搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

有源光纤中稀土离子激光上能级寿命测量的研究

刘恒 张钧翔 付士杰 盛泉 史伟 姚建铨

引用本文:
Citation:

有源光纤中稀土离子激光上能级寿命测量的研究

刘恒, 张钧翔, 付士杰, 盛泉, 史伟, 姚建铨

Upper-laser-level lifetime measurement of rear earth dopant in active fiber

Liu Heng, Zhang Jun-Xiang, Fu Shi-Jie, Sheng Quan, Shi Wei, Yao Jian-Quan
PDF
HTML
导出引用
  • 提出了一种基于脉冲光纤激光放大器能量特性测量有源光纤中稀土离子上能级寿命的方法. 根据光纤激光器速率方程, 能够确定有源光纤中反转粒子数储能随抽运功率和时间的变化关系; 实验测量不同种子光脉冲重复频率下放大器输出单脉冲能量的变化, 可以反映出反转粒子数随时间的变化情况, 进而根据理论模型得到激活离子的激光上能级寿命. 实验搭建了1.06 μm掺镱(Yb3+)光纤激光放大系统对该测量方法理论模型的合理性进行了验证, 对几种常见商用掺Yb3+有源光纤激光上能级寿命分别进行了多次测量和数据处理, 测量结果以及变化趋势与其他相关报道中的结果相符.
    The upper-laser-level lifetime (fluorescence lifetime) of the rear earth dopant in the active fiber is a key parameter which indicates the performance of the fiber, and takes an important role in designing the laser system. However, the accurate measurement of fluorescence lifetime in active fiber remains challenging, which mainly rely on the direct measurement of laser induced fluorescence lifetime of the active fiber or lifetime measurement of bulk laser glass. The former method suffers the error due to the amplified spontaneous emission and the reabsorption process, while the latter ignores the influence of high temperature and tension produced during the fiber drawing on the emission behavior of the material. Therefore, the accuracy of these measurements can become a problem. In this work, we propose a new approach to measuring the upper-laser-level lifetime of the rear earth dopant in the active fiber based on the power/energy performance of the fiber amplifier. The population inversion, i. e. the energy storage, in the active fiber of a fiber amplifier is a function of upper-laser-level lifetime. Therefore, the upper-laser-level lifetime can be derived by measuring the average power or output pulse energy of the amplifier, given that the energy storage in the active fiber is extracted adequately by a seed laser. Using the rate equations, we model the population inversion and energy storage in the active fiber each as a function of pump power and time, and the resulting relationship between the upper-laser-level lifetime and the average output power. The upper-laser-level lifetimes of several commercial Yb-doped active fibers are experimentally measured by this method through using the fibers as the gain media of the amplifier operated at 1064 nm. The convenience of experimental data processing is also discussed. The measured lifetime and evolution trend of the lifetime with dopant concentration exhibitthat they are in good agreement with those from other reports and the theoretical model, which verifies the feasibility of this method.
      通信作者: 盛泉, shengquan@tju.edu.cn ; 史伟, shiwei@tju.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017 YFF0104603)和高等学校学科创新引智计划(批准号: B17031)资助的课题
      Corresponding author: Sheng Quan, shengquan@tju.edu.cn ; Shi Wei, shiwei@tju.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017 YFF0104603) and 111 Project, China (Grant No. B17031)
    [1]

    Fu S J, Shi W, Feng Y, Zhang L, Yang Z G, Xu S H, Zhu X S, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B 34 A49Google Scholar

    [2]

    Pask H M, Carman R J, Hanna D C, Tropper A C, Mackechnie C J, Barber P R, Dawes J M 1995 IEEE J. Sel. Top. Quant. 1 2Google Scholar

    [3]

    Sintov Y, Glick Y, Koplowitch T, Nafcha Y 2008 Opt. Commun. 281 1162Google Scholar

    [4]

    Geng J H, Wu J F, Jiang S B, Yu J R 2007 Opt. Lett. 32 355Google Scholar

    [5]

    Vivona M, Kim J, Zervas M N 2018 Opt. Lett. 43 4097

    [6]

    Paschotta R, Nilsson J, Barber P R, Caplen J E, Tropper A C, Hanna D C 1997 Opt. Commun. 136 375Google Scholar

    [7]

    Guo Y, Zheng X, Ming H, Zhang Q J 2001 Chin. Phys. Lett. 18 1337Google Scholar

    [8]

    蒋红玫, 杨博思, 李贺龙, 徐淮良 2013 中国光学 6 5

    Jiang H M, Yang B S, Li H L, Xu H L 2013 Chin. Opt. 6 5

    [9]

    陆同兴, 路轶群 2009 激光光谱技术原理及应用 (合肥: 中国科学技术大学出版社) 第170−193页

    Lu T X, Lu Y Q 2009 Principle and Application of Laser Spectroscopy (Hefei: University of Science and Technology of China Press) pp170−193 (in Chinese)

    [10]

    Li A H, Zheng Z R, Lü Q, Xu Z P, Xu C, Xu Y H, Liu W L 2011 Opt. Lett. 36 1056Google Scholar

    [11]

    Biémont E, Quinet P, Dai Z W, Jiang Z K, Zhang Z G, Xu H L, Svanberg S 2002 J. Phys. B: At. Mol. Opt. Phys. 35 4743Google Scholar

    [12]

    Tang G W, Qian G Q, Shi Z G, Liu Y, Huang B W, He Y C, Jiang L C, Sun M, Qian Q, Yang Z M 2019 Opt. Mater. Express 9 362Google Scholar

    [13]

    Piccoli R, Mechin D, Robin T, Taccheo S 2013 Opt. Lett. 38 4370Google Scholar

    [14]

    Newell T C, Peterson P, Gavrielides A, Sharma M P 2007 Opt. Commun. 273 256Google Scholar

    [15]

    欧攀 2014 高等光学仿真(第2版)(北京: 北京航空航天大学出版社) 第296页

    Ou P 2014 Advanced Optical Simulation (second edition) (Beijing: Beihang University Press) p296 (in Chinese)

    [16]

    Giles C R, Desurvire E 1991 J. Lightwave Technol. 9 271Google Scholar

    [17]

    Wang Y, Martinez-Rios A, Po H 2003 Opt. Commun. 224 113Google Scholar

    [18]

    Hardy A, Oron R 1997 IEEE J. Quantum Elect. 33 307Google Scholar

    [19]

    黄琳, 代志勇, 刘永智 2009 物理学报 58 6992Google Scholar

    Huang L, Dai Z Y, Liu Y Z 2009 Acta Phys. Sin. 58 6992Google Scholar

  • 图 1  不同抽运功率下(a)激光上能级粒子数密度, (b)有源光纤储能随时间t的变化关系

    Fig. 1.  (a) Upper laser level population density and (b) energy storage as functions of time under different pump power.

    图 2  抽运功率5 W时有源纤储能及(a)不同提取效率下归一化储能密度随时间的变化(PRR = 10 kHz), (b)放大级输出脉冲强度与种子光重复频率之间的关系

    Fig. 2.  Energy storage with 5 W launched pump power and (a) normalized energy density with different extraction efficiency as a function of time (PRR = 10 kHz), (b) the relationship between output pulse intensity and seed PRR.

    图 3  输出脉冲能量与种子光重复频率关系曲线(抽运功率3 W)

    Fig. 3.  Output pulse energy as a function of PPR (3 W launched pump power).

    图 4  基于掺镱光纤激光放大器的激光上能级寿命测量实验装置

    Fig. 4.  Experimental setup of the Ytterbium-doped amplifier in the upper-laser-level lifetime measurement.

    图 5  种子光PRR为1 kHz、脉宽为2.25 μs时 (a)预放大前后光谱, (b)预放大前后脉冲形状

    Fig. 5.  (a) Optical spectra and (b) pulse waveform of the seed pulse and pre-amplifier output (seed PRR of 1 kHz and pulse duration of 2.25 μs).

    图 6  激光上能级寿命测量结果 (a) LMA-YDF-12/125光纤; (b) SM-YDF-5/130光纤; (c) PLMA-YDF-10/125-M光纤; (d) YDF-6/125光纤

    Fig. 6.  Upper-laser-level lifetime measurement result of (a) LMA-YDF-12/125, (b)SM-YDF-5/130, (c) PLMA-YDF-10/125-M and (d) YDF-6/125 fibers.

    图 7  种子光脉冲能量为11, 16, 25 μJ时对PLMA-YDF-10/125-M光纤的测量结果

    Fig. 7.  Test results of PLMA-YDF-10/125-M at 11 μJ, 16 μJ and 25 μJ seed pulse energy.

    表 1  公式中各参数的物理意义及参考值

    Table 1.  The physical meaning and their reference value in the theoretical model.

    符号/单位物理意义参考值
    λp/nm抽运光波长976
    σa/m2抽运光受激吸收截面2.6 × 10–26
    σe/m2抽运光受激发射截面2.6 × 10–26
    Γp抽运光重叠因子0.0024
    N/m–3有源光纤掺杂粒子密度6 × 1025
    h/J·s普朗克常量6.62 × 10–34
    c/m·s–1真空中光速3 × 108
    τ/ms上能级寿命0.8
    A/m3纤芯横截面积7 × 10–11
    下载: 导出CSV
  • [1]

    Fu S J, Shi W, Feng Y, Zhang L, Yang Z G, Xu S H, Zhu X S, Norwood R A, Peyghambarian N 2017 J. Opt. Soc. Am. B 34 A49Google Scholar

    [2]

    Pask H M, Carman R J, Hanna D C, Tropper A C, Mackechnie C J, Barber P R, Dawes J M 1995 IEEE J. Sel. Top. Quant. 1 2Google Scholar

    [3]

    Sintov Y, Glick Y, Koplowitch T, Nafcha Y 2008 Opt. Commun. 281 1162Google Scholar

    [4]

    Geng J H, Wu J F, Jiang S B, Yu J R 2007 Opt. Lett. 32 355Google Scholar

    [5]

    Vivona M, Kim J, Zervas M N 2018 Opt. Lett. 43 4097

    [6]

    Paschotta R, Nilsson J, Barber P R, Caplen J E, Tropper A C, Hanna D C 1997 Opt. Commun. 136 375Google Scholar

    [7]

    Guo Y, Zheng X, Ming H, Zhang Q J 2001 Chin. Phys. Lett. 18 1337Google Scholar

    [8]

    蒋红玫, 杨博思, 李贺龙, 徐淮良 2013 中国光学 6 5

    Jiang H M, Yang B S, Li H L, Xu H L 2013 Chin. Opt. 6 5

    [9]

    陆同兴, 路轶群 2009 激光光谱技术原理及应用 (合肥: 中国科学技术大学出版社) 第170−193页

    Lu T X, Lu Y Q 2009 Principle and Application of Laser Spectroscopy (Hefei: University of Science and Technology of China Press) pp170−193 (in Chinese)

    [10]

    Li A H, Zheng Z R, Lü Q, Xu Z P, Xu C, Xu Y H, Liu W L 2011 Opt. Lett. 36 1056Google Scholar

    [11]

    Biémont E, Quinet P, Dai Z W, Jiang Z K, Zhang Z G, Xu H L, Svanberg S 2002 J. Phys. B: At. Mol. Opt. Phys. 35 4743Google Scholar

    [12]

    Tang G W, Qian G Q, Shi Z G, Liu Y, Huang B W, He Y C, Jiang L C, Sun M, Qian Q, Yang Z M 2019 Opt. Mater. Express 9 362Google Scholar

    [13]

    Piccoli R, Mechin D, Robin T, Taccheo S 2013 Opt. Lett. 38 4370Google Scholar

    [14]

    Newell T C, Peterson P, Gavrielides A, Sharma M P 2007 Opt. Commun. 273 256Google Scholar

    [15]

    欧攀 2014 高等光学仿真(第2版)(北京: 北京航空航天大学出版社) 第296页

    Ou P 2014 Advanced Optical Simulation (second edition) (Beijing: Beihang University Press) p296 (in Chinese)

    [16]

    Giles C R, Desurvire E 1991 J. Lightwave Technol. 9 271Google Scholar

    [17]

    Wang Y, Martinez-Rios A, Po H 2003 Opt. Commun. 224 113Google Scholar

    [18]

    Hardy A, Oron R 1997 IEEE J. Quantum Elect. 33 307Google Scholar

    [19]

    黄琳, 代志勇, 刘永智 2009 物理学报 58 6992Google Scholar

    Huang L, Dai Z Y, Liu Y Z 2009 Acta Phys. Sin. 58 6992Google Scholar

  • [1] 曹涧秋, 周尚德, 刘鹏飞, 黄值河, 王泽锋, 司磊, 陈金宝. 辐照效应对于掺镱光纤放大器模式不稳定阈值影响的理论研究. 物理学报, 2024, 73(20): 204202. doi: 10.7498/aps.73.20240816
    [2] 赵卫, 付士杰, 盛泉, 薛凯, 史伟, 姚建铨. 辅助光对高功率掺镱光纤激光放大器受激拉曼散射效应的抑制作用. 物理学报, 2024, 73(20): 204201. doi: 10.7498/aps.73.20240895
    [3] 林贤峰, 张志伦, 邢颍滨, 陈瑰, 廖雷, 彭景刚, 李海清, 戴能利, 李进延. 基于M型掺镱光纤的近单模2 kW光纤放大器. 物理学报, 2022, 71(3): 034205. doi: 10.7498/aps.71.20211751
    [4] 林贤峰, 张志伦, 邢颍滨, 陈瑰, 廖雷, 彭景刚, 李海清, 戴能利, 李进延. 基于M型掺镱光纤的近单模2 kW光纤放大器. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211751
    [5] 罗亿, 王小林, 张汉伟, 粟荣涛, 马鹏飞, 周朴, 姜宗福. 光纤放大器放大自发辐射特性与高温易损点位置. 物理学报, 2017, 66(23): 234206. doi: 10.7498/aps.66.234206
    [6] 刘雅坤, 王小林, 粟荣涛, 马鹏飞, 张汉伟, 周朴, 司磊. 相位调制信号对窄线宽光纤放大器线宽特性和受激布里渊散射阈值的影响. 物理学报, 2017, 66(23): 234203. doi: 10.7498/aps.66.234203
    [7] 曹涧秋, 刘文博, 陈金宝, 陆启生. 单模热致超大模场掺镱光纤放大器的数值研究. 物理学报, 2017, 66(6): 064201. doi: 10.7498/aps.66.064201
    [8] 刘江, 刘晨, 师红星, 王璞. 342W全光纤结构窄线宽连续掺铥光纤激光器. 物理学报, 2016, 65(19): 194209. doi: 10.7498/aps.65.194209
    [9] 刘江, 刘晨, 师红星, 王璞. 203W全光纤全保偏结构皮秒掺铥光纤激光器. 物理学报, 2016, 65(19): 194208. doi: 10.7498/aps.65.194208
    [10] 董繁龙, 葛廷武, 张雪霞, 谭祺瑞, 王智勇. 300 W侧面分布式抽运掺Yb全光纤放大器. 物理学报, 2015, 64(8): 084205. doi: 10.7498/aps.64.084205
    [11] 姜曼, 肖虎, 周朴, 王小林, 刘泽金. 高功率、低量子亏损同带抽运掺镱光纤放大器. 物理学报, 2013, 62(4): 044210. doi: 10.7498/aps.62.044210
    [12] 杜文博, 冷进勇, 朱家健, 周朴, 许晓军, 舒柏宏. 增益竞争双波长放大单频光纤放大器理论研究. 物理学报, 2012, 61(11): 114203. doi: 10.7498/aps.61.114203
    [13] 肖虎, 冷进勇, 吴武明, 王小林, 马阎星, 周朴, 许晓军, 赵国民. 同带抽运高效率光纤放大器. 物理学报, 2011, 60(12): 124207. doi: 10.7498/aps.60.124207
    [14] 杨若夫, 杨平, 沈锋. 基于能动分块反射镜的两路光纤放大器相位探测及其相干合成实验研究. 物理学报, 2009, 58(12): 8297-8301. doi: 10.7498/aps.58.8297
    [15] 任广军, 魏臻, 张强, 姚建铨. 掺钕保偏光纤放大器的研究. 物理学报, 2009, 58(6): 3897-3902. doi: 10.7498/aps.58.3897
    [16] 刘博文, 胡明列, 宋有建, 柴 路, 王清月. 亚百飞秒高功率掺镱大模面积光子晶体光纤飞秒激光放大器的实验研究. 物理学报, 2008, 57(11): 6921-6925. doi: 10.7498/aps.57.6921
    [17] 王春灿, 张 帆, 童 治, 宁提纲, 简水生. 大功率单频多芯光纤放大器中抑制受激布里渊散射的分析. 物理学报, 2008, 57(8): 5035-5044. doi: 10.7498/aps.57.5035
    [18] 赵振宇, 段开椋, 王建明, 赵 卫, 王屹山. 高功率光子晶体光纤放大器实验研究. 物理学报, 2008, 57(10): 6335-6339. doi: 10.7498/aps.57.6335
    [19] 肖 瑞, 侯 静, 姜宗福, 刘 明. 三路光纤放大器相干合成技术的实验研究. 物理学报, 2006, 55(12): 6464-6469. doi: 10.7498/aps.55.6464
    [20] 程 成, 张 航. 半导体纳米晶体PbSe量子点光纤放大器. 物理学报, 2006, 55(8): 4139-4144. doi: 10.7498/aps.55.4139
计量
  • 文章访问数:  10151
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-26
  • 修回日期:  2019-07-25
  • 上网日期:  2019-11-01
  • 刊出日期:  2019-11-20

/

返回文章
返回