 2013 Nature 498 82Google Scholar

    [47]

    Duan S, Tian G, Ji Y, Shao J, Dong Z, Luo Y 2015 J. Am. Chem. Soc. 137 9515Google Scholar

    [48]

    Zhang C, Chen B Q, Li Z Y 2015 J. Phys. Chem. C 119 11858

    [49]

    Zhang C, Chen B Q, Li Z Y 2016 Chin. Phys. B 25 95203Google Scholar

    [50]

    Chen B Q, Zhang C, Li J, Li Z Y, Xia Y 2016 Nanoscale 8 15730Google Scholar

    [51]

    Kauranen M, Zayats A V 2012 Nat. Photonics 6 737Google Scholar

    [52]

    Brown F, Parks R E, Sleeper A M 1965 Phys. Rev. Lett. 14 1029Google Scholar

    [53]

    Bloembergen N, Chang R K, Jha S S, Lee C H 1968 Phys. Rev. 174 813Google Scholar

    [54]

    Butet J, Brevet P F, Martin O J F 2015 ACS Nano 9 10545Google Scholar

    [55]

    Shen Y R 1999 Appl. Phys. B 68 295Google Scholar

    [56]

    Superfine R, Guyot-Sionnest P, Hunt J H, Kao C T, Shen Y R 1988 Surf. Sci. 200 L445Google Scholar

    [57]

    Baldelli S, Eppler A S, Anderson E, Shen Y R, Somorjai G A 2000 J. Chem. Phys. 113 5432Google Scholar

    [58]

    Liu W T, Shen Y R 2014 Proc. Natl. Acad. Sci. 111 1293Google Scholar

    [59]

    Bennink R S, Yoon Y K, Boyd R W, Sipe J E 1999 Opt. Lett. 24 1416Google Scholar

    [60]

    Zharov A A, Shadrivov I V, Kivshar Y S 2003 Phys. Rev. Lett. 91 37401Google Scholar

    [61]

    O’Brien S, McPeake D, Ramakrishna S, Pendry J 2004 Phys. Rev. B 69 241101Google Scholar

    [62]

    Klein M W, Enkrich C, Wegener M, Linden S 2006 Science 313 502Google Scholar

    [63]

    Kim E, Wang F, Wu W, Yu Z, Shen Y R 2008 Phys. Rev. B 78 113102Google Scholar

    [64]

    Minovich A E, Miroshnichenko A E, Bykov A Y, Murzina T V, Neshev D N, Kivshar Y S 2015 Laser Photonics Rev. 9 195Google Scholar

    [65]

    Li G, Zhang S, Zentgraf T 2017 Nat. Rev. Mater. 2 17010Google Scholar

    [66]

    Govorov A O, Richardson H H 2007 Nano Today 2 30

    [67]

    Baffou G, Quidant R 2013 Laser Photonics Rev. 7 171Google Scholar

    [68]

    Brongersma M L, Halas N J, Nordlander P 2015 Nat. Nanotechnol. 10 25Google Scholar

    [69]

    Link S, Burda C, Mohamed M B, Nikoobakht B, El-Sayed M A 1999 J. Phys. Chem. A 103 1165Google Scholar

    [70]

    Link S, Burda C, Nikoobakht B, El-Sayed M A 2000 J. Phys. Chem. B 104 6152

    [71]

    Richardson H H, Thomas A C, Carlson M T, Kordesch M E, Govorov A O 2007 J. Electron. Mater. 36 1587Google Scholar

    [72]

    Wang J, Chen Y, Chen X, Hao J, Yan M, Qiu M 2011 Opt. Express 19 14726Google Scholar

    [73]

    Chen X, Chen Y, Yan M, Qiu M 2012 ACS Nano 6 2550Google Scholar

    [74]

    González-Rubio G, González-Izquierdo J, Bañares L, Tardajos G, Rivera A, Altantzis T, Bals S, Peña-Rodríguez O, Guerrero-Martínez A, Liz-Marzán L M 2015 Nano Lett. 15 8282Google Scholar

    [75]

    González-Rubio G, Díaz-Núñez P, Rivera A, Prada A, Tardajos G, González-Izquierdo J, Bañares L, Llombart P, Macdowell L G, Alcolea Palafox M, Liz-Marzán L M, Peña-Rodríguez O, Guerrero-Martínez A 2017 Science 358 640Google Scholar

    [76]

    Boyer D, Tamarat P, Maali A, Lounis B, Orrit M 2002 Science 297 1160Google Scholar

    [77]

    Zharov V P, Lapotko D O 2005 IEEE J. Sel. Top. Quantum Electron. 11 733Google Scholar

    [78]

    Hu M, Chen J, Li Z Y, Au L, Hartland G V, Li X, Marquez M, Xia Y 2006 Chem. Soc. Rev. 35 1084Google Scholar

    [79]

    Volkov A N, Sevilla C 2007 Appl. Surf. Sci. 253 6394Google Scholar

    [80]

    Doane T L, Burda C 2012 Chem. Soc. Rev. 41 2885Google Scholar

    [81]

    Kim C, Favazza C, Wang L V 2010 Chem. Rev. 110 2756Google Scholar

    [82]

    Hirsch L R, Stafford R J, Bankson J A, Sershen S R, Rivera B, Price R E, Hazle J D, Halas N J, West J L 2003 Proc. Natl. Acad. Sci. 100 13549Google Scholar

    [83]

    Huang X, El-Sayed I H, Qian W, El-Sayed M A 2006 J. Am. Chem. Soc. 128 2115Google Scholar

    [84]

    Pissuwan D, Valenzuela S M, Cortie M B 2006 Trends Biotechnol. 24 62Google Scholar

    [85]

    Chen J, Wang D, Xi J, Au L, Siekkinen A, Warsen A, Li Z Y, Zhang H, Xia Y, Li X 2007 Nano Lett. 7 1318Google Scholar

    [86]

    Gobin A M, Lee M H, Halas N J, James W D, Drezek R A, West J L 2007 Nano Lett. 7 1929Google Scholar

    [87]

    Au L, Zheng D, Zhou F, Li Z Y, Li X, Xia Y 2008 ACS Nano 2 1645Google Scholar

    [88]

    Wang Y, Black K C L, Luehmann H, Li W, Zhang Y, Cai X, Wan D, Liu S Y, Li M, Kim P, Li Z Y, Wang L V, Liu Y, Xia Y 2013 ACS Nano 7 2068Google Scholar

    [89]

    Sershen S R, Westcott S L, Halas N J, West J L 2000 J. Biomed. Mater. Res. 51 293Google Scholar

    [90]

    Skirtach A G, Dejugnat C, Braun D, Susha A S, Rogach A L, Parak W J, Möhwald H, Sukhorukov G B 2005 Nano Lett. 5 1371Google Scholar

    [91]

    Zharov V P, Mercer K E, Galitovskaya E N, Smeltzer M S 2006 Biophys. J. 90 619Google Scholar

    [92]

    Liu G L, Kim J, Lu Y, Lee L P 2005 Nat. Mater. 5 27

    [93]

    Boyd D A, Adleman J R, Goodwin D G, Psaltis D 2008 Anal. Chem. 80 2452Google Scholar

    [94]

    Neumann O, Feronti C, Neumann A D, Dong A, Schell K, Lu B, Kim E, Quinn M, Thompson S, Grady N, Nordlander P, Oden M, Halas N J 2013 Proc. Natl. Acad. Sci. 110 11677Google Scholar

    [95]

    Baffou G, Quidant R, Girard C 2009 Appl. Phys. Lett. 94 153109Google Scholar

    [96]

    Chen H, Shao L, Li Q, Wang J 2013 Chem. Soc. Rev. 42 2679Google Scholar

    [97]

    Selmke M, Braun M, Cichos F 2012 ACS Nano 6 2741Google Scholar

    [98]

    Berciaud S, Cognet L, Blab A G, Lounis B 2005 Phys. Rev. Lett. 93 257402

    [99]

    Cognet L, Tardin C, Boyer D, Choquet D, Tamarat P, Lounis B 2003 Proc. Natl. Acad. Sci. 100 11350Google Scholar

    [100]

    Litzinger D C, Buiting A M J, van Rooijen N, Huang L 1994 Biochim. Biophys. Acta, Biomembr. 1190 99Google Scholar

    [101]

    Jain P K, El-Sayed I H, El-Sayed M A 2007 Nano Today 2 18

    [102]

    Copland J A, Eghtedari M, Popov V L, Kotov N, Mamedova N, Motamedi M, Oraevsky A A 2004 Mol. Imag. Biol. 6 341Google Scholar

    [103]

    Chen Y S, Frey W, Kim S, Kruizinga P, Homan K, Emelianov S 2011 Nano Lett. 11 348Google Scholar

    [104]

    Yang X, Skrabalak S E, Li Z Y, Xia Y N, Wang L V 2007 Nano Lett. 7 3798Google Scholar

    [105]

    Tian C, Qian W, Shao X, Xie Z, Cheng X, Liu S, Cheng Q, Liu B, Wang X 2016 Adv. Sci. 3 1600237Google Scholar

    [106]

    Porosoff M D, Yan B, Chen J G 2016 Energy Environ. Sci. 9 62Google Scholar

    [107]

    Zhou N, López-Puente V, Wang Q, Polavarapu L, Pastoriza-Santos I, Xu Q H 2015 RSC Adv. 5 29076Google Scholar

    [108]

    Lee J, Mubeen S, Ji X, Stucky G D, Moskovits M 2012 Nano Lett. 12 5014Google Scholar

    [109]

    Zhou X, Liu G, Yu J, Fan W 2012 J. Mater. Chem. 22 21337Google Scholar

    [110]

    Hogan N J, Urban A S, Ayala-Orozco C, Pimpinelli A, Nordlander P, Halas N J 2014 Nano Lett. 14 4640Google Scholar

    [111]

    Mukherjee S, Libisch F, Large N, Neumann O, Brown L V, Cheng J, Lassiter J B, Carter E A, Nordlander P, Halas N J 2013 Nano Lett. 13 240Google Scholar

    [112]

    Mukherjee S, Zhou L, Goodman A M, Large N, Ayala-Orozco C, Zhang Y, Nordlander P, Halas N J 2014 J. Am. Chem. Soc. 136 64Google Scholar

    [113]

    Hou C, Zhao G, Ji Y, Niu Z, Wang D, Li Y 2014 Nano Res. 7 1364Google Scholar

    [114]

    Chambers M B, Wang X, Elgrishi N, Hendon C H, Walsh A, Bonnefoy J, Canivet J, Quadrelli E A, Farrusseng D, Mellot-Draznieks C, Fontecave M 2015 ChemSusChem 8 603Google Scholar

    [115]

    Xie S, Liu X Y, Xia Y 2015 Nano Res. 8 82Google Scholar

    [116]

    Zhang X, Li X, Reish M E, Zhang D, Su N Q, Gutiérrez Y, Moreno F, Yang W, Everitt H O, Liu J 2018 Nano Lett. 18 1714Google Scholar

    [117]

    Zhang Y, He S, Guo W, Hu Y, Huang J, Mulcahy J R, Wei W D 2018 Chem. Rev. 118 2927Google Scholar

    [118]

    Turner J A 1999 Science 285 687Google Scholar

    [119]

    Catchpole K R, Polman A 2008 Opt. Express 16 21793Google Scholar

    [120]

    Smith J G, Faucheaux J A, Jain P K 2015 Nano Today 10 67Google Scholar

    [121]

    Gangadharan D T, Xu Z, Liu Y, Izquierdo R, Ma D 2016 Nanophotonics 6 153Google Scholar

    [122]

    Lim E L, Yap C C, Mat Teridi M A, Teh C H, Mohd Yusoff A R bin, Hj Jumali M H 2016 Org. Electron. 36 12Google Scholar

    [123]

    Rho W Y, Song D H, Yang H Y, Kim H S, Son B S, Suh J S, Jun B H 2018 J. Solid State Chem. 258 271Google Scholar

    [124]

    Bai Y, Zhang H, Wang J, Chen N, Yao J, Huang T, Zhang X, Yin Z, Fu Z 2011 Chin. Opt. Lett. 9 32901Google Scholar

  • [1] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [2] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强: 表面等离激元直观模型. 物理学报, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [3] 张炼, 王化雨, 王宁, 陶灿, 翟学琳, 马平准, 钟莹, 刘海涛. 金属基底上光学偶极纳米天线的自发辐射宽带增强:表面等离激元直观模型. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [4] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [5] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [6] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [7] 张宝宝, 张成云, 张正龙, 郑海荣. 表面等离激元调控化学反应. 物理学报, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [8] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [9] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [10] 李鑫, 吴立祥, 杨元杰. 矩形纳米狭缝超表面结构的近场增强聚焦调控. 物理学报, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [11] 汪涵聪, 李志鹏. 表面增强光学力与光操纵研究进展. 物理学报, 2019, 68(14): 144101. doi: 10.7498/aps.68.20190606
    [12] 周利, 王取泉. 等离激元共振能量转移与增强光催化研究进展. 物理学报, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [13] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [14] 周强, 林树培, 张朴, 陈学文. 旋转对称表面等离激元结构中极端局域光场的准正则模式分析. 物理学报, 2019, 68(14): 147104. doi: 10.7498/aps.68.20190434
    [15] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [16] 程自强, 石海泉, 余萍, 刘志敏. 银纳米颗粒阵列的表面增强拉曼散射效应研究. 物理学报, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [17] 朱学涛, 郭建东. 新型高分辨率电子能量损失谱仪与表面元激发研究. 物理学报, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [18] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收. 物理学报, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [19] 黄志芳, 倪亚贤, 孙华. 柱状磁光颗粒的局域表面等离激元共振及尺寸效应. 物理学报, 2016, 65(11): 114202. doi: 10.7498/aps.65.114202
    [20] 朱华, 颜振东, 詹鹏, 王振林. 局域表面等离激元诱导的三次谐波增强效应. 物理学报, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
计量
  • 文章访问数:  22113
  • PDF下载量:  1373
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-09
  • 修回日期:  2019-04-10
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-20

/

返回文章
返回