搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光频梳频域干涉测距主要参数分析及一种改进的数据处理方法

陈嘉伟 王金栋 曲兴华 张福民

引用本文:
Citation:

光频梳频域干涉测距主要参数分析及一种改进的数据处理方法

陈嘉伟, 王金栋, 曲兴华, 张福民

Analysis of main parameters of spectral interferometry ranging using optical frequency comb and animproved data processing method

Chen Jia-Wei, Wang Jin-Dong, Qu Xing-Hua, Zhang Fu-Min
PDF
HTML
导出引用
  • 本文对光学频率梳频域干涉测距中的测距范围、分辨力、非模糊范围等的影响因素进行了分析, 并说明了传统傅里叶变换法的局限性和系统误差产生原因; 提出了一种等频率间隔重采样数据处理方法, 该方法基于三次样条插值, 修正了傅里叶变换法因频率量不等间隔造成的误差; 在此基础上提出峰值位置拟合算法, 解决了包络随距离展宽的问题. 模拟光谱仪数据并使用算法处理, 仿真结果表明系统误差小于0.2 μm, 且可将测量范围扩展至周期内任意位置. 最后搭建经典Michelson测距系统并进行了绝对距离测量实验, 将测量结果与干涉仪测量值进行对比, 达到了任意位置3 μm以下的误差.
    With the rapid development of modern technology, high-precision absolute distance measurement is playing an important role in many applications, such as scientific research, aviation and industry measurement. Among the above various measurement methods, how to realize higher-accuracy, larger-scale, and faster-speed measurement is particularly important. In the traditional technique for long-distance measurement, the emergence of optical frequency comb (OFC) provides a breakthrough technology for accurately measuring the absolute value of distance. The OFC can be considered as a multi-wavelength source,whose phase and repetition rate are locked. The OFC is a very useful light source that can provide phase-coherent link between microwave and optical domain, which has been used as a source in various distance measurement schemes that can reach an extraordinary measurement precision and accuracy. A variety of laser ranging methods such as dual-comb interferometry and dispersive interferometer based on femtosecond laser have been applied to the measuring of absolute distance.In this paper, the factors affecting the resolution and the non-ambiguous range of spectral interferometry ranging using OFC are particularly discussed. We also analyze the systematic errors and the limitations of traditional transform methods based on Fourier transform, which can conduce to the subsequent research.To address the problem caused by low resolution and unequal frequency interval, we propose a data processing method referred to as equal frequency interval resampling. The proposed method is based on cubic spline interpolation and can solve the error caused by the frequency spectrum broadening with the increase of distance. Moreover, we propose a new method based on least square fitting to calibrate the error introduced by the low resolution of interferometry spectrum obtained with fast Fourier transform (FFT). With the proposed method, the simulation results show that the systematic error is less than 0.2 μm in the non-ambiguity range and the system resolution is greatly improved. Finally, anabsolute distance measurement system based on Michelson interferometer is built to verify theproposed method. The measurement results compared with those obtained by using a high-precision commercial He-Ne laser interferometer show that the distance measurement accuracy is lower than 3 μm at any distancewithin the non-ambiguity range. The experimental results demonstrate that our data processing algorithm is able to increase the accuracy of dispersive interferometry ranging with OFC.
      通信作者: 张福民, zhangfumin@tju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51675380, 51775379)、国家重点研发计划(批准号: 2018YFB2003501)和天津市重点研发计划科技支撑重点项目(批准号: 18YFZCGX00920)资助的课题
      Corresponding author: Zhang Fu-Min, zhangfumin@tju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51675380, 51775379), the National Key R&D Program of China (Grant No. 2018YFB2003501) and the Key Technologies R&D Program of Tianjin, China (Grant No. 18YFZCGX00920)
    [1]

    Trocha P, Karpov M, Ganin D, Pfeiffer M H P, Kordts A, Wolf S, Krockenberger J, Marin-Palomo P, Weimann C, Randel S, Freude W, Kippenberg T J, Koos C 2018 Science 359 887Google Scholar

    [2]

    张继涛, 吴学健, 李岩, 尉昊赟 2012 物理学报 61 100601Google Scholar

    Zhang J T, Wu X J, Li Y, Wei H Y 2012 Acta Phys. Sin. 61 100601Google Scholar

    [3]

    邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 物理学报 62 170603Google Scholar

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603Google Scholar

    [4]

    吴学健, 李岩, 尉昊赟, 张继涛 2012 激光与光电子学进展 49 5

    Wu X J, Li Y, Wei H Y, Zhang J T 2012 Laser Optoelectron. Prog. 49 5

    [5]

    Eckstein J N, Ferguson A I, Hänsch T W 1978 Phys. Rev. Lett. 40 847Google Scholar

    [6]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar

    [7]

    Minoshima K, Arai K, Inaba H 2011 Opt. Express 19 26095Google Scholar

    [8]

    刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华 2016 物理学报 65 020601Google Scholar

    Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 65 020601Google Scholar

    [9]

    Joo K N, Kim S W 2006 Opt. Express 14 5954Google Scholar

    [10]

    Joo K N, Kim Y, Kim S W 2008 Opt. Express 16 19799Google Scholar

    [11]

    周维虎, 石俊凯, 纪荣祎, 黎尧, 刘娅 2017 仪器仪表学报 38 1859Google Scholar

    Zhou W H, Shi J K, Ji R Y, Li Y, Liu Y 2017 J. Sci. Instrum. 38 1859Google Scholar

    [12]

    Yang R T, Florian P, Karl M H, Michael K, Tan J B, Harald B 2015 Meas. Sci. Technol. 26 084001Google Scholar

    [13]

    Cui M, Zeitouny M G, Bhattacharya N, van den Berg S A, Urbach H P 2011 Opt. Express 19 6549Google Scholar

    [14]

    Cui M, Zeitouny M G, Bhattacharya N, van den Berg S A, Urbach H P, Braat J J M 2009 Opt. Lett. 34 1982Google Scholar

    [15]

    安慰宁, 张福民, 吴翰钟, 曲兴华 2014 仪器仪表学报 35 2458

    An W N, Zhang F M, Wu H Z, Qu X H 2014 J. Sci. Instrum. 35 2458

    [16]

    吴翰钟, 曹士英, 张福民, 曲兴华 2015 物理学报 64 020601Google Scholar

    Wu H Z, Cao S Y, Zhang F M, Qu X H 2015 Acta Phys. Sin. 64 020601Google Scholar

    [17]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photon. 4 716Google Scholar

    [18]

    Ye J 2004 Opt. Lett. 29 1153Google Scholar

    [19]

    李岩 2017 仪器仪表学报 38 1841Google Scholar

    Li Y 2017 J. Sci. Instrum. 38 1841Google Scholar

    [20]

    王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞 2013 物理学报 62 070601Google Scholar

    Wang G C, Yan S H, Yang J, Lin C B, Yang D X, Zou P F 2013 Acta Phys. Sin. 62 070601Google Scholar

    [21]

    朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩 2013 物理学报 62 070702Google Scholar

    Zhu M H, Wu X J, Wei H Y, Zhang L Q, Zhang J T, Li Y 2013 Acta Phys. Sin. 62 070702Google Scholar

    [22]

    Lu Z Z, Wang W Q, Zhang W F, Liu M L, Wang L R, Chu S T, Little B E, Zhao J G, Xie P, Wang X Y, Zhao W 2018 Opt. Mater. Express 8 2662Google Scholar

  • 图 1  光频梳频谱

    Fig. 1.  Spectrum of optical frequency comb

    图 2  (a)频域干涉法原理图; (b) 测距系统实物图

    Fig. 2.  (a) Principle of frequency domain interference method; (b) the experimental setup of the measurement system

    图 3  实测距离与被测距离关系

    Fig. 3.  Relationship between actual distance and measured distance

    图 4  传统FFT法脉冲包络展宽现象 (a) $\tau = 3.3 \times {10^{ - 12}}$; (b) $\tau = 7.5 \times {10^{ - 11}}$

    Fig. 4.  Broadening of the pulse envelope using original FFT: (a) $\tau = 3.3 \times {10^{ - 12}}$; (b) $\tau = 7.5 \times {10^{ - 11}}$.

    图 5  等频率间隔重采样原理

    Fig. 5.  Principle of equal frequency interval resampling

    图 6  传统FFT法结果重复和跳变

    Fig. 6.  Repetition and hopping of the measurement result

    图 7  τ = 3 × 10–11时, 仿真效果对比 (a) 等频率间隔重采样; (b) 峰值位置拟合

    Fig. 7.  Comparison of simulation effect when τ = 3 × 10–11: (a) Equal frequency interval resampling; (b) peak position fitting

    图 8  峰值定位仿真传统FFT (a) 3.335 × 10–12, (b) 3.335 × 10–11, (c) 7.500 × 10–11; 等频率间隔重采样和峰值位置拟合(d) 3.335 × 10–12, (e) 3.335 × 10–11, (f) 7.500 × 10–11

    Fig. 8.  Peak position fitting simulation. Original FFT: (a) 3.335 × 10–12, (b) 3.335 × 10–11, (c) 7.500 × 10–11. Equal frequency interval resampling and peak position fitting (d) 3.335 × 10–12, (e) 3.335 × 10–11, (f) 7.500 × 10–11

    图 9  传统FFT、等频率间隔重采样和峰值位置拟合法仿真误差比较

    Fig. 9.  Simulation error of three methods

    图 10  峰值定位效果对比仅传统FFT (a) L = 5.8600 mm, (b) L = 16.9850 mm, (c) L = 27.9100 mm; 等频率间隔重采样和峰值位置拟合(d) L = 5.8600 mm, (e) L = 16.9850 mm, (f) L = 27.9100 mm

    Fig. 10.  Effect contrast of peak position fitting. Original FFT: (a) L = 5.8600 mm, (b) L = 16.9850 mm, (c) L = 27.9100 mm. Equal frequency interval resampling and peak position fitting: (d) L = 5.8600 mm, (e) L = 16.9850 mm, (f) L = 27.9100 mm

    图 11  传统FFT、等频率间隔重采样和峰值位置拟合法分辨力修正效果对比  (a) 0.4997 mm; (b) 0.9998 mm; (c) 4.9980 mm

    Fig. 11.  Correction of repetition result by three methods: (a) 0.4997 mm; (b) 0.9998 mm; (c) 4.9980 mm

    表 1  传统FFT、等频率间隔重采样和峰值位置拟合法仿真结果误差比较

    Table 1.  Simulation error comparison of three methods.

    实验序号L/mm传统FFT法误差/μm等频率间隔重采样误差/μm峰值拟合误差/μm
    10.52509.10312.89440.161990
    20.825021.16072.83440.165549
    30.900024.1751–0.17990.010804
    41.000528.6943–4.6991–0.166222
    51.200036.2327–0.2390.000102
    61.500036.2927–0.2999–0.008146
    71.995051.3887–3.3983–0.183495
    83.000084.5830–0.5998–0.038114
    94.9950135.9718–3.998–0.177303
    107.0050190.36291.59860.114618
    下载: 导出CSV

    表 2  传统FFT、等频率间隔重采样和峰值位置拟合法误差比较

    Table 2.  Measurement results of different distance.

    实验序号L/mm传统FFT法误差/μm等频率间隔重采样误差/μm峰值拟合误差/μm
    10.0023–2.30151.65700.0218
    20.0037–3.60013.0337–0.7335
    30.10003.21670.10310.8437
    40.4997–1.83090.49750.2267
    50.99982.00971.0011–0.9828
    63.1307–4.27933.13361.1003
    74.9980–13.23754.9995–0.1739
    86.2364157.33006.2308–1.9198
    96.2511无法定位6.2551–2.9791
    109.3629无法定位1.5705–2.1087
    下载: 导出CSV

    表 A1  文章参数表

    Table A1.  Parameter list

    ${f_{{\rm{CEO}}}}$光频梳偏移频率
    ${f_{{\rm{rep}}}}$光频梳重复频率
    ${T_{\rm{R}}}$光频梳脉冲时域间隔
    $\Delta {\varphi _{{\rm{ce}}}}$群、相速度差异造成的相位偏移
    $E\left( \upsilon \right)$光频梳脉冲电场信号
    ${E_{{\rm{ref}}}}(\upsilon )$参考光电场信号
    ${E_{\rm{t}}}(\upsilon )$测量光电场信号
    a参考光功率因数
    b测量光功率因数
    $I(\upsilon )$光谱仪接收的频域干涉信号
    ${{2ab}/ {{a^2} + {b^2}}}$调制深度
    $I(t)$经FFT变换后的$I(\upsilon )$
    L测量臂和参考臂光程差/2
    $\Delta t$2L造成时间差
    τ干涉信号振荡频率τ = L/c
    c真空光速
    n折射率
    ${L_{\rm{c}}}$相干长度
    $\partial f$相干长度公式中的频率带宽
    $\Delta \upsilon $FFT变换的频率分辨力
    $\Delta L$FFT变换的距离分辨力=$\Delta \upsilon $*c
    ${L_{{\rm{NAR}}}}$频域干涉法的非模糊范围
    f频率
    ${\rm{d}}f$光谱仪频率分辨力
    ${\rm{d}}\lambda $光谱仪波长微分量
    W频谱范围
    $\Delta w$波长范围上下限之差
    B频谱宽度
    ${\lambda _{{\rm{cen}}}}$W的中心处波长
    ${f_{\rm{s}}}$光谱仪采样频率
    $\Delta \lambda $光谱仪采样波长间隔
    N光谱仪采样点数
    ${L_{{\rm{NAR0}}}}$${f_{{\rm{rep}}}} = 250{\rm{ MHz}}$理想情况下非模糊范围
    ${L_{{\rm{NAR1}}}}$光谱仪的非模糊范围
    ${L_{{\rm{NAR2}}}}$${f_{{\rm{rep}}}} = 40{\rm{ GHz}}$非模糊范围
    $\Delta f$波长需转化为频率时的频率变化量
    ${\lambda _1}$波长需转化为频率时的对应波长
    $p\left( x \right)$二项式拟合公式
    ${p_1}$二项式拟合二次项
    ${p_2}$二项式拟合一次项
    ${p_3}$二项式拟合常数项
    下载: 导出CSV
  • [1]

    Trocha P, Karpov M, Ganin D, Pfeiffer M H P, Kordts A, Wolf S, Krockenberger J, Marin-Palomo P, Weimann C, Randel S, Freude W, Kippenberg T J, Koos C 2018 Science 359 887Google Scholar

    [2]

    张继涛, 吴学健, 李岩, 尉昊赟 2012 物理学报 61 100601Google Scholar

    Zhang J T, Wu X J, Li Y, Wei H Y 2012 Acta Phys. Sin. 61 100601Google Scholar

    [3]

    邢书剑, 张福民, 曹士英, 王高文, 曲兴华 2013 物理学报 62 170603Google Scholar

    Xing S J, Zhang F M, Cao S Y, Wang G W, Qu X H 2013 Acta Phys. Sin. 62 170603Google Scholar

    [4]

    吴学健, 李岩, 尉昊赟, 张继涛 2012 激光与光电子学进展 49 5

    Wu X J, Li Y, Wei H Y, Zhang J T 2012 Laser Optoelectron. Prog. 49 5

    [5]

    Eckstein J N, Ferguson A I, Hänsch T W 1978 Phys. Rev. Lett. 40 847Google Scholar

    [6]

    Minoshima K, Matsumoto H 2000 Appl. Opt. 39 5512Google Scholar

    [7]

    Minoshima K, Arai K, Inaba H 2011 Opt. Express 19 26095Google Scholar

    [8]

    刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华 2016 物理学报 65 020601Google Scholar

    Liu T Y, Zhang F M, Wu H Z, Li J S, Shi Y Q, Qu X H 2016 Acta Phys. Sin. 65 020601Google Scholar

    [9]

    Joo K N, Kim S W 2006 Opt. Express 14 5954Google Scholar

    [10]

    Joo K N, Kim Y, Kim S W 2008 Opt. Express 16 19799Google Scholar

    [11]

    周维虎, 石俊凯, 纪荣祎, 黎尧, 刘娅 2017 仪器仪表学报 38 1859Google Scholar

    Zhou W H, Shi J K, Ji R Y, Li Y, Liu Y 2017 J. Sci. Instrum. 38 1859Google Scholar

    [12]

    Yang R T, Florian P, Karl M H, Michael K, Tan J B, Harald B 2015 Meas. Sci. Technol. 26 084001Google Scholar

    [13]

    Cui M, Zeitouny M G, Bhattacharya N, van den Berg S A, Urbach H P 2011 Opt. Express 19 6549Google Scholar

    [14]

    Cui M, Zeitouny M G, Bhattacharya N, van den Berg S A, Urbach H P, Braat J J M 2009 Opt. Lett. 34 1982Google Scholar

    [15]

    安慰宁, 张福民, 吴翰钟, 曲兴华 2014 仪器仪表学报 35 2458

    An W N, Zhang F M, Wu H Z, Qu X H 2014 J. Sci. Instrum. 35 2458

    [16]

    吴翰钟, 曹士英, 张福民, 曲兴华 2015 物理学报 64 020601Google Scholar

    Wu H Z, Cao S Y, Zhang F M, Qu X H 2015 Acta Phys. Sin. 64 020601Google Scholar

    [17]

    Lee J, Kim Y J, Lee K, Lee S, Kim S W 2010 Nat. Photon. 4 716Google Scholar

    [18]

    Ye J 2004 Opt. Lett. 29 1153Google Scholar

    [19]

    李岩 2017 仪器仪表学报 38 1841Google Scholar

    Li Y 2017 J. Sci. Instrum. 38 1841Google Scholar

    [20]

    王国超, 颜树华, 杨俊, 林存宝, 杨东兴, 邹鹏飞 2013 物理学报 62 070601Google Scholar

    Wang G C, Yan S H, Yang J, Lin C B, Yang D X, Zou P F 2013 Acta Phys. Sin. 62 070601Google Scholar

    [21]

    朱敏昊, 吴学健, 尉昊赟, 张丽琼, 张继涛, 李岩 2013 物理学报 62 070702Google Scholar

    Zhu M H, Wu X J, Wei H Y, Zhang L Q, Zhang J T, Li Y 2013 Acta Phys. Sin. 62 070702Google Scholar

    [22]

    Lu Z Z, Wang W Q, Zhang W F, Liu M L, Wang L R, Chu S T, Little B E, Zhao J G, Xie P, Wang X Y, Zhao W 2018 Opt. Mater. Express 8 2662Google Scholar

  • [1] 赵瀚宇, 曹士英, 戴少阳, 杨涛, 左娅妮, 胡明列. 基于光谱增强技术实现对532 nm波长激光频率标定. 物理学报, 2024, 73(9): 094204. doi: 10.7498/aps.73.20240106
    [2] 张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼. 基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳. 物理学报, 2023, 72(1): 014207. doi: 10.7498/aps.72.20221709
    [3] 梁旭, 林嘉睿, 吴腾飞, 赵晖, 邾继贵. 重复频率倍增光频梳时域互相关绝对测距. 物理学报, 2022, 71(9): 090602. doi: 10.7498/aps.71.20212073
    [4] 丁永今, 曹士英, 林百科, 王强, 韩羿, 方占军. 基于电光晶体马赫-曾德干涉仪的载波包络偏移频率调节方法. 物理学报, 2022, 71(14): 144203. doi: 10.7498/aps.71.20220147
    [5] 邵晓东, 韩海年, 魏志义. 基于光学频率梳的超低噪声微波频率产生. 物理学报, 2021, 70(13): 134204. doi: 10.7498/aps.70.20201925
    [6] 徐昕阳, 赵海涵, 钱治文, 刘超, 翟京生, 吴翰钟. 动态啁啾脉冲干涉的快速绝对距离测量. 物理学报, 2021, 70(22): 220601. doi: 10.7498/aps.70.20202149
    [7] 郑立, 刘寒, 汪会波, 王阁阳, 蒋建旺, 韩海年, 朱江峰, 魏志义. 极紫外飞秒光学频率梳的产生与研究进展. 物理学报, 2020, 69(22): 224203. doi: 10.7498/aps.69.20200851
    [8] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [9] 谢田元, 王菊, 王子雄, 马闯, 于洋, 李天宇, 方杰, 于晋龙. 基于交替起振光电振荡器的大量程高精度绝对距离测量技术. 物理学报, 2019, 68(13): 130601. doi: 10.7498/aps.68.20190238
    [10] 彭博, 曲兴华, 张福民, 张天宇, 张铁犁, 刘晓旭, 谢阳. 飞秒脉冲非对称互相关绝对测距. 物理学报, 2018, 67(21): 210601. doi: 10.7498/aps.67.20181274
    [11] 武跃龙, 李睿, 芮扬, 姜海峰, 武海斌. 6Li原子跃迁频率和超精细分裂的精密测量. 物理学报, 2018, 67(16): 163201. doi: 10.7498/aps.67.20181021
    [12] 张伟鹏, 杨宏雷, 陈馨怡, 尉昊赟, 李岩. 光频链接的双光梳气体吸收光谱测量. 物理学报, 2018, 67(9): 090701. doi: 10.7498/aps.67.20180150
    [13] 张澍霖, 冯国英, 周寿桓. 基于空间域和频率域傅里叶变换F2的光纤模式成分分析. 物理学报, 2016, 65(15): 154202. doi: 10.7498/aps.65.154202
    [14] 廖磊, 易旺民, 杨再华, 吴冠豪. 基于合成波长法的飞秒激光外差干涉测距方法. 物理学报, 2016, 65(14): 140601. doi: 10.7498/aps.65.140601
    [15] 刘亭洋, 张福民, 吴翰钟, 李建双, 石永强, 曲兴华. 光学频率梳啁啾干涉实现绝对距离测量. 物理学报, 2016, 65(2): 020601. doi: 10.7498/aps.65.020601
    [16] 吴翰钟, 曹士英, 张福民, 曲兴华. 光学频率梳基于光谱干涉实现绝对距离测量. 物理学报, 2015, 64(2): 020601. doi: 10.7498/aps.64.020601
    [17] 吴翰钟, 曹士英, 张福民, 邢书剑, 曲兴华. 一种光学频率梳绝对测距的新方法. 物理学报, 2014, 63(10): 100601. doi: 10.7498/aps.63.100601
    [18] 王楠, 韩海年, 李德华, 魏志义. 光学频率梳空间光谱分辨精度研究. 物理学报, 2012, 61(18): 184201. doi: 10.7498/aps.61.184201
    [19] 朱江峰, 杜 强, 王向林, 滕 浩, 韩海年, 魏志义, 侯 洵. 飞秒钛宝石放大激光脉冲的载波包络相位测量与控制. 物理学报, 2008, 57(12): 7753-7757. doi: 10.7498/aps.57.7753
    [20] 韩海年, 张 炜, 王 鹏, 李德华, 魏志义, 沈乃澂, 聂玉昕, 高玉平, 张首刚, 李师群. 飞秒钛宝石光学频率梳的精密锁定. 物理学报, 2007, 56(5): 2760-2764. doi: 10.7498/aps.56.2760
计量
  • 文章访问数:  12365
  • PDF下载量:  230
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-29
  • 修回日期:  2019-07-07
  • 上网日期:  2019-10-01
  • 刊出日期:  2019-10-05

/

返回文章
返回