搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蓝光钙钛矿发光二极管: 机遇与挑战

段聪聪 程露 殷垚 朱琳

引用本文:
Citation:

蓝光钙钛矿发光二极管: 机遇与挑战

段聪聪, 程露, 殷垚, 朱琳

Blue perovskite light-emitting diodes: opportunities and challenges

Duan Cong-Cong, Cheng Lu, Yin Yao, Zhu Lin
PDF
HTML
导出引用
  • 基于金属卤化物钙钛矿材料制备的发光二极管(LED)发展迅速, 短短五年内, 近红外、红光和绿光钙钛矿发光器件的外量子效率均超过了20%, 在显示与照明领域展示出很好的应用前景. 然而, 蓝光钙钛矿LED的性能相对较差, 制约了钙钛矿LED在全色显示领域的应用. 目前, 实现钙钛矿蓝光主要有两种方式, 一种是基于卤素掺杂的组分工程, 另一种是基于量子限域效应的维度调控. 本文主要介绍了基于这两种方法的蓝光钙钛矿LED的发展历程, 讨论了蓝光钙钛矿LED面临的主要问题, 并对如何提升蓝光钙钛矿LED性能进行展望.
    The great progress of light-emitting diodes (LEDs) has been made based on perovskites, and the external quantum efficiency of near infrared, red and green devices have reached > 20%, exhibiting their great potential applications in lighting and displays. However, the performance of blue perovskite LEDs is very poor, thus limiting their applications in the field of full-color displays. The blue perovskite LEDs can be achieved through mixed halides or quantum confinement effect. In this paper, we review the research progress of blue perovskite LEDs based on these two strategies, discuss the challenges to achieve high-performance perovskite LEDs and present our perspectives.
      通信作者: 殷垚, iamyyin@njtech.edu.cn ; 朱琳, iamlzhu@njtech.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 21601085)和江苏省自然科学基金(批准号: BK20161008)资助的课题.
      Corresponding author: Yin Yao, iamyyin@njtech.edu.cn ; Zhu Lin, iamlzhu@njtech.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 21601085) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20161008).
    [1]

    Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Hüttner S, Leijtens T, Stranks S D, Snaith H J, Atatüre M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [4]

    Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676Google Scholar

    [5]

    Lin K, Xing J, Quan L N, Arquer F P G de, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245Google Scholar

    [6]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [7]

    Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photon. 12 681Google Scholar

    [8]

    Zhao B, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L, Alsari M, She X J, Liang L, Zhang J, Lilliu S, Gao P, Snaith H J, Wang J, Greenham N C, Friend R H, Di D 2018 Nat. Photon. 12 783Google Scholar

    [9]

    Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F 2019 Nat. Photon. 13 418Google Scholar

    [10]

    Cheng L, Cao Y, Ge R, Wei Y Q, Wang N N, Wang J P, Huang W 2017 Chin. Chem. Lett. 28 29Google Scholar

    [11]

    Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar

    [12]

    Sadhanala A, Ahmad S, Zhao B, Giesbrecht N, Pearce P M, Deschler F, Hoye R L Z, Gödel K C, Bein T, Docampo P, Dutton S E, de Volder M F L, Friend R H 2015 Nano Lett. 15 6095Google Scholar

    [13]

    Kumawat N K, Dey A, Kumar A, Gopinathan S P, Narasimhan K L, Kabra D 2015 ACS Appl. Mater. Interfaces 7 13119Google Scholar

    [14]

    Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R bin M, Jang J, Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920Google Scholar

    [15]

    Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar

    [16]

    Hou S, Gangishetty M K, Quan Q, Congreve D N 2018 Joule 2 2421Google Scholar

    [17]

    Chen Z, Zhang C, Jiang X F, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao Y J, Su S, Yip H L, Cao Y 2017 Adv. Mater. 29 1603157Google Scholar

    [18]

    Xing J, Zhao Y, Askerka M, Quan L N, Gong X, Zhao W, Zhao J, Tan H, Long G, Gao L, Yang Z, Voznyy O, Tang J, Lu Z H, Xiong Q, Sargent E H 2018 Nat. Commun. 9 3541Google Scholar

    [19]

    Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868Google Scholar

    [20]

    Wang K H, Peng Y, Ge J, Jiang S, Zhu B S, Yao J, Yin Y C, Yang J N, Zhang Q, Yao H B 2019 ACS Photon. 6 667Google Scholar

    [21]

    Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E 2019 Chem. Mater. 31 83Google Scholar

    [22]

    Gangishetty M K, Hou S, Quan Q, Congreve D N 2018 Adv. Mater. 30 1706226Google Scholar

    [23]

    Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photon. 10 699Google Scholar

    [24]

    Sun Y, Zhang L, Wang N, Zhang S, Cao Y, Miao Y, Xu M, Zhang H, Li H, Yi C, Wang J, Huang W 2018 npj Flexible Electron. 2 12Google Scholar

    [25]

    Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar

    [26]

    Li G, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C, de la Peña F, Hou S, Ducati C, Gao F, Friend R H, Greenham N C, Tan Z K 2016 Adv. Mater. 28 3528Google Scholar

    [27]

    Yang M, Wang N, Zhang S, Zou W, He Y, Wei Y, Xu M, Wang J, Huang W 2018 J. Phys. Chem. Lett. 9 2038Google Scholar

    [28]

    Ke Y, Wang N, Kong D, Cao Y, He Y, Zhu L, Wang Y, Xue C, Peng Q, Gao F, Huang W, Wang J 2019 J. Phys. Chem. Lett. 10 380Google Scholar

    [29]

    Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N 2016 Adv. Mater. 28 9986Google Scholar

    [30]

    Li C, Guerrero A, Huettner S, Bisquert J 2018 Nat. Commun. 9 5113Google Scholar

    [31]

    Zhang J, Yang Y, Deng H, Farooq U, Yang X, Khan J, Tang J, Song H 2017 ACS Nano 11 9294Google Scholar

    [32]

    Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H 2018 Adv. Mater. 30 1804547Google Scholar

  • 图 1  实现蓝光钙钛矿方法的示意图

    Fig. 1.  Schematic diagram of the method to achieve blue perovskites.

    图 2  三维蓝光钙钛矿LED[14] (a)电流密度-电压-亮度; (b)不同电压下的电致发光(EL)光谱; (c)器件稳定性

    Fig. 2.  Characterization of blue LEDs based on 3D perovskites[14]: (a) Current-voltage-luminance; (b) normalized electroluminance (EL) spectra of device under various voltages; (c) lifetime characteristics of device.

    图 3  量子点蓝光钙钛矿LED[16] (a)器件能级结构图; (b) EL光谱; (c)电流密度-电压-亮度; (d) EQE-电流密度

    Fig. 3.  Characterization of blue LEDs fabricated with nanocrystals of varying Mn content[16]: (a) Device structure; (b) normalized EL spectra; (c) current-voltage-luminance; (d) external quantum efficiency (EQE)-current density.

    图 4  单卤素多量子阱天蓝光钙钛矿LED[18] (a)不同电压下的EL光谱; (b)连续工作条件下的EL光谱; (c)不同初始亮度条件下器件的寿命

    Fig. 4.  Characterization of blue LEDs based on single-halide MQW perovskites[18]: (a) EL spectra of perovskite LEDs operating under different voltages; (b) EL spectra of device operating with various exposure time; (c) lifetime measurement of devices at different initial luminance.

    图 5  光谱稳定的单卤素多量子阱蓝光钙钛矿LED[19] (a)在4.5 V电压连续工作条件下器件的EL光谱; (b) 4.5 V电压连续工作条件下器件的稳定性

    Fig. 5.  Spectra stable blue LED based on single-halide MQW perovskites[19]: (a) EL spectrum under a constant applied voltage of 4.5 V as a function of time; (b) lifetime of device at a constant voltage of 4.5 V.

    图 6  混合卤素多量子阱蓝光钙钛矿LED (a)发光区域调控示意图; (b)不同PEDOT:PSS厚度器件的电流密度-电压-亮度; (c)不同PEDOT:PSS厚度器件的EQE-电流密度; (d) 4.4 V电压连续工作条件下器件的稳定性; (e)不同电压下器件的EL光谱; (f) 4.4 V电压连续工作条件下器件的EL光谱[11]

    Fig. 6.  Characterization of blue LEDs based on mixed-halide MQW perovskites: (a) Schematic diagram of the modulation of recombination zone position; (b) current-voltage-luminance; (c) characterization of EQE versus current density; (d) lifetime of device at a constant voltage of 4.4 V; (e) initial EL spectrum under different applied voltages; (f) EL spectrum under a constant applied voltage of 4.4 V as a function of time[11].

    表 1  蓝光钙钛矿发光二极管研究进展

    Table 1.  Research progress of blue perovskite LEDs.

    Perovskites EL peak/nm Peak EQE/% Luminance/cd·m–2 Ref.
    CH3NH3Pb(Br0.36Cl0.64)3 482 1.7 [13]
    CH3NH3Pb(Br0.4Cl0.6)3 ~ 480 [12]
    Cs10(MA0.17FA0.83)(100–x)PbCl1.5Br1.5 475 1.7 3567 [14]
    CsPb(Cl/Br)3 QDs 455 0.07 742 [15]
    CsMnyPb1–yBrxCl3–x QDs 466 2.12 245 [16]
    (4-PBA)-CsPbBr3 MQWs 435, 466, 491 0.015 186 [10]
    POEA-CH3NH3PbBr3 MQWs 480, 494, 508 1.1 19.25 [17]
    (IPA/PEA)-(MA/Cs)PbBr3 MQWs 490 1.5 2480 [18]
    PBA-CsPbBr3–xClx MQWs 473/481 0.16/0.25 217/509 [20]
    PEA-CsPbBr2.1Cl0.9 MQWs 480 5.7 3780 [11]
    BA-CsPb(Br/Cl)3 MQWs 465 2.4 962 [21]
    PEA-(Rb/Cs)PbBr3 MQWs 475 1.35 100.6 [19]
    下载: 导出CSV
  • [1]

    Deschler F, Price M, Pathak S, Klintberg L E, Jarausch D D, Higler R, Hüttner S, Leijtens T, Stranks S D, Snaith H J, Atatüre M, Phillips R T, Friend R H 2014 J. Phys. Chem. Lett. 5 1421Google Scholar

    [2]

    Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H 2014 Nat. Nanotechnol. 9 687Google Scholar

    [3]

    Wang J, Wang N, Jin Y, Si J, Tan Z K, Du H, Cheng L, Dai X, Bai S, He H, Ye Z, Lai M L, Friend R H, Huang W 2015 Adv. Mater. 27 2311Google Scholar

    [4]

    Era M, Morimoto S, Tsutsui T, Saito S 1994 Appl. Phys. Lett. 65 676Google Scholar

    [5]

    Lin K, Xing J, Quan L N, Arquer F P G de, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z 2018 Nature 562 245Google Scholar

    [6]

    Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W 2018 Nature 562 249Google Scholar

    [7]

    Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, Pu Y J, Ohisa S, Kido J 2018 Nat. Photon. 12 681Google Scholar

    [8]

    Zhao B, Bai S, Kim V, Lamboll R, Shivanna R, Auras F, Richter J M, Yang L, Dai L, Alsari M, She X J, Liang L, Zhang J, Lilliu S, Gao P, Snaith H J, Wang J, Greenham N C, Friend R H, Di D 2018 Nat. Photon. 12 783Google Scholar

    [9]

    Xu W, Hu Q, Bai S, Bao C, Miao Y, Yuan Z, Borzda T, Barker A J, Tyukalova E, Hu Z, Kawecki M, Wang H, Yan Z, Liu X, Shi X, Uvdal K, Fahlman M, Zhang W, Duchamp M, Liu J M, Petrozza A, Wang J, Liu L M, Huang W, Gao F 2019 Nat. Photon. 13 418Google Scholar

    [10]

    Cheng L, Cao Y, Ge R, Wei Y Q, Wang N N, Wang J P, Huang W 2017 Chin. Chem. Lett. 28 29Google Scholar

    [11]

    Li Z, Chen Z, Yang Y, Xue Q, Yip H L, Cao Y 2019 Nat. Commun. 10 1027Google Scholar

    [12]

    Sadhanala A, Ahmad S, Zhao B, Giesbrecht N, Pearce P M, Deschler F, Hoye R L Z, Gödel K C, Bein T, Docampo P, Dutton S E, de Volder M F L, Friend R H 2015 Nano Lett. 15 6095Google Scholar

    [13]

    Kumawat N K, Dey A, Kumar A, Gopinathan S P, Narasimhan K L, Kabra D 2015 ACS Appl. Mater. Interfaces 7 13119Google Scholar

    [14]

    Kim H P, Kim J, Kim B S, Kim H M, Kim J, Yusoff A R bin M, Jang J, Nazeeruddin M K 2017 Adv. Opt. Mater. 5 1600920Google Scholar

    [15]

    Song J, Li J, Li X, Xu L, Dong Y, Zeng H 2015 Adv. Mater. 27 7162Google Scholar

    [16]

    Hou S, Gangishetty M K, Quan Q, Congreve D N 2018 Joule 2 2421Google Scholar

    [17]

    Chen Z, Zhang C, Jiang X F, Liu M, Xia R, Shi T, Chen D, Xue Q, Zhao Y J, Su S, Yip H L, Cao Y 2017 Adv. Mater. 29 1603157Google Scholar

    [18]

    Xing J, Zhao Y, Askerka M, Quan L N, Gong X, Zhao W, Zhao J, Tan H, Long G, Gao L, Yang Z, Voznyy O, Tang J, Lu Z H, Xiong Q, Sargent E H 2018 Nat. Commun. 9 3541Google Scholar

    [19]

    Jiang Y, Qin C, Cui M, He T, Liu K, Huang Y, Luo M, Zhang L, Xu H, Li S, Wei J, Liu Z, Wang H, Kim G H, Yuan M, Chen J 2019 Nat. Commun. 10 1868Google Scholar

    [20]

    Wang K H, Peng Y, Ge J, Jiang S, Zhu B S, Yao J, Yin Y C, Yang J N, Zhang Q, Yao H B 2019 ACS Photon. 6 667Google Scholar

    [21]

    Vashishtha P, Ng M, Shivarudraiah S B, Halpert J E 2019 Chem. Mater. 31 83Google Scholar

    [22]

    Gangishetty M K, Hou S, Quan Q, Congreve D N 2018 Adv. Mater. 30 1706226Google Scholar

    [23]

    Wang N, Cheng L, Ge R, Zhang S, Miao Y, Zou W, Yi C, Sun Y, Cao Y, Yang R, Wei Y, Guo Q, Ke Y, Yu M, Jin Y, Liu Y, Ding Q, Di D, Yang L, Xing G, Tian H, Jin C, Gao F, Friend R H, Wang J, Huang W 2016 Nat. Photon. 10 699Google Scholar

    [24]

    Sun Y, Zhang L, Wang N, Zhang S, Cao Y, Miao Y, Xu M, Zhang H, Li H, Yi C, Wang J, Huang W 2018 npj Flexible Electron. 2 12Google Scholar

    [25]

    Zou W, Li R, Zhang S, Liu Y, Wang N, Cao Y, Miao Y, Xu M, Guo Q, Di D, Zhang L, Yi C, Gao F, Friend R H, Wang J, Huang W 2018 Nat. Commun. 9 608Google Scholar

    [26]

    Li G, Rivarola F W R, Davis N J L K, Bai S, Jellicoe T C, de la Peña F, Hou S, Ducati C, Gao F, Friend R H, Greenham N C, Tan Z K 2016 Adv. Mater. 28 3528Google Scholar

    [27]

    Yang M, Wang N, Zhang S, Zou W, He Y, Wei Y, Xu M, Wang J, Huang W 2018 J. Phys. Chem. Lett. 9 2038Google Scholar

    [28]

    Ke Y, Wang N, Kong D, Cao Y, He Y, Zhu L, Wang Y, Xue C, Peng Q, Gao F, Huang W, Wang J 2019 J. Phys. Chem. Lett. 10 380Google Scholar

    [29]

    Wang F, Geng W, Zhou Y, Fang H H, Tong C J, Loi M A, Liu L M, Zhao N 2016 Adv. Mater. 28 9986Google Scholar

    [30]

    Li C, Guerrero A, Huettner S, Bisquert J 2018 Nat. Commun. 9 5113Google Scholar

    [31]

    Zhang J, Yang Y, Deng H, Farooq U, Yang X, Khan J, Tang J, Song H 2017 ACS Nano 11 9294Google Scholar

    [32]

    Jun T, Sim K, Iimura S, Sasase M, Kamioka H, Kim J, Hosono H 2018 Adv. Mater. 30 1804547Google Scholar

  • [1] 黄鑫梅, 何晓莉, 徐强, 陈平, 张勇, 高春红. 基于离子化合物的高性能钙钛矿发光二极管. 物理学报, 2022, 71(20): 208502. doi: 10.7498/aps.71.20220858
    [2] 许青林, 项婷, 徐伟, 李婷, 吴小龑, 李巍, 邱学军, 陈平. 金纳米粒子修饰氧化铟锡阳极的高效率红光钙钛矿发光二极管. 物理学报, 2021, 70(20): 207803. doi: 10.7498/aps.70.20210500
    [3] 曾凡菊, 谭永前, Wei Hu, 唐孝生, 张小梅, 尹海峰. 超小晶粒锡掺杂CsPbBr3蓝光量子点的合成及其光学性能研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211895
    [4] 吴家龙, 窦永江, 张建凤, 王浩然, 杨绪勇. 溶液法制备的金属掺杂氧化镍空穴注入层在钙钛矿发光二极管上的应用. 物理学报, 2020, 69(1): 018101. doi: 10.7498/aps.69.20191269
    [5] 刘小冰, 郭若彤, 仲雨璇, 赵丽新, 史昊男, 刘丽娟. 强电负性配体诱导CsPbBr3纳米晶蓝光出射. 物理学报, 2020, 69(15): 158102. doi: 10.7498/aps.69.20200261
    [6] 吴海妍, 唐建新, 李艳青. 基于缺陷态钝化的高效稳定蓝光钙钛矿发光二极管. 物理学报, 2020, 69(13): 138502. doi: 10.7498/aps.69.20200566
    [7] 徐波, 田永君. 纳米孪晶超硬材料的高压合成. 物理学报, 2017, 66(3): 036201. doi: 10.7498/aps.66.036201
    [8] 刘宇安, 庄奕琪, 杜磊, 苏亚慧. 氮化镓基蓝光发光二极管伽马辐照的1/f噪声表征. 物理学报, 2013, 62(14): 140703. doi: 10.7498/aps.62.140703
    [9] 陈新莲, 孔凡敏, 李康, 高晖, 岳庆炀. 无序光子晶体提高GaN基蓝光发光二极管光提取效率的研究. 物理学报, 2013, 62(1): 017805. doi: 10.7498/aps.62.017805
    [10] 高晖, 孔凡敏, 李康, 陈新莲, 丁庆安, 孙静. 双层光子晶体氮化镓蓝光发光二极管结构优化的研究. 物理学报, 2012, 61(12): 127807. doi: 10.7498/aps.61.127807
    [11] 刘木林, 闵秋应, 叶志清. 硅衬底InGaN/GaN基蓝光发光二极管droop效应的研究. 物理学报, 2012, 61(17): 178503. doi: 10.7498/aps.61.178503
    [12] 汪津, 赵毅, 谢文法, 段羽, 陈平, 刘式墉. 利用DPVBi插层提高蓝色荧光有机电致发光器件的效率. 物理学报, 2011, 60(10): 107203. doi: 10.7498/aps.60.107203.2
    [13] 陈焕庭, 吕毅军, 陈忠, 张海兵, 高玉琳, 陈国龙. 基于电容和电导特性分析GaN蓝光发光二极管老化机理. 物理学报, 2009, 58(8): 5700-5704. doi: 10.7498/aps.58.5700
    [14] 李炳乾, 郑同场, 夏正浩. GaN基蓝光发光二极管正向电压温度特性研究. 物理学报, 2009, 58(10): 7189-7193. doi: 10.7498/aps.58.7189
    [15] 朱宝华, 王芳芳, 张 琨, 马国宏, 顾玉宗, 郭立俊, 钱士雄. CdSe量子点的线性和非线性光学特性. 物理学报, 2008, 57(10): 6557-6564. doi: 10.7498/aps.57.6557
    [16] 刘一星, 余亚斌, 张 丽, 全 军. 纳米体系中发光能隙展宽的研究. 物理学报, 2008, 57(11): 6751-6757. doi: 10.7498/aps.57.6751
    [17] 聂 海, 张 波, 唐先忠. 聚合物掺杂有机小分子发光二极管的电致发光与杂质陷阱效应. 物理学报, 2007, 56(1): 263-267. doi: 10.7498/aps.56.263
    [18] 辛 萍, 孙成伟, 秦福文, 文胜平, 张庆瑜. 反应磁控溅射ZnO/MgO多量子阱的光致荧光光谱分析. 物理学报, 2007, 56(2): 1082-1087. doi: 10.7498/aps.56.1082
    [19] 罗 毅, 郭文平, 邵嘉平, 胡 卉, 韩彦军, 薛 松, 汪 莱, 孙长征, 郝智彪. GaN基蓝光发光二极管的波长稳定性研究. 物理学报, 2004, 53(8): 2720-2723. doi: 10.7498/aps.53.2720
    [20] 赵尚弘, 陈国夫, 赵 卫, 王屹山, 于连君, 常 琳. 高效全固体脉冲蓝光系统实验研究. 物理学报, 2000, 49(7): 1273-1276. doi: 10.7498/aps.49.1273
计量
  • 文章访问数:  18748
  • PDF下载量:  622
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-17
  • 修回日期:  2019-05-25
  • 上网日期:  2019-08-01
  • 刊出日期:  2019-08-05

/

返回文章
返回