搜索

x
中国物理学会期刊

离子辐照和氧化对IG-110核级石墨中的点缺陷的影响

CSTR: 32037.14.aps.68.20190371

Effects of ion irradiation and oxidation on point defects in IG-110 nuclear grade graphite

CSTR: 32037.14.aps.68.20190371
PDF
HTML
导出引用
  • 核级石墨是球床模块式高温气冷堆(HTR-PM)中的一种关键材料, 在堆内用作燃料元件基体材料、结构材料和中子反射层材料. 研究核级石墨辐照和氧化行为下的缺陷演化对反应堆安全具有重要意义. 本文对IG-110石墨样品进行了一系列包含不同顺序和不同条件的离子辐照和氧化的实验, 分为仅辐照、仅氧化、辐照后氧化、氧化后辐照, 通过观察其结构、形貌、石墨化程度和点缺陷的演化, 研究离子辐照和氧化对IG-110核级石墨中点缺陷的影响. 拉曼光谱表明, 随辐照剂量的增大, 拉曼峰强比ID/IG先增大后减小, 说明离子辐照使石墨中产生了点缺陷, 且点缺陷在辐照剂量增大时进一步发生演化; 氧化后石墨化程度增大, 说明高温下的退火效应使点缺陷发生复合, 因此氧化之后点缺陷数量减少. 氧化后辐照样品的点缺陷含量低于仅辐照样品, 辐照后氧化样品的点缺陷含量高于仅氧化样品. 正电子湮灭多普勒展宽揭示了离子辐照后石墨中仅有点缺陷, 而氧化使点缺陷部分回复. 离子辐照和氧化对石墨中点缺陷的演化产生相反的影响, 即离子辐照使平均S参数增大, 平均W参数减小, 而氧化使平均S参数减小, 平均W参数增大. 对于辐照后氧化的样品, 850 ℃高温的退火效应不足以使点缺陷完全回复.

     

    Nuclear grade graphite is a kind of key material in the high temperature gas-cooled reactor pebble-bed module (HTR-PM), where nuclear grade graphite acts as the fuel element matrix material, structural material and neutron reflector. In the reactor, the service environment of nuclear grade graphite suffers high temperature and strong neutron radiation. Both neutron radiation and the oxidation by the oxidizing impurities in HTGR coolant can cause the structure to damage and the properties to deteriorate. Therefore, it is of great significance to study the evolution of defects in nuclear grade graphite for improving the reactor safety. The effects of ion irradiation and oxidation on the point defects in IG-110 graphite are studied in this work. The 190 keV He+ implantation treatments at room temperature with fluences of 1 × 1015, 5 × 1015, 1 × 1016 and 1 × 1017 cm–2 are performed to induce 0.029, 0.14, 0.29 and 2.9 displacements per atom respectively. Oxidation treatments are performed at 850 ℃ for 10, 15, 20 and 25 min. Different sequences of He+ ion irradiation and oxidation are performed, which include irradiation only (Irr.), oxidation only (Ox.), irradiation followed by oxidation (Irr.-Ox.), and oxidation followed by irradiation (Ox.-Irr.). Raman spectrum shows that with the increase of ion irradiation dose, the intensity ratio of D peak to G peak (ID/IG) first increases and then decreases, implying that the point defects in graphite are induced by ion irradiation and the point defects evolve as dose increases; the degree of graphitization increases after oxidation, implying that the point defects are recovered by the annealing effect at high temperature, and the point defects decrease after oxidation. This makes Ox.-Irr. samples have a lower point defect content than Irr. samples, and leads Irr.-Ox. samples to possess a higher point defect content than Ox. samples. The positron annihilation Doppler broadening tests reveal that there are only point defects after ion irradiation and oxidation have partially recovered point defects. The ion irradiation and oxidation have opposite effects on the evolution of point defect in graphite. The ion irradiation increases the average S-parameter and reduces the average W-parameter, while oxidation reduces the average S-parameter and increases the average W-parameter. The annealing effect at 850 ℃ cannot completely recover the point defects in Irr.-Ox. samples.

     

    目录

    /

    返回文章
    返回