搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

构建核壳结构增强Ho3+离子在镥基纳米晶中的红光上转换发射

严学文 王朝晋 王博扬 孙泽煜 张晨雪 韩庆艳 祁建霞 董军 高伟

引用本文:
Citation:

构建核壳结构增强Ho3+离子在镥基纳米晶中的红光上转换发射

严学文, 王朝晋, 王博扬, 孙泽煜, 张晨雪, 韩庆艳, 祁建霞, 董军, 高伟

Enhanced red upconversion fluorescence emission of Ho3+ ions in NaLuF4 nanocrystals through building core-shell structure

Yan Xue-Wen, Wang Zhao-Jin, Wang Bo-Yang, Sun Ze-Yu, Zhang Chen-Xue, Han Qing-Yan, Qi Jian-Xia, Dong Jun, Gao Wei
PDF
HTML
导出引用
  • 本文主要以具有六方相结构的NaLuF4:Yb3+/Ho3+/Ce3+纳米晶体为核, 采用外延生长法构建具有同质结构的NaLuF4:Yb3+/Ho3+/Ce3+@NaLuF4:Yb3+核壳纳米晶体. 借助X-射线衍射仪及透射电子显微镜对样品的晶体结构、形貌及尺寸进行表征. 在近红外光980 nm激光激发下, 通过构建核壳结构及有效调控外壳中敏化离子Yb3+离子的掺杂浓度, 实现Ho3+离子在NaLuF4纳米晶体中的红光发射增强. 实验结果表明: 在相同的激发条件下, 具有核壳结构的NaLuF4:Yb3+/Ho3+/Ce3+@NaLuF4:Yb3+纳米晶体的红光发射均得到了增强, 同时, 当外壳中Yb3+离子的掺杂浓度为10.0%时, 其上转换红光发射强度最强, 为NaLuF4:Yb3+/Ho3+/Ce3+晶体核红光发射强度的5.8倍. 根据其光谱特性及发光动力学过程, 讨论了同质壳及壳中敏化离子掺杂浓度变化对其发光特性的影响规律. 这种具有较强红光发射的核壳结构纳米晶体在生物医学、防伪编码、多色显示等领域具有较大的应用前景.
    A series of the hexagonal-phase NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0% Ce3+@NaLuF4:x%Yb3+ core-shell (CS) nanocrystals with codoping different Yb3+ ions in the shell is successfully built by a sequential growth process. The crystal structures and morphologies of samples are characterized by X-ray diffractometer and transmission electron microscope. With the Yb3+ ion concentration increasing from 0% to 15% in NaLuF4 shell, none of the crystal structures, sizes, and morphologies of the samples changes obviously because of the similarity in ionic radius between Yb3+ and the ions in shell and the low doping concentration. Under 980 nm near-infrared (NIR) excitation, the NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+ core nanocrystal produce green and red UC emission. And the red UC emission intensity is higher than green emission intensity. This is because two effective cross-relaxation processes happen between Ho3+ and Ce3+ ions, which results in the enhancement of the red emission. However, the overall emission intensity of NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+ nanocrystal decrease compared with that of the NaLuF4:20.0%Yb3+/2.0%Ho3+ nanocrystal. Thus, to further enhance the red UC emission intensity in NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+ nanocrystal, the NaLuF4:20.0%Yb3+/2.0% Ho3+/12.0%Ce3+@NaLuF4:x%Yb3+ CS nanocrystal are prepared for blocking the excitation and emission energy, transmitting surface quenching center and getting more excitation energy through doping Yb3+ ions in NaLuF4 shell. It can be clearly seen that the red UC emission intensity of CS nanocrystal first increases and then decreases with Yb3+ ion concentration increasing. Meanwhile, the corresponding red-to-green ratio increases from 4.9 to 5.6. The highest red UC emission intensity is observed in each of the NaLuF4:20.0%Yb3+ /2.0%Ho3+/12.0%Ce3+@NaLuF4:10%Yb3+ CS nanocrystal because the Ho3+ ions get more energy through the following three ways: 1) Yb3+ (core)-Ho3+ (core); 2) Yb3+ (shell)-Ho3+ (core); 3) Yb3+ (shell)-Yb3+ (core)-Ho3+ (core). Thus, building CS nanocrystals is one of the most effective approaches in order to improve the UC efficiency by suppressing the non-radiative decay of activators in the core and getting more excitation energy through different energy transfer ways. These NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@NaLuF4:Yb3+ CS nanocrystals with red UC emission have great potential applications in biological field and multi-primary color.
      通信作者: 董军, dongjun@xupt.edu.cn ; 高伟, gaowei@xupt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11604262)、陕西省科技厅面上项目(批准号: 2018JM1052)、陕西省科技新星项目(批准号: 2019KJXX-058)、陕西省教育厅项目(批准号: 18JK0046)和宝鸡文理学院院级重点项目(批准号: ZK2018054)资助的课题
      Corresponding author: Dong Jun, dongjun@xupt.edu.cn ; Gao Wei, gaowei@xupt.edu.cn
    • Funds: Project supported by the National Science Foundation of China (Grant No. 11604262), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2018JM1052), Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars, China (Grant No. 2019KJXX-058), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 18JK0046), and the Key Program of the Scientific Research of Baoji University of Arts and Sciences, China (Grant No. ZK2018054)
    [1]

    Menyuk N, Dwight K, Pinaud F 1972 Appl. Phys. Lett. 21 159Google Scholar

    [2]

    Downing E, Hesselink L, Ralston J, Macfarlane R A 1996 Science 273 1185Google Scholar

    [3]

    Zhang Y, Zhang L, Deng R, Tian J, Zong Y, Jin D, Liu X G 2014 J. Am. Chem. Soc. 136 4893Google Scholar

    [4]

    Zou W, Visser C, Maduro J A, Pshenichnikov M S, Hummelen J C 2012 Nat. Photon. 6 560Google Scholar

    [5]

    Su Q, Feng W, Yang D, Li F 2017 Acc. Chem. Res. 50 32Google Scholar

    [6]

    Huang B L, Dong H, Wong K L, Sun L D, Yan C H 2016 J. Phys. Chem. C 120 18858Google Scholar

    [7]

    Niu N, Yang P P, He F, Zhang X, Gai S L, Li C X, Lin J 2012 J. Mater. Chem. 2 2

    [8]

    高当丽, 郑海荣, 田宇, 雷瑜, 崔敏, 何恩节, 张喜生 2010 中国科学: 物理学 力学 天文学 40 287

    Gao D L, Zheng H R, Tian Y, Lei Y, Cui M, He E J, Zhang X S 2010 Sci. Sin.: Phys. Mech. Astron. 40 287

    [9]

    Gao W, Zheng H R, He E J, Lu Y, Gao F Q 2014 J. Lumin. 152 44Google Scholar

    [10]

    Teng X, Zhu Y H, Wei W, Wang S C, Huang J F, Naccache R, Hu W B, Tok A I Y, Han Y, Zhang Q C, Fan Q L, Huang W, Capobianco J A, Huang L 2012 J. Am. Chem. Soc. 134 8340Google Scholar

    [11]

    Heer S, Kompe K, Gudel H U, Haase M 2004 Adv. Mater. 16 2102Google Scholar

    [12]

    Mai H X, Zhang Y W, Sun L D, Yan C H 2007 J. Phys. Chem. C 111 13721Google Scholar

    [13]

    Shi F, Wang J S, Zhai X S, Zhao D, Qin W P 2011 Cryst. Eng. Comm. 13 3782Google Scholar

    [14]

    Yang T S, Sun Y, Liu Q, Feng W, Yang P Y, Li F Y 2012 Biomaterials 33 3733Google Scholar

    [15]

    He E J, Zheng H R, Gao W, Tu Y X, Lu Y, Li G A 2013 Mater. Res. Bull. 48 3505Google Scholar

    [16]

    Chang J, Liu Y, Li J, Wu S L, Niu W B, Zhang S F 2013 J. Mater. Chem. C 1 1168Google Scholar

    [17]

    Gao D L, Zhang X Z, Zheng H R, Gao W, He E J 2013 J. Alloy. Compd. 554 395Google Scholar

    [18]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327Google Scholar

    [19]

    何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强 2013 物理学报 62 237803Google Scholar

    He E J, Zheng H R, Gao W, Lu Y, Li J N, Wei Y, Wang D, Zhu G Q 2013 Acta Phys. Sin. 62 237803Google Scholar

    [20]

    Dong J, Gao W, Han Q Y, Wang Y K, Qi J X, Yan X W, Sun M T 2019 Rev. Phys. 4 100026Google Scholar

    [21]

    Dong J, Zhang Z L, Zheng H R, Sun M T 2015 Nanophotonics 4 472

    [22]

    Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683Google Scholar

    [23]

    Rai M, Singh S K, Singh A K, Prasad R, Koch B, Mishra K, Rai S B 2015 ACS Appl. Mater. Inter. 7 15339Google Scholar

    [24]

    Zuo J, Li Q Q, Xue B, Li C X, Chang Y L, Zhang Y L, Liu X M, Tu L P, Zhang H, Kong X G 2017 Nanoscale 9 7941Google Scholar

    [25]

    Yi G S, Lu H C, Zhao S Y, Ge Y, Yang W J, Chen D P, Guo L H 2004 Nano Lett. 4 2191Google Scholar

    [26]

    Chen X, Peng D, Ju Q, Wang F 2015 Chem. Soc. Rev. 44 1318Google Scholar

    [27]

    Gao W, Dong J, Liu J H, Yan X W 2016 Mater. Res. Bull. 80 256Google Scholar

    [28]

    高伟, 董军 2017 物理学报 66 204206Google Scholar

    Gao W, Dong J 2017 Acta Phys. Sin. 66 204206Google Scholar

    [29]

    Hu H, Chen Z G, Cao T Y, Zhang Q, Yu M G, Li F Y, Yi T, Huang C H 2008 Nanotechnology 19 375702Google Scholar

    [30]

    Sangeetha N M, van Veggel F C J M 2009 J. Phys. Chem. C 113 14702Google Scholar

    [31]

    Ye S, Chen G Y, Shao W, Junle Q, Paras N P 2015 Nanoscale 7 3976Google Scholar

    [32]

    Xie X G, Ga N G, Deng R R, Sun Q, Xu Q H, Liu X G 2013 J. Am. Chem. Soc. 135 12608Google Scholar

    [33]

    Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y, Liu X G 2011 Nat. Mater. 10 968Google Scholar

    [34]

    Vetrone B F, Naccache R, MahalingamV, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924Google Scholar

    [35]

    Gao W, Kong X Q, Han Q Y, Dong J, Zhang W W, Zhang B, Yan X W, Zhang Z L, He E J, Zheng H R 2018 J. Lumin. 196 186

    [36]

    Dong J, Zhang J, Han Q Y, Zhao X, Yan X W, Liu J H, Ge H B, Gao W 2019 J. Lumin. 207 361Google Scholar

  • 图 1  (a) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+纳米晶体核, (b)−(e) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4:x%Yb3+(x = 0%, 5.0%, 10.0%, 15.0%)纳米核壳结构的XRD图谱

    Fig. 1.  XRD patterns of (a) NaLuF4:20.0%Yb3+ /2.0%Ho3+/12.0%Ce3+ nanocrystals and (b)−(e) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4:x%Yb3+(x = 0%, 5.0%, 10.0%, 15.0%) core-shell nanocrystals.

    图 2  (a) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+纳米晶体和NaLuF4:20.0%Yb3+/2.0%Ho3+/12%Ce3+@ NaLuF4:x%Yb3+((b) 0, (c) 5.0%, (d)10.0%, (e) 15.0%)纳米核壳结构的TEM图谱

    Fig. 2.  TEM images and EDX spectra of (a) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+ nanocrystals and (b)−(e) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4: x%Yb3+ (x = 0, 5.0%, 10.0%, 15.0%) core-shell nanocrystals.

    图 3  在980 nm激发下, (a) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+和(b)−(e) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4:x%Yb3+ (x = 0%, 5.0%, 8.0%,10.0%, 12.0%, 15.0%)纳米晶体及核壳结构的上转换发射光谱(A)、增强因子(B)和红绿比(C)

    Fig. 3.  The upconverison emission spectra (A), enhancement factor (B) and red andgreen emission intensity ratio (R/G) (C) of (a) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+ nanocrystals and (b)−(e) NaLuF4:20.0%Yb3+/2.0%Ho3+/12%Ce3+@ NaLuF4:x%Yb3+ (x = 0%, 5.0%, 8.0%, 10.0%, 12.0%,15.0%) core-shell nanocrystals under 980 nm excitation.

    图 4  (a) NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+以及(b)—(e)NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@NaLuF4:x%Yb3+ (x = 0%, 5.0%, 10.0%, 15.0%) 纳米晶体及核壳结构的色度坐标图

    Fig. 4.  The CIE diagram with position of color coordinates of Ho3+ in (a) NaLuF4 nanocrystals and (b)-(e) NaLuF4@ NaLuF4:x%Yb3+ (x = 0%, 5.0%, 10.0%, 15.0%) core-shell nanocrystals.

    图 5  Ho3+, Yb3+和Ce3+离子的能级图和可能的上转换跃迁机理

    Fig. 5.  Energy level diagrams of Ho3+, Yb3+, and Ce3+ions as well as proposed UC mechanisms.

    图 6  在980 nm近红外激光的激发下, Ho3+离子掺杂NaLuF4和NaLuF4@ NaLuF4纳米晶体的红光上转换发射的寿命衰减曲线图

    Fig. 6.  Luminescence lifetimes of NaLuF4 and NaLuF4@NaLuF4 core-shell nanocrystals under 980 nm excitation at 654 nm.

    表 1  NaLuF4和NaLuF4@NaLuF4核壳纳米晶体的的CIE色坐标

    Table 1.  The calculated CIE chromaticity coordinates (x, y) of Ho3+ in NaLuF4 nanocrystals and NaLuF4@ NaLuF4:x%Yb3+ (x = 0%, 5.0%, 10.0%, 15.0%) core-shell nanocrystals.

    Samples CIE chromaticity coordinates
    x y
    a (NaLuF4:20.0%Yb3+/2.0%Ho3+ /12.0%Ce3+) 0.5501 0.3891
    b (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4) 0.5621 0.3786
    c (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4: 5.0%Yb3+) 0.5643 0.3727
    d (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4: 10.0%Yb3+) 0.5724 0.3692
    e (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4: 15.0%Yb3+) 0.5756 0.3599
    下载: 导出CSV

    表 2  NaLuF4和NaLuF4@ NaLuF4核壳纳米晶体的红光发射的荧光寿命

    Table 2.  Luminescence lifetimes of NaLuF4 and NaLuF4@NaLuF4 core-shell nanocrystals under 980 nm excitation at 650 nm

    SamplesLifetime/μs
    650 nm
    a (NaLuF4:20.0%Yb3+/2.0%Ho3+ 12.0%Ce3+)97.4 ± 0.2
    b (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4)125.4 ± 1.1
    c (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4:5.0%Yb3+)136.3 ± 0.8
    d (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4:10.0%Yb3+)184.2 ± 0.6
    e (NaLuF4:20.0%Yb3+/2.0%Ho3+/12.0%Ce3+@ NaLuF4:15.0%Yb3+)144.4 ± 0.4
    下载: 导出CSV
  • [1]

    Menyuk N, Dwight K, Pinaud F 1972 Appl. Phys. Lett. 21 159Google Scholar

    [2]

    Downing E, Hesselink L, Ralston J, Macfarlane R A 1996 Science 273 1185Google Scholar

    [3]

    Zhang Y, Zhang L, Deng R, Tian J, Zong Y, Jin D, Liu X G 2014 J. Am. Chem. Soc. 136 4893Google Scholar

    [4]

    Zou W, Visser C, Maduro J A, Pshenichnikov M S, Hummelen J C 2012 Nat. Photon. 6 560Google Scholar

    [5]

    Su Q, Feng W, Yang D, Li F 2017 Acc. Chem. Res. 50 32Google Scholar

    [6]

    Huang B L, Dong H, Wong K L, Sun L D, Yan C H 2016 J. Phys. Chem. C 120 18858Google Scholar

    [7]

    Niu N, Yang P P, He F, Zhang X, Gai S L, Li C X, Lin J 2012 J. Mater. Chem. 2 2

    [8]

    高当丽, 郑海荣, 田宇, 雷瑜, 崔敏, 何恩节, 张喜生 2010 中国科学: 物理学 力学 天文学 40 287

    Gao D L, Zheng H R, Tian Y, Lei Y, Cui M, He E J, Zhang X S 2010 Sci. Sin.: Phys. Mech. Astron. 40 287

    [9]

    Gao W, Zheng H R, He E J, Lu Y, Gao F Q 2014 J. Lumin. 152 44Google Scholar

    [10]

    Teng X, Zhu Y H, Wei W, Wang S C, Huang J F, Naccache R, Hu W B, Tok A I Y, Han Y, Zhang Q C, Fan Q L, Huang W, Capobianco J A, Huang L 2012 J. Am. Chem. Soc. 134 8340Google Scholar

    [11]

    Heer S, Kompe K, Gudel H U, Haase M 2004 Adv. Mater. 16 2102Google Scholar

    [12]

    Mai H X, Zhang Y W, Sun L D, Yan C H 2007 J. Phys. Chem. C 111 13721Google Scholar

    [13]

    Shi F, Wang J S, Zhai X S, Zhao D, Qin W P 2011 Cryst. Eng. Comm. 13 3782Google Scholar

    [14]

    Yang T S, Sun Y, Liu Q, Feng W, Yang P Y, Li F Y 2012 Biomaterials 33 3733Google Scholar

    [15]

    He E J, Zheng H R, Gao W, Tu Y X, Lu Y, Li G A 2013 Mater. Res. Bull. 48 3505Google Scholar

    [16]

    Chang J, Liu Y, Li J, Wu S L, Niu W B, Zhang S F 2013 J. Mater. Chem. C 1 1168Google Scholar

    [17]

    Gao D L, Zhang X Z, Zheng H R, Gao W, He E J 2013 J. Alloy. Compd. 554 395Google Scholar

    [18]

    Gao W, Zheng H R, Han Q Y, He E J, Gao F Q, Wang R B 2014 J. Mater. Chem. C 2 5327Google Scholar

    [19]

    何恩节, 郑海荣, 高伟, 鹿盈, 李俊娜, 魏映, 王灯, 朱刚强 2013 物理学报 62 237803Google Scholar

    He E J, Zheng H R, Gao W, Lu Y, Li J N, Wei Y, Wang D, Zhu G Q 2013 Acta Phys. Sin. 62 237803Google Scholar

    [20]

    Dong J, Gao W, Han Q Y, Wang Y K, Qi J X, Yan X W, Sun M T 2019 Rev. Phys. 4 100026Google Scholar

    [21]

    Dong J, Zhang Z L, Zheng H R, Sun M T 2015 Nanophotonics 4 472

    [22]

    Li Y, Wang G F, Pan K, Fan N Y, Liu S, Feng L 2013 RSC Adv. 3 1683Google Scholar

    [23]

    Rai M, Singh S K, Singh A K, Prasad R, Koch B, Mishra K, Rai S B 2015 ACS Appl. Mater. Inter. 7 15339Google Scholar

    [24]

    Zuo J, Li Q Q, Xue B, Li C X, Chang Y L, Zhang Y L, Liu X M, Tu L P, Zhang H, Kong X G 2017 Nanoscale 9 7941Google Scholar

    [25]

    Yi G S, Lu H C, Zhao S Y, Ge Y, Yang W J, Chen D P, Guo L H 2004 Nano Lett. 4 2191Google Scholar

    [26]

    Chen X, Peng D, Ju Q, Wang F 2015 Chem. Soc. Rev. 44 1318Google Scholar

    [27]

    Gao W, Dong J, Liu J H, Yan X W 2016 Mater. Res. Bull. 80 256Google Scholar

    [28]

    高伟, 董军 2017 物理学报 66 204206Google Scholar

    Gao W, Dong J 2017 Acta Phys. Sin. 66 204206Google Scholar

    [29]

    Hu H, Chen Z G, Cao T Y, Zhang Q, Yu M G, Li F Y, Yi T, Huang C H 2008 Nanotechnology 19 375702Google Scholar

    [30]

    Sangeetha N M, van Veggel F C J M 2009 J. Phys. Chem. C 113 14702Google Scholar

    [31]

    Ye S, Chen G Y, Shao W, Junle Q, Paras N P 2015 Nanoscale 7 3976Google Scholar

    [32]

    Xie X G, Ga N G, Deng R R, Sun Q, Xu Q H, Liu X G 2013 J. Am. Chem. Soc. 135 12608Google Scholar

    [33]

    Wang F, Deng R R, Wang J, Wang Q X, Han Y, Zhu H M, Chen X Y, Liu X G 2011 Nat. Mater. 10 968Google Scholar

    [34]

    Vetrone B F, Naccache R, MahalingamV, Morgan C G, Capobianco J A 2009 Adv. Funct. Mater. 19 2924Google Scholar

    [35]

    Gao W, Kong X Q, Han Q Y, Dong J, Zhang W W, Zhang B, Yan X W, Zhang Z L, He E J, Zheng H R 2018 J. Lumin. 196 186

    [36]

    Dong J, Zhang J, Han Q Y, Zhao X, Yan X W, Liu J H, Ge H B, Gao W 2019 J. Lumin. 207 361Google Scholar

  • [1] 高伟, 张正宇, 张景蕾, 丁鹏, 韩庆艳, 张成云, 严学文, 董军. 基于单颗粒微米核壳晶体的微区上转换发射光谱构筑微纳光子学条形码. 物理学报, 2024, 73(18): 184202. doi: 10.7498/aps.73.20241015
    [2] 慕立鹏, 周姚, 赵建行, 王丽, 蒋礼, 周见红. 基于阳极氧化铝模板增强NaYF4:Yb3+/Er3+上转换发光研究. 物理学报, 2024, 73(3): 037803. doi: 10.7498/aps.73.20231405
    [3] 严学文, 张景蕾, 张正宇, 丁鹏, 韩庆艳, 张成云, 高伟, 董军. 单颗粒NaYbF4:2%Er3+@NaYbF4核壳微米盘的上转换红光发射增强机理. 物理学报, 2024, 73(5): 054206. doi: 10.7498/aps.73.20231663
    [4] 高伟, 骆一帆, 邢宇, 丁鹏, 陈斌辉, 韩庆艳, 严学文, 张成云, 董军. 构建NaErF4@NaYbF4:2%Er3+核壳结构增强Er3+离子红光上转换发射. 物理学报, 2023, 72(17): 174204. doi: 10.7498/aps.72.20230762
    [5] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性. 物理学报, 2022, 71(3): 034207. doi: 10.7498/aps.71.20211719
    [6] 郭付周, 陈智辉, 冯光, 王晓伟, 费宏明, 孙非, 杨毅彪. 电介质微球和金属平面纳米层增强荧光远场定向发射. 物理学报, 2022, 71(17): 176801. doi: 10.7498/aps.71.20220605
    [7] 陈癸伶, 马佳佳, 孙佳石, 张金苏, 李香萍, 徐赛, 张希珍, 程丽红, 陈宝玖. 试验优化设计GdTaO4:RE/Yb(RE=Tm, Er)荧光粉制备及上转换发光特性研究. 物理学报, 2022, 71(16): 163301. doi: 10.7498/aps.71.20220474
    [8] 洪文鹏, 兰景瑞, 李浩然, 李博宇, 牛晓娟, 李艳. 基于时域有限差分法的核壳双金属纳米颗粒光吸收率反转行为. 物理学报, 2021, 70(20): 207801. doi: 10.7498/aps.70.20210602
    [9] 高伟, 孙泽煜, 郭立淳, 韩珊珊, 陈斌辉, 韩庆艳, 严学文, 王勇凯, 刘继红, 董军. Ho3+离子掺杂单颗粒氟化物微米核壳结构的上转换发光特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211719
    [10] 董军, 张晨雪, 程小同, 邢宇, 韩庆艳, 严学文, 祁建霞, 刘继红, 杨祎, 高伟. 构建NaYF4:Yb3+/Ho3+/Ce3+@NaYF4:Yb3+/Nd3+纳米核壳结构增强Ho3+离子的上转换红光发射. 物理学报, 2021, 70(15): 154208. doi: 10.7498/aps.70.20210118
    [11] 张佳晨, 鱼卫星, 肖发俊, 赵建林. 金薄膜衬底上介质-金属核壳结构的光学力调控. 物理学报, 2020, 69(18): 184206. doi: 10.7498/aps.69.20200214
    [12] 高伟, 王博扬, 韩庆艳, 韩珊珊, 程小同, 张晨雪, 孙泽煜, 刘琳, 严学文, 王勇凯, 董军. 构建垂直金纳米棒阵列增强NaYF4:Yb3+/Er3+纳米晶体的上转换发光. 物理学报, 2020, 69(18): 184213. doi: 10.7498/aps.69.20200575
    [13] 刘蓓, 陆奚建, 刘晓宁, 吴一品, 邹斌. 热注射法合成用于生物成像的核壳上转换纳米晶. 物理学报, 2020, 69(14): 147801. doi: 10.7498/aps.69.20200347
    [14] 高伟, 董军. 共掺杂Ce3+调控-NaLuF4:Yb3+/Ho3+纳米晶体的上转换荧光发射. 物理学报, 2017, 66(20): 204206. doi: 10.7498/aps.66.204206
    [15] 高伟, 董军, 王瑞博, 王朝晋, 郑海荣. Er3+/Yb3+共掺NaYF4/LiYF4微米晶体的上转换荧光特性. 物理学报, 2016, 65(8): 084205. doi: 10.7498/aps.65.084205
    [16] 杨健芝, 邱建备, 杨正文, 宋志国, 杨勇, 周大成. Ba5SiO4Cl6: Yb3+, Er3+, Li+荧光粉的制备及上转换发光性质研究. 物理学报, 2015, 64(13): 138101. doi: 10.7498/aps.64.138101
    [17] 郑龙江, 李雅新, 刘海龙, 徐伟, 张治国. Tm3+,Yb3+共掺钨酸钙多晶材料的上转换发光及荧光温度特性. 物理学报, 2013, 62(24): 240701. doi: 10.7498/aps.62.240701
    [18] 邹小翠, 吴木生, 刘刚, 欧阳楚英, 徐波. β-碳化硅/碳纳米管核壳结构的第一性原理研究. 物理学报, 2013, 62(10): 107101. doi: 10.7498/aps.62.107101
    [19] 孟庆裕, 陈宝玖, 赵晓霞, 颜 斌, 王晓君, 许 武. Ag+掺杂的立方相Y2O3:Eu纳米晶体粉末发光强度研究. 物理学报, 2006, 55(5): 2623-2627. doi: 10.7498/aps.55.2623
    [20] 陈晓波, 刘凯, 庄健, 王国文, 陈创天. HoYb:YVO4的上转换发光研究. 物理学报, 2002, 51(3): 690-695. doi: 10.7498/aps.51.690
计量
  • 文章访问数:  8181
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-28
  • 修回日期:  2019-07-01
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回