搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体谐振腔对二硫化钼的荧光增强效应

孟凡 胡劲华 王辉 邹戈胤 崔建功 赵乐

引用本文:
Citation:

等离子体谐振腔对二硫化钼的荧光增强效应

孟凡, 胡劲华, 王辉, 邹戈胤, 崔建功, 赵乐

Fluorescence enhancement of monolayer MoS2 in plasmonic resonator

Meng Fan, Hu Jin-Hua, Wang Hui, Zou Ge-Yin, Cui Jian-Gong, Zhao Yue
PDF
HTML
导出引用
  • 二硫化钼(MoS2)作为一种层状过渡金属硫族化合物, 是未来光子学与光电子学领域的重要组成材料. 本文设计实现了MoS2与谐振腔耦合系统, 将蝴蝶结型等离子体谐振腔的谐振模式与单层MoS2光致发光(PL)谱相耦合, 得到该条件下最佳PL强度增强效果. 通过理论模型与实验数据的分析, 利用珀塞尔效应对自发辐射速率进行控制, 得到了峰值为9.5倍、带宽为100 nm的宽带增强谱. 同时, 增强的PL强度随激发光和探测光的偏振角度满足余弦函数规律的依赖特性, 证明了谐振模式来自谐振腔中的电场偶极子. 该研究提供了在单层MoS2与等离子体谐振腔耦合结构中研究光与物质相互作用增强的可行性, 为今后基于MoS2光子学器件的发射与探测效率提升开辟出一条新途径.
    Molybdenum disulfide (MoS2), as a layered transition metal chalcogenide, plays an important role in fields of photonics and photoelectronics. Here, a coupled system consisting of monlayer MoS2 and nano-resonator is designed and implemented. The photoluminescence (PL) spectrum of the MoS2 is coupled with the resonant mode of plasmonic bowtie resonator, thus achieving an optimal PL enhancement condition. Based on the analysis of theoretical model and experimental data, the spontaneous emission rate can be controlled by the Purcell effect, and the broadband enhanced spectrum is obtained in which its peak value increases 9.5 times and bandwidth is 100 nm . Meanwhile, the enhanced PL intensity also satisfies the cosine function relation between the polarization angle of the exciting light and that of the detecting light, which proves that the resonance mode comes from the electric field dipole in the resonator. This study provides the feasibility of studying the enhancement of light-matter interaction in an MoS2-plasmonic resonator coupled structure, which opens up a new route to improving the emission and detection efficiency of MoS2-based photonic devices in future.
      通信作者: 孟凡, mengfan3426@126.com ; 赵乐, daisyvivi111@sina.com
    • 基金项目: 河北省优秀青年科学基金(批准号: F2018210100)、河北高等学校青年拔尖人才项目(批准号: BJ2018003)、河北省自然科学基金(批准号: F2017402068)和山西省自然科学基金(批准号: 201801D221198)资助的课题
      Corresponding author: Meng Fan, mengfan3426@126.com ; Zhao Yue, daisyvivi111@sina.com
    • Funds: Project supported by the Science Foundation for the Excellent Youth Scholars of Hebei Province, China (Grant No. F2018210100), the Top Young Talents in Hebei Colleges and Universities, China (Grant No. BJ2018003), the Natural Science Foundation of Hebei Province, China (Grant No. F2017402068), and the Natural Science Foundation of Shanxi Province, China (Grant No. 201801D221198)
    [1]

    Wang C C, Liu X S, Wang Z Y, Zhao M, He H, Zou J Y 2018 Chin. Phys. B 27 118106Google Scholar

    [2]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nature Nanotech. 7 699Google Scholar

    [3]

    Li X, He D W, Wang Y S, Hu Y, Zhao X, Fu C, Wu J Y 2018 Chin. Phys. B 27 056104Google Scholar

    [4]

    董海明 2013 物理学报 62 206101Google Scholar

    Dong H M 2013 Acta Phys. Sin. 62 206101Google Scholar

    [5]

    Huang X, Zeng Z, Zhang H 2013 Chem. Soc. Rev. 42 1934Google Scholar

    [6]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nature Chem. 5 263Google Scholar

    [7]

    顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩霞 2016 物理学报 65 018102Google Scholar

    Gu P C, Zhang K L, Feng Y L, Wang F, Miao Y P, Han Y M, Zhang H X 2016 Acta Phys. Sin. 65 018102Google Scholar

    [8]

    魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 物理学报 63 217802Google Scholar

    Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Chi Y 2014 Acta Phys. Sin. 63 217802Google Scholar

    [9]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [10]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [11]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nature Nanotech. 8 497Google Scholar

    [12]

    Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P, Steiner M 2013 Nano Lett. 13 1416Google Scholar

    [13]

    Wang K P, Wang J, Fan J T, Lotya M, O’Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 ACS Nano 7 9260Google Scholar

    [14]

    Emmanuel F, Samuel G 2008 J. Phys. D: Appl. Phys. 41 013001Google Scholar

    [15]

    Gan X T, Gao Y D, Mak K F, Yao X W, Shiue R J, Zande A, Trusheim M, Hatami F, Heinz T, Hone J, Englund D 2013 Appl. Phys. Lett. 103 181119Google Scholar

    [16]

    Wu S F, Buckley S, Jones A M, Ross J S, Ghimire N J, Yan J Q, Mandrus D G, Yao W, Hatami F, Vuckovic J, Majumdar A, Xu X D 2014 2D Mater. 1 011001

    [17]

    Kinkhabwala A, Yu Z F, Fan S H, Avlasevich Y, Mullen K, Moerner W E 2009 Nature Photon. 3 654Google Scholar

    [18]

    Guo R, Kinzel E C, Li Y, Uppuluri S M, Raman A, Xu X F 2010 Opt. Express 18 4961Google Scholar

    [19]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar

    [20]

    Lu G W, Li W Q, Zhang T Y, Yue S, Liu J, Hou L, Li Z, Gong Q H 2012 ACS Nano 6 1438Google Scholar

  • 图 1  MoS2与谐振腔耦合系统(样品)的(a)结构示意图, (b)扫描电子显微镜(SEM)图像和(c)光学图像

    Fig. 1.  The MoS2-cavity coupled system’s (a) structural diagram, (b) scanning electron microscope image, and (c) optical image.

    图 2  (a)研究单层MoS2 PL增强效应的共焦显微系统装置图; (b) EMCCD得到的样品远场PL强度扫描图

    Fig. 2.  (a) The con-focal microscope setup of measuring PL enhancement of monolayer MoS2; (b) the sample's far-field PL intensity image of EMCCD.

    图 3  MoS2辐射光偏振与谐振腔长轴方向在不同夹角 (a) Φ = 0° 和(b) Φ = 90°下得到的PL增强扫描图

    Fig. 3.  The APD scanning images of MoS2 PL enhancement when the angles between the excitation light and resonator’s long-axis are (a) Φ = 0° and (b) Φ = 90°.

    图 4  不同激发光(探测光)偏振角度下, 探测光(激发光)的光子数变化规律曲线 (a) Φex(co) = 0°; (b) Φex(co) = 90°

    Fig. 4.  The photon counts of APD at different angle combinations of the excitation and detection lights: (a) Φex(co) = 0°; (b) Φex(co) = 90°.

    图 5  (a)单层MoS2在不同情形下的PL谱线; (b)等离子体谐振腔的传输谱; (c)实验中得到的最大PL增强倍数曲线

    Fig. 5.  (a) The PL spectra of monolayer MoS2 in different cases; (b) the transmission spectrum of the plasmonic resonator; (c) the PL enhancement of the MoS2-cavity coupled system.

  • [1]

    Wang C C, Liu X S, Wang Z Y, Zhao M, He H, Zou J Y 2018 Chin. Phys. B 27 118106Google Scholar

    [2]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nature Nanotech. 7 699Google Scholar

    [3]

    Li X, He D W, Wang Y S, Hu Y, Zhao X, Fu C, Wu J Y 2018 Chin. Phys. B 27 056104Google Scholar

    [4]

    董海明 2013 物理学报 62 206101Google Scholar

    Dong H M 2013 Acta Phys. Sin. 62 206101Google Scholar

    [5]

    Huang X, Zeng Z, Zhang H 2013 Chem. Soc. Rev. 42 1934Google Scholar

    [6]

    Chhowalla M, Shin H S, Eda G, Li L J, Loh K P, Zhang H 2013 Nature Chem. 5 263Google Scholar

    [7]

    顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩霞 2016 物理学报 65 018102Google Scholar

    Gu P C, Zhang K L, Feng Y L, Wang F, Miao Y P, Han Y M, Zhang H X 2016 Acta Phys. Sin. 65 018102Google Scholar

    [8]

    魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅 2014 物理学报 63 217802Google Scholar

    Wei X X, Cheng Y, Huo D, Zhang Y H, Wang J Z, Hu Y, Chi Y 2014 Acta Phys. Sin. 63 217802Google Scholar

    [9]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [10]

    Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [11]

    Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A 2013 Nature Nanotech. 8 497Google Scholar

    [12]

    Sundaram R S, Engel M, Lombardo A, Krupke R, Ferrari A C, Avouris P, Steiner M 2013 Nano Lett. 13 1416Google Scholar

    [13]

    Wang K P, Wang J, Fan J T, Lotya M, O’Neill A, Fox D, Feng Y Y, Zhang X Y, Jiang B X, Zhao Q Z, Zhang H Z, Coleman J N, Zhang L, Blau W J 2013 ACS Nano 7 9260Google Scholar

    [14]

    Emmanuel F, Samuel G 2008 J. Phys. D: Appl. Phys. 41 013001Google Scholar

    [15]

    Gan X T, Gao Y D, Mak K F, Yao X W, Shiue R J, Zande A, Trusheim M, Hatami F, Heinz T, Hone J, Englund D 2013 Appl. Phys. Lett. 103 181119Google Scholar

    [16]

    Wu S F, Buckley S, Jones A M, Ross J S, Ghimire N J, Yan J Q, Mandrus D G, Yao W, Hatami F, Vuckovic J, Majumdar A, Xu X D 2014 2D Mater. 1 011001

    [17]

    Kinkhabwala A, Yu Z F, Fan S H, Avlasevich Y, Mullen K, Moerner W E 2009 Nature Photon. 3 654Google Scholar

    [18]

    Guo R, Kinzel E C, Li Y, Uppuluri S M, Raman A, Xu X F 2010 Opt. Express 18 4961Google Scholar

    [19]

    Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J B, Sinclair R, Wu J Q 2014 Nano Lett. 14 3185Google Scholar

    [20]

    Lu G W, Li W Q, Zhang T Y, Yue S, Liu J, Hou L, Li Z, Gong Q H 2012 ACS Nano 6 1438Google Scholar

  • [1] 吴帆帆, 季怡汝, 杨威, 张广宇. 二硫化钼的电子能带结构和低温输运实验进展. 物理学报, 2022, 71(12): 127306. doi: 10.7498/aps.71.20220015
    [2] 黄鑫梅, 何晓莉, 徐强, 陈平, 张勇, 高春红. 基于离子化合物的高性能钙钛矿发光二极管. 物理学报, 2022, 71(20): 208502. doi: 10.7498/aps.71.20220858
    [3] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [4] 蒋黎英, 易颖婷, 易早, 杨华, 李治友, 苏炬, 周自刚, 陈喜芳, 易有根. 基于单层二硫化钼的高品质因子、高品质因数的四波段完美吸收器. 物理学报, 2021, 70(12): 128101. doi: 10.7498/aps.70.20202163
    [5] 刘凯龙, 彭冬生. 拉伸应变对单层二硫化钼光电特性的影响. 物理学报, 2021, 70(21): 217101. doi: 10.7498/aps.70.20210816
    [6] 李香草, 刘宝安, 李猛, 闫春燕, 任杰, 刘畅, 巨新. 用光致发光研究不同通量辐照磷酸二氢钾晶体的缺陷. 物理学报, 2020, 69(17): 174208. doi: 10.7498/aps.69.20200482
    [7] 张新成, 廖文虎, 左敏. 非共振圆偏振光作用下单层二硫化钼电子结构及其自旋/谷输运性质. 物理学报, 2018, 67(10): 107101. doi: 10.7498/aps.67.20180213
    [8] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [9] 危阳, 马新国, 祝林, 贺华, 黄楚云. 二硫化钼/石墨烯异质结的界面结合作用及其对带边电位影响的理论研究. 物理学报, 2017, 66(8): 087101. doi: 10.7498/aps.66.087101
    [10] 张理勇, 方粮, 彭向阳. 单层二硫化钼多相性质及相变的第一性原理研究. 物理学报, 2016, 65(12): 127101. doi: 10.7498/aps.65.127101
    [11] 李明林, 万亚玲, 胡建玥, 王卫东. 单层二硫化钼力学性能温度和手性效应的分子动力学模拟. 物理学报, 2016, 65(17): 176201. doi: 10.7498/aps.65.176201
    [12] 傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培. 水热法合成纳米花状二硫化钼及其微观结构表征. 物理学报, 2015, 64(1): 016102. doi: 10.7498/aps.64.016102
    [13] 张理勇, 方粮, 彭向阳. 金衬底调控单层二硫化钼电子性能的第一性原理研究. 物理学报, 2015, 64(18): 187101. doi: 10.7498/aps.64.187101
    [14] 魏晓旭, 程英, 霍达, 张宇涵, 王军转, 胡勇, 施毅. Au的金属颗粒对二硫化钼发光增强. 物理学报, 2014, 63(21): 217802. doi: 10.7498/aps.63.217802
    [15] 董海明. 低温下二硫化钼电子迁移率研究. 物理学报, 2013, 62(20): 206101. doi: 10.7498/aps.62.206101
    [16] 吴木生, 徐波, 刘刚, 欧阳楚英. 应变对单层二硫化钼能带影响的第一性原理研究. 物理学报, 2012, 61(22): 227102. doi: 10.7498/aps.61.227102
    [17] 刘春明, 方丽梅, 祖小涛. 钴掺杂二氧化锡纳米粉的光致发光和磁学性质. 物理学报, 2009, 58(2): 936-940. doi: 10.7498/aps.58.936
    [18] 缪竞威, 王培禄, 朱洲森, 袁学东, 王 虎, 杨朝文, 师勉恭, 缪 蕾, 孙威立, 张 静, 廖雪花. 氮团簇离子注入单晶硅的光致发光谱研究. 物理学报, 2008, 57(4): 2174-2178. doi: 10.7498/aps.57.2174
    [19] 马忠元, 黄信凡, 朱 达, 李 伟, 陈坤基, 冯 端. 原位等离子体逐层氧化a-Si:H/SiO2多层膜的光致发光研究. 物理学报, 2004, 53(8): 2746-2750. doi: 10.7498/aps.53.2746
    [20] 邵 军. Ti掺杂ZnTe体材料的优化光致发光光谱. 物理学报, 2003, 52(7): 1743-1747. doi: 10.7498/aps.52.1743
计量
  • 文章访问数:  9799
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-21
  • 修回日期:  2019-09-18
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-05

/

返回文章
返回