搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同磁场构型下Richtmyer-Meshkov不稳定性的数值研究及动态模态分解

董国丹 郭则庆 秦建华 张焕好 姜孝海 陈志华 沙莎

引用本文:
Citation:

不同磁场构型下Richtmyer-Meshkov不稳定性的数值研究及动态模态分解

董国丹, 郭则庆, 秦建华, 张焕好, 姜孝海, 陈志华, 沙莎

Numerical investigations of Richtmyer-Meshkov instability in different magnetic field configurations and the corresponding dynamic mode decomposition

Dong Guo-Dan, Guo Ze-Qing, Qin Jian-Hua, Zhang Huan-Hao, Jiang Xiao-Hai, Chen Zhi-Hua, Sha Sha
PDF
HTML
导出引用
  • 基于磁流体动力学, 本文通过数值模拟对不同磁场构型下轻质气柱界面Richtmyer-Meshkov不稳定性的演化过程进行了研究. 结果显示: 磁场对波系演化影响甚微, 但能抑制界面不稳定性发展, 且横向磁场抑制效果更好. 无磁场时, 界面形成涡串, SF6射流穿过下游界面; 有磁场时, 界面光滑无涡串. 其中, 横向磁场下界面更光滑, SF6射流不再穿过界面. 此外, 由于Richtmyer-Meshkov不稳定性的作用, 磁力线在气柱界面发生扭曲, 且上游界面处磁力线扭曲程度更大, 产生强洛伦兹力, 使涡量分层明显; 下游界面处, 纵向磁场产生的洛伦兹力较横向磁场更小, 涡层之间相互干扰. 最后, 本文将动态模态分解用于界面不稳定性研究, 发现: 磁场作用下界面仍存在小涡, 且纵向磁场下扰动更多. 第一模态的稳定涡结构能反映主要流场信息, 第二到第四模态下的小涡频率依次增加, 且无磁场、纵向和横向磁场的同一模态下, 小涡频率依次减小. 因而磁场能抑制小涡频率, 且横向磁场抑制效果更好.
    Based on magnetohydrodynamics(MHD), the evolution of the Richtmyer-Meshkov instability in different magnetic field configurations are studied. To ensure the zero magnetic divergence, an unsplit integration algorithm is adopted by combining corner transport upwind and constrained transport (CTU+CT) algorithm. The second order Godunov flux is obtained by using piecewise parabolic method(PPM) to construct conserved variables. The numerical results show that the evolution of complex wave patterns is not affected by magnetic fields, but the interface instability is compressed by magnetic field, especially in the case of transverse magnetic fields. Specifically, whether there exists magnetic field or not, irregular reflections occur outside the cylinder. Meanwhile, the central part of incident shock wave interacts with the density interface and generates the transmitted shock wave. Subsequently, the transmitted shock wave oscillates back and forth inside the cylinder, forming a transmission-reflection structure multiple times. Besides, in the absence of magnetic field, the density interface rolls up with a series of vortex sequences and an SF6 jet surrounded by vortex pairs appears. Then the SF6 jet passes through the downstream interface. In a longitudinal magnetic field, although density interface is smooth, a few vortex sequences still exist in the downstream interface and SF6 jet can still pass through downstream interface. However, in the case of transverse magnetic field, the interface is much smoother than in the other cases and the SF6 jet cannot pass through the downstream interface. The quantitative study also indicate that the increase of characteristic sizes is suppressed by the magnetic field. In addition, because of the influence of Richtmyer-Meshkov instability, magnetic lines are distorted near density interfaces. More distortions can be observed in the upstream interfaces, resulting in strong Lorentz forces in that area, which leads to the long distance between two vortex sheets distributed along two sides of the interface. In the downstream interfaces Lorentz forces are rather small, but the forces are even smaller in the longitudinal magnetic field, as a result vortex sheets interact with each other in that area. Furthermore, the dynamic mode decomposition(DMD) is primarily used in this paper and the results illustrate that even controlled by magnetic fields, vortex sequences can still exist, especially in the case of longitudinal magnetic field. For all cases, the first DMD modes all illustrate that a stable mode is the dominated feature of fluid field, and the following second to fourth mode show that the strength of vortex sequences decreases while their frequencies increase continually. Besides, for the same modes, the frequency of vortex sequences is reduced by magnetic fields, especially by the transverse magnetic field.
      通信作者: 张焕好, zhanghuanhao@njust.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11702005)和中央高校基本科研业务费专项资金资助(批准号:30919011260).
      Corresponding author: Zhang Huan-Hao, zhanghuanhao@njust.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11702005) and the Fundamental Research Funds for the Central Universities (Grant No. 30919011260).
    [1]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar

    [2]

    Meshkov E E 1969 Fluid Dyn. 4 101

    [3]

    Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445Google Scholar

    [4]

    Haas J F, Sturtevant B 1987 J. Fluid Mech. 181 41Google Scholar

    [5]

    Layes G, Jourdan G, Houas L 2003 Phys. Rev. Lett. 91 174502Google Scholar

    [6]

    Layes G, Jourdan G, Houas L 2009 Phys. Fluids 21 074102Google Scholar

    [7]

    Picone J M, Boris J P 1988 J. Fluid Mech. 189 23Google Scholar

    [8]

    Zhai Z G, Wang M H, Si T, Luo X S 2014 J. Fluid Mech. 757 800Google Scholar

    [9]

    Luo X S, Wang M H, Si T, Zhai Z G 2015 J. Fluid Mech. 773 366Google Scholar

    [10]

    沙莎, 陈志华, 张庆兵 2015 物理学报 64 015201Google Scholar

    Sha S, Chen Z H, Zhang Q B 2015 Acta Phys. Sin. 64 015201Google Scholar

    [11]

    沙莎, 陈志华, 薛大文 2013 物理学报 62 144701Google Scholar

    Sha S, Chen Z H, Xue D W 2013 Acta Phys. Sin. 62 144701Google Scholar

    [12]

    Ding J C, Si T, Chen M J, Zhai Z G, Lu X Y, Luo X S 2017 J. Fluid Mech. 828 289Google Scholar

    [13]

    Samtaney R 2003 Phys. Fluids 15 L53Google Scholar

    [14]

    Wheatley V, Pullin D I, Samtaney R 2005 J. Fluid Mech. 522 179Google Scholar

    [15]

    Wheatley V, Pullin D I, Samtaney R 2005 Phys. Rev. Lett. 95 125002Google Scholar

    [16]

    Cao J T, Wu Z W, Ren H J, Dong L 2008 Phys. Plasmas 15 445

    [17]

    董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎 2018 物理学报 67 204701Google Scholar

    Dong G D, Zhang H H, Lin Z Y, Qin J H, Chen Z H, Guo Z Q, Sha S 2018 Acta Phys. Sin. 67 204701Google Scholar

    [18]

    Sano T, Nishihara K, Matsuoka C, Inoue T 2012 Astrophys. J 758 126Google Scholar

    [19]

    Sano T, Inoue T, Nishihara K 2013 Phys. Rev. Lett. 111 20500

    [20]

    Schmid P J 2010 J. Fluid Mech. 656 5Google Scholar

    [21]

    Schmid P J 2011 Exp. Fluids 50 1123Google Scholar

    [22]

    Schmid P J, Li L, Juniper M P, Pust O 2011 Theor. Comp. Fluid Dyn. 25 249Google Scholar

    [23]

    Mezić I 2013 Annu. Rev. Fluid Mech. 45 357Google Scholar

    [24]

    Rowley C W, Mezić I, Bagheri S, Schlatter I, Henningson D S 2009 J. Fluid Mech. 641 115Google Scholar

    [25]

    Colella P, Woodward P R 1984 J. Comput. Phys. 54 174Google Scholar

    [26]

    Gardiner T A, Stone J M 2008 J. Comput. Phys. 227 4123Google Scholar

    [27]

    Londrillo P, Zanna L D 2003 J. Comput. Phys. 195 17

    [28]

    Lin Z Y, Zhang H H, Chen Z H, Liu Y, Hong Y J 2017 Int. J. Comput. Fluid D 31 21Google Scholar

    [29]

    Kutz J N, Brunton S L, Brunton B W, Proctor J L 2016 Dynamic Mode Decomposition: Data-driven Modeling of Complex Systems (SIAM, Philadelphia, PA) 6−9

    [30]

    Tu J H, Rowley C W, Luchtenburg D M, Brunton, S L, Kutz J N 2014 J. Comput. Dynam. 1 391Google Scholar

  • 图 1  计算模型图

    Fig. 1.  Computational model

    图 2  网格无关性验证 (a) 500 × 200; (b) 1000 × 400; (c) 2000 × 800; (d) 密度界面网格收敛性验证. ρ/ρ1为沿气柱对称轴密度比, 其中ρ是流体密度, ρ1是SF6气体密度; CRS: 弧形反射激波; LI: 气柱左边界; TS1: 透射激波; RI: 气柱右边界

    Fig. 2.  Grid convergence validation: (a) 500 × 200; (b) 1000 × 400; (c) 2000 × 800; (d) convergence of density profile. ρ/ρ1 is the ratio of fluid density to SF6 density. CRS: curved reflected shock; LI: cylinder’s left interface; TS1: transmitted shock; RI: cylinder’s right interface.

    图 3  激波与N2气柱相互作用过程实验[12](上)与本文数值(下)密度纹影图的对比(IS: 入射激波; TS1: 透射激波; TS3: 三次透射激波) (a1) t = 120 μs; (a2) t = 120 μs; (b1)t = 280 μs; (b2) t = 280 μs; (c1) t = 580 μs; (c2) t = 580 μs; (d1) t = 1100 μs; (d2) t = 1100 μs

    Fig. 3.  The comparison of experimental and numerical density schlieren images during the interaction between the incident shock wave and the N2 cylinder (IS: incident shock; TS1: transmitted shock; TS3: third transmitted shock): (a1) t = 120 μs; (a2) t = 120 μs; (b1)t = 280 μs; (b2) t = 280 μs; (c1) t = 580 μs; (c2) t = 580 μs; (d1) t = 1100 μs; (d2) t = 1100 μs.

    图 4  无磁场时激波与N2气柱作用过程中的密度纹影图(IS: 入射激波; TS1: 透射激波; CRS: 弧形反射激波; RRW: 反射稀疏波; FPS: 自由前导激波; TS2: 二次透射激波; RS1:反射激波; MS: 马赫杆; TP: 三波点; FP: 聚焦点; S1: 激波1; RAS: 折射激波; TS3: 三次透射激波; RS2: 二次反射激波; TS4: 四次透射激波; URS:上壁面反射激波; LRS:下壁面反射激波; BRS: 尾壁反射激波; SL: 滑移线) (a) t = 160 μs; (b) t = 180 μs; (c) t = 210 μs; (d) t = 240 μs; (e) t = 290 μs; (f) t = 330 μs; (g) t = 430 μs; (h) t = 700 μs; (i) t = 1200 μs; (j) t = 1650 μs

    Fig. 4.  The density schlieren image sequences during the interaction between the incident shock and N2 cylinder in the absence of magnetic fields(IS: incident shock; TS1: transmitted shock; CRS: curved reflected shock; RRW: reflected rarefaction shock; FPS: free precursor shock; TS2: second transmitted shock; RS1: reflected shock; MS: Mach stem; TP: triple point; FP: focus point; S1: shock 1; RAS: refracted shock; TS3: third transmitted shock; RS2: second reflected shock; TS4: fourth transmitted shock; URS: upper wall reflected shock; LRS: lower wall reflected shock; BRS: back wall reflected shock; SL: slip line): (a) t = 160 μs; (b) t = 180 μs; (c) t = 210 μs; (d) t = 240 μs; (e) t = 290 μs; (f) t = 330 μs; (g) t = 430 μs; (h) t = 700 μs; (i) t = 1200 μs; (j) t = 1650 μs.

    图 5  纵向B1(上)和横向B2(下)磁场构型下, 激波与N2气柱相互作用过程的密度纹影图 (a1)t = 290 μs; (b1) t = 290 μs; (a2) t = 330 μs; (b2) t = 330 μs; (a3) t = 430 μs;(b3) t = 430 μs; (a4)t = 700 μs; (b4) t = 700 μs; (a5)t = 1200 μs; (b5) t = 1200 μs

    Fig. 5.  The density schlieren image sequences during the interaction between the incident shock and N2 cylinder in the presence of the longitudinal B1 (upper) and transverse B2 (lower) magnetic fields: (a1)t = 290 μs; (b1) t = 290 μs; (a2) t = 330 μs; (b2) t = 330 μs; (a3) t = 430 μs; (b3) t = 430 μs; (a4)t = 700 μs; (b4) t = 700 μs; (a5)t = 1200 μs; (b5) t = 1200 μs.

    图 6  t = 200 μs时, 纵向和横向磁场构型的结果 (a1)纵向磁场的磁力线(蓝色)与流线(红色)图, 其中背景为密度纹影图; (b1)横向磁场的磁力线(蓝色)与流线(红色)图, 其中背景为密度纹影图; (a2)纵向磁场x方向的洛伦兹力Fx分布云图; (b2)横向磁场x方向的洛伦兹力Fx分布云图; (a3)纵向磁场y方向洛伦兹力Fy分布云图; (b3)横向磁场y方向洛伦兹力Fy分布云图; (a4)纵向磁场沿线段A(图(a2)中黑色线段所示)xy方向洛伦兹力定量图; (b4)横向磁场沿线段A(图(a2)中黑色线段所示)xy方向洛伦兹力定量图. 其中线段A两端点分别为 (0, 0.01), (0.025, 0.01)

    Fig. 6.  Results from longitudinal and transverse magnetic fields at t = 200 μs: (a1)longitudinal magnetic field lines (blue) and streamlines (red), the background are density schlieren images;(b1) transverse magnetic field lines (blue) and streamlines (red), the background are density schlieren images;(a2)Lorentz forces distribution of longitudinal magnetic field in x direction, Fx;(b2)Lorentz forces distribution of transverse magnetic field in x direction, Fx;(a3)Lorentz forces distribution of longitudinal magnetic field in y direction, Fy;(b3)Lorentz forces distribution of transverse magnetic field in y direction, Fy;(a4)the specific Lorentz forces distribution of longitudinal magnetic field along a horizontal line A, indicated by the black solid line in Fig. 6 (a2), and the two end points are (0, 0.01), (0.025, 0.01);(b4)the specific Lorentz forces distribution of transverse magnetic field along a horizontal line A, indicated by the black solid line in Fig. 6 (a2), and the two end points are (0, 0.01), (0.025, 0.01).

    图 7  t = 600 μs时界面涡量分布图 (a)无磁场, B = 0 T; (b)纵向磁场, B1 = 0.01 T; (c)横向磁场, B2 = 0.01 T

    Fig. 7.  The vorticity distribution in the vicinity of the density interface at t = 600 μs: (a) in the absence of magnetic fields, B = 0 T; (b) in the presence of longitudinal magnetic fields, B1 = 0.01 T; (c)in the presence of transverse magnetic fields, B2 = 0.01 T.

    图 8  界面特征尺寸随时间变化图 (a) 长度(L); (b)高度(H). D0 = 35 mm; Ws: 入射激波速度; t: 时间

    Fig. 8.  The evolution of characteristic scales of the bubble: (a) L, length; (b) H, height. D0 = 35 mm; Ws, the velocity of the incident shock wave; t, time.

    图 9  X SVD后的特征值图

    Fig. 9.  The SVD of X

    图 10  DMD的特征值

    Fig. 10.  The eigenvalues of DMD

    图 11  t = 290 μs时原始涡量和DMD重构涡量图 (a1)无磁场 B0 = 0 T, 原始涡量图; (a2)纵向磁场 B1 = 0.01 T, 原始涡量图; (a3)横向磁场 B2 = 0.01 T, 原始涡量图; (b1)无磁场 B0 = 0.0 T, DMD重构涡量图; (b2)纵向磁场 B1 = 0.01 T, DMD重构涡量图; (b3)横向磁场 B2 = 0.01 T, DMD重构涡量图

    Fig. 11.  The distribution of original vorticities and DMD reconstructed vorticities at t = 290 μs: (a1)Original vorticities, B0 = 0 T, hydro cases; (a2) original vorticities, B1 = 0.01 T, longitudinal magnetic fields; (a3) original vorticities, B2 = 0.01 T, transverse magnetic fields; (b1) DMD reconstructed vorticities, B0 = 0 T, hydro cases; (b2) DMD reconstructed vorticities, B1 = 0.01 T, longitudinal magnetic fields; (b3) DMD reconstructed vorticities, B2 = 0.01 T, transverse magnetic fields.

    图 12  无磁场、纵向和横向磁场下DMD的四个不同特征值对应的模态图 (a1)无磁场, λ1 = (0.9764, 0.0000); (a2)无磁场, λ2 = (0.9061, 0.2856); (a3)无磁场, λ3 = (0.8236, 0.5226); (a4)无磁场, λ4 = (0.3514, 0.8943); (b1)纵向磁场, λ1 = (0.9816, 0.0000); (b2)纵向磁场, λ2 = (0.9423,0.1925); (b3)纵向磁场, λ3 = (0.8212, 0.5150); (b4)纵向磁场, λ4 = (0.3929, 0.8828); (c1)横向磁场, λ1 = (0.9648, 0.0000); (c2)横向磁场, λ2 = (0.9601,0.1703); (c3)横向磁场, λ3 = (0.8314, 0.4774); (c4)横向磁场, λ4 = (0.3718, 0.8279)

    Fig. 12.  DMD modes with respect to four different eigenvalues in hydro, longitudinal and transverse magnetic fields: (a1) In hydro field, λ1 = (0.9764, 0.0000); (a2) in hydro field, λ2 = (0.9061, 0.2856); (a3) in hydro field, λ3 = (0.8236, 0.5226); (a4) in hydro field λ4 = (0.3514, 0.8943); (b1) in longitudinal magnetic field, λ1 = (0.9816, 0.0000); (b2) in longitudinal magnetic field, λ2 = (0.9423,0.1925); (b3) in longitudinal magnetic field, λ3 = (0.8212, 0.5150); (b4) in longitudinal magnetic field, λ4 = (0.3929, 0.8828); (c1) in transverse magnetic field, λ1 = (0.9648, 0.0000); (c2) in transverse magnetic field, λ2 = (0.9601, 0.1703); (c3) in transverse magnetic field, λ3 = (0.8314, 0.4774); (c4) in transverse magnetic field, λ4 = (0.3718, 0.8279).

    表 1  气体参数表

    Table 1.  Gas parameters

    气体密度ρ/(kg·m–3)比热比γ当地音速a/(m·s–1)相对分子质量/(g·mol–1)
    SF66.061. 09134.89146.00
    97%N2+3% SF61.311.36324.7131.54
    下载: 导出CSV
  • [1]

    Richtmyer R D 1960 Commun. Pure Appl. Math. 13 297Google Scholar

    [2]

    Meshkov E E 1969 Fluid Dyn. 4 101

    [3]

    Brouillette M 2002 Annu. Rev. Fluid Mech. 34 445Google Scholar

    [4]

    Haas J F, Sturtevant B 1987 J. Fluid Mech. 181 41Google Scholar

    [5]

    Layes G, Jourdan G, Houas L 2003 Phys. Rev. Lett. 91 174502Google Scholar

    [6]

    Layes G, Jourdan G, Houas L 2009 Phys. Fluids 21 074102Google Scholar

    [7]

    Picone J M, Boris J P 1988 J. Fluid Mech. 189 23Google Scholar

    [8]

    Zhai Z G, Wang M H, Si T, Luo X S 2014 J. Fluid Mech. 757 800Google Scholar

    [9]

    Luo X S, Wang M H, Si T, Zhai Z G 2015 J. Fluid Mech. 773 366Google Scholar

    [10]

    沙莎, 陈志华, 张庆兵 2015 物理学报 64 015201Google Scholar

    Sha S, Chen Z H, Zhang Q B 2015 Acta Phys. Sin. 64 015201Google Scholar

    [11]

    沙莎, 陈志华, 薛大文 2013 物理学报 62 144701Google Scholar

    Sha S, Chen Z H, Xue D W 2013 Acta Phys. Sin. 62 144701Google Scholar

    [12]

    Ding J C, Si T, Chen M J, Zhai Z G, Lu X Y, Luo X S 2017 J. Fluid Mech. 828 289Google Scholar

    [13]

    Samtaney R 2003 Phys. Fluids 15 L53Google Scholar

    [14]

    Wheatley V, Pullin D I, Samtaney R 2005 J. Fluid Mech. 522 179Google Scholar

    [15]

    Wheatley V, Pullin D I, Samtaney R 2005 Phys. Rev. Lett. 95 125002Google Scholar

    [16]

    Cao J T, Wu Z W, Ren H J, Dong L 2008 Phys. Plasmas 15 445

    [17]

    董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎 2018 物理学报 67 204701Google Scholar

    Dong G D, Zhang H H, Lin Z Y, Qin J H, Chen Z H, Guo Z Q, Sha S 2018 Acta Phys. Sin. 67 204701Google Scholar

    [18]

    Sano T, Nishihara K, Matsuoka C, Inoue T 2012 Astrophys. J 758 126Google Scholar

    [19]

    Sano T, Inoue T, Nishihara K 2013 Phys. Rev. Lett. 111 20500

    [20]

    Schmid P J 2010 J. Fluid Mech. 656 5Google Scholar

    [21]

    Schmid P J 2011 Exp. Fluids 50 1123Google Scholar

    [22]

    Schmid P J, Li L, Juniper M P, Pust O 2011 Theor. Comp. Fluid Dyn. 25 249Google Scholar

    [23]

    Mezić I 2013 Annu. Rev. Fluid Mech. 45 357Google Scholar

    [24]

    Rowley C W, Mezić I, Bagheri S, Schlatter I, Henningson D S 2009 J. Fluid Mech. 641 115Google Scholar

    [25]

    Colella P, Woodward P R 1984 J. Comput. Phys. 54 174Google Scholar

    [26]

    Gardiner T A, Stone J M 2008 J. Comput. Phys. 227 4123Google Scholar

    [27]

    Londrillo P, Zanna L D 2003 J. Comput. Phys. 195 17

    [28]

    Lin Z Y, Zhang H H, Chen Z H, Liu Y, Hong Y J 2017 Int. J. Comput. Fluid D 31 21Google Scholar

    [29]

    Kutz J N, Brunton S L, Brunton B W, Proctor J L 2016 Dynamic Mode Decomposition: Data-driven Modeling of Complex Systems (SIAM, Philadelphia, PA) 6−9

    [30]

    Tu J H, Rowley C W, Luchtenburg D M, Brunton, S L, Kutz J N 2014 J. Comput. Dynam. 1 391Google Scholar

  • [1] 张升博, 张焕好, 张军, 毛勇建, 陈志华, 石启陈, 郑纯. 激波与轻质气柱作用过程的磁场抑制特性. 物理学报, 2024, 73(8): 084701. doi: 10.7498/aps.73.20231916
    [2] 张升博, 张焕好, 陈志华, 郑纯. 不同界面组分分布对Richtmyer-Meshkov不稳定性的影响. 物理学报, 2023, 72(10): 105202. doi: 10.7498/aps.72.20222090
    [3] 党子涵, 郑纯, 张焕好, 陈志华. 汇聚激波诱导具有正弦扰动双层重气柱界面的演化机理. 物理学报, 2022, 71(21): 214703. doi: 10.7498/aps.71.20221012
    [4] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理. 物理学报, 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [5] 范海龙, 陈明文. 磁场对二元合金凝固过程中糊状层稳定性的影响. 物理学报, 2021, 70(6): 066401. doi: 10.7498/aps.70.20201748
    [6] 袁永腾, 涂绍勇, 尹传盛, 李纪伟, 戴振生, 杨正华, 侯立飞, 詹夏宇, 晏骥, 董云松, 蒲昱东, 邹士阳, 杨家敏, 缪文勇. 冲击波波后辐射效应对Richtmyer-Meshkov不稳定性增长影响的实验研究. 物理学报, 2021, 70(20): 205203. doi: 10.7498/aps.70.20210653
    [7] 丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁. 基于电流积分计算磁矢量势修正的低磁雷诺数方法. 物理学报, 2020, 69(13): 134702. doi: 10.7498/aps.69.20200091
    [8] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响. 物理学报, 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [9] 沙莎, 张焕好, 陈志华, 郑纯, 吴威涛, 石启陈. 纵向磁场抑制Richtmyer-Meshkov不稳定性机理. 物理学报, 2020, 69(18): 184701. doi: 10.7498/aps.69.20200363
    [10] 丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁. 热化学模型对高超声速磁流体控制数值模拟影响分析. 物理学报, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [11] 刘迎, 陈志华, 郑纯. 黏性各向异性磁流体Kelvin-Helmholtz不稳定性: 二维数值研究. 物理学报, 2019, 68(3): 035201. doi: 10.7498/aps.68.20181747
    [12] 李冬冬, 王革, 张斌. 激波作用不同椭圆氦气柱过程中流动混合研究. 物理学报, 2018, 67(18): 184702. doi: 10.7498/aps.67.20180879
    [13] 董国丹, 张焕好, 林震亚, 秦建华, 陈志华, 郭则庆, 沙莎. 磁控条件下激波冲击三角形气柱过程的数值研究. 物理学报, 2018, 67(20): 204701. doi: 10.7498/aps.67.20181127
    [14] 薛创, 丁宁, 孙顺凯, 肖德龙, 张扬, 黄俊, 宁成, 束小建. 脉冲功率驱动器与Z箍缩负载耦合的全电路数值模拟. 物理学报, 2014, 63(12): 125207. doi: 10.7498/aps.63.125207
    [15] 沙莎, 陈志华, 薛大文, 张辉. 激波与SF6梯形气柱相互作用的数值模拟. 物理学报, 2014, 63(8): 085205. doi: 10.7498/aps.63.085205
    [16] 沙莎, 陈志华, 薛大文. 激波冲击R22重气柱所导致的射流与混合研究. 物理学报, 2013, 62(14): 144701. doi: 10.7498/aps.62.144701
    [17] 霍新贺, 王立锋, 陶烨晟, 李英骏. 非理想流体中Rayleigh-Taylor和Richtmyer-Meshkov不稳定性气泡速度研究. 物理学报, 2013, 62(14): 144705. doi: 10.7498/aps.62.144705
    [18] 陶烨晟, 王立锋, 叶文华, 张广财, 张建成, 李英骏. 任意Atwood数Rayleigh-Taylor和 Richtmyer-Meshkov 不稳定性气泡速度研究. 物理学报, 2012, 61(7): 075207. doi: 10.7498/aps.61.075207
    [19] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟. 物理学报, 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [20] 吴 翊, 荣命哲, 杨 飞, 王小华, 马 强, 王伟宗. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析. 物理学报, 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
计量
  • 文章访问数:  8999
  • PDF下载量:  55
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-22
  • 修回日期:  2019-05-22
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-20

/

返回文章
返回