-
本文采用水热法成功制备了Au纳米颗粒负载的WO3纳米花材料, 并运用XRD, SEM, TEM等手段对其晶体结构和形貌进行了表征, 并详细研究了其对二甲苯的气敏性能. 首先对Au的浓度和气敏元件的工作温度进行了优化, 结果表明, 0.4 μl Au纳米颗粒负载的WO3对二甲苯的灵敏度最高, 最佳工作温度为250 ℃. 同纯WO3相比, Au纳米颗粒负载的WO3纳米花具有更快的响应/恢复速度和更高的目标气体选择性, 在100 ppm二甲苯中灵敏度达到了29.5. 此外, 检测限度可以低至5 ppm水平. 最后对气敏元件表面可能发生的氧化还原反应的机理进行了研究和讨论, 认为Au负载的WO3纳米花材料有望应用于二甲苯气体传感器.Pure and Au nanoparticles loaded WO3 nanoflowers are synthesized by the hydrothermal method.The structures and morphologies of the as-prepared products are characterized by X-ray diffraction (XRD),scanning electron microswcope (SEM), and transmission electron microscope (TEM). The gas sensing performance of the Au/WO3 sensor to xylene is investigated. The Au content and the operating temperature are first optimized. It is found that WO3 with 0.4 μL Au nanoparticles shows the highest sensitivity at an operating temperature of 250 ℃. Compared with pure WO3, Au(0.4)/WO3 possesses fast response/recovery speed and high target gas selectivity. Its sensitivity to 100 ppm xylene is 29.5. Meanwhile, the practical detection limitation is as low as 0.5 ppm. Finally, the mechanism of Au/WO3 gas sensing is also proposed and discussed. Au nanoparticles loaded WO3 nanoflowers are considered to be a promising sensing material for detecting xylene pollutants.
-
Keywords:
- WO3 /
- Au nanoparticles /
- xylene /
- gas sensing properties
[1] Zhang Y M, Zhao J H, Du T F, Zhu Z Q, Zhang J, Liu Q J 2017 Sci. Rep. 7 1960Google Scholar
[2] Zhang F J, Qu G, Mohammadi E, Mei J G, Diao Y 2017 Adv. Funct. Mater. 27 1701117Google Scholar
[3] Wang S, Li Q W, Yu H M, Li J Z 2018 Non-Ferrous Min. Metall. 34 39
[4] Gui Y H, Yang L L, Wang H Y, Li X M, Zhang H Z 2018 J. Synth. Cryst. 47 2115
[5] Li F, Guo S J, Shen J L, Shen L, Sun D M, Wang B, Chen Y 2017 Sens. Actuators, B 238 364Google Scholar
[6] Rong X R, Chen D L, Qu G P, Li T, Zhang R, Sun J 2018 Sens. Actuators, B 269 223Google Scholar
[7] Li Y X, Chen N, Deng D Y, Xing X X, Xiao X C, Wang Y D 2017 Sens. Actuators, B 238 264Google Scholar
[8] Yildiz A, Crisan D, Dragan N, Iftimie N, Florea D, Mardare D 2011 J. Mater. Sci.- Mater. Electron. 22 1420Google Scholar
[9] Su P G, Liao W H 2017 Sens. Actuators, B 252 854Google Scholar
[10] Zhao S K, Shen Y B, Zhou P F, Zhong X X, Han C, Zhao Q, Wei D Z 2019 Sens. Actuators, B 282 917Google Scholar
[11] Su X T, Li Y N, Jian J K, Wang J D 2010 Mater. Res. Bull. 45 1960Google Scholar
[12] Shi J C, Hu G J, Sun Y, Geng M, Wu J, Liu Y F, Ge M Y, Tao J C, Cao M, Dai N 2011 Sens. Actuators, B 156 820Google Scholar
[13] Righettoni M, Tricoli A, Gass S, Schmid A, Amann A, Pratsinis S E 2012 Anal. Chim. Acta 738 69Google Scholar
[14] Wang C, Sun R, Li X, Sun Y F, Sun P, Liu F M, Lu G Y 2014 Sens. Actuators, B 204 224Google Scholar
[15] Lv C, Wang M H, Liu Z Q, Liu Y K, Shen X Q 2018 J. Synth. Cryst. 47 1237
[16] Zhang H W, Wang Y Y, Zhu X G, Li Y, Cai W P 2019 Sens. Actuators, B 280 192Google Scholar
[17] Kabcum S, Kotchasak N, Channei D, Tuantranont A, Wisitsoraat A, Phanichphant S, Liewhiran C 2017 Sens. Actuators, B 252 523Google Scholar
[18] Ma J H, Ren Y, Zhou X R, Liu L L, Zhu Y H, Cheng X W, Xu P C, Li X X, Deng Y H, Zhao D Y 2018 Adv. Funct. Mater. 28 1705268Google Scholar
[19] Comini E, Faglia G, Sberveglieri G, Pan Z W, Wang Z L 2002 Appl. Phys. Lett. 81 1869Google Scholar
[20] Liu X H, Zhang J, Yang T L, Guo X Z, Wu S H, Wang S R 2011 Sens. Actuators, B 156 918Google Scholar
[21] Vallejos S, Stoycheva T, Umek P, Navio C, Snyders R, Bittencourt C, Llobet E, Blackman C, Moniz S, Correig X 2011 Chem. Commun. 47 565Google Scholar
-
图 5 (a)在不同操作温度下各个气体传感器对50 ppm二甲苯的的响应曲线; (b)在最佳操作温度时, 各个气体传感器对不同浓度二甲苯的响应曲线
Fig. 5. (a) Response curves of various gas sensors exposed to 50 ppm xylene at different operating temperatures; (b) response curves of various gas sensors to different concentrations of xylene at optimal operating temperatures.
-
[1] Zhang Y M, Zhao J H, Du T F, Zhu Z Q, Zhang J, Liu Q J 2017 Sci. Rep. 7 1960Google Scholar
[2] Zhang F J, Qu G, Mohammadi E, Mei J G, Diao Y 2017 Adv. Funct. Mater. 27 1701117Google Scholar
[3] Wang S, Li Q W, Yu H M, Li J Z 2018 Non-Ferrous Min. Metall. 34 39
[4] Gui Y H, Yang L L, Wang H Y, Li X M, Zhang H Z 2018 J. Synth. Cryst. 47 2115
[5] Li F, Guo S J, Shen J L, Shen L, Sun D M, Wang B, Chen Y 2017 Sens. Actuators, B 238 364Google Scholar
[6] Rong X R, Chen D L, Qu G P, Li T, Zhang R, Sun J 2018 Sens. Actuators, B 269 223Google Scholar
[7] Li Y X, Chen N, Deng D Y, Xing X X, Xiao X C, Wang Y D 2017 Sens. Actuators, B 238 264Google Scholar
[8] Yildiz A, Crisan D, Dragan N, Iftimie N, Florea D, Mardare D 2011 J. Mater. Sci.- Mater. Electron. 22 1420Google Scholar
[9] Su P G, Liao W H 2017 Sens. Actuators, B 252 854Google Scholar
[10] Zhao S K, Shen Y B, Zhou P F, Zhong X X, Han C, Zhao Q, Wei D Z 2019 Sens. Actuators, B 282 917Google Scholar
[11] Su X T, Li Y N, Jian J K, Wang J D 2010 Mater. Res. Bull. 45 1960Google Scholar
[12] Shi J C, Hu G J, Sun Y, Geng M, Wu J, Liu Y F, Ge M Y, Tao J C, Cao M, Dai N 2011 Sens. Actuators, B 156 820Google Scholar
[13] Righettoni M, Tricoli A, Gass S, Schmid A, Amann A, Pratsinis S E 2012 Anal. Chim. Acta 738 69Google Scholar
[14] Wang C, Sun R, Li X, Sun Y F, Sun P, Liu F M, Lu G Y 2014 Sens. Actuators, B 204 224Google Scholar
[15] Lv C, Wang M H, Liu Z Q, Liu Y K, Shen X Q 2018 J. Synth. Cryst. 47 1237
[16] Zhang H W, Wang Y Y, Zhu X G, Li Y, Cai W P 2019 Sens. Actuators, B 280 192Google Scholar
[17] Kabcum S, Kotchasak N, Channei D, Tuantranont A, Wisitsoraat A, Phanichphant S, Liewhiran C 2017 Sens. Actuators, B 252 523Google Scholar
[18] Ma J H, Ren Y, Zhou X R, Liu L L, Zhu Y H, Cheng X W, Xu P C, Li X X, Deng Y H, Zhao D Y 2018 Adv. Funct. Mater. 28 1705268Google Scholar
[19] Comini E, Faglia G, Sberveglieri G, Pan Z W, Wang Z L 2002 Appl. Phys. Lett. 81 1869Google Scholar
[20] Liu X H, Zhang J, Yang T L, Guo X Z, Wu S H, Wang S R 2011 Sens. Actuators, B 156 918Google Scholar
[21] Vallejos S, Stoycheva T, Umek P, Navio C, Snyders R, Bittencourt C, Llobet E, Blackman C, Moniz S, Correig X 2011 Chem. Commun. 47 565Google Scholar
计量
- 文章访问数: 10622
- PDF下载量: 127
- 被引次数: 0