搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

蒸发冷凝法制备超细CeB6和SmB6纳米粉末及可见光穿透特性

程大伟 包黎红 张红艳 潘晓剑 那仁格日乐 赵凤岐 特古斯 朝洛濛

引用本文:
Citation:

蒸发冷凝法制备超细CeB6和SmB6纳米粉末及可见光穿透特性

程大伟, 包黎红, 张红艳, 潘晓剑, 那仁格日乐, 赵凤岐, 特古斯, 朝洛濛

Nanocrystalline CeB6 and SmB6 powder prepared by evaporative condensation method and their visible light transparency

Cheng Da-Wei, Bao Li-Hong, Zhang Hong-Yan, Pan Xiao-Jian, Zhao Feng-Qi, O. Tegus, Chao Luo-Meng
PDF
HTML
导出引用
  • 采用蒸发冷凝法成功制备出了纳米稀土六硼化物CeB6和SmB6超细粉末. 对所制备粉末物相、晶粒形貌、微观结构及光吸收性能进行了系统研究. 结果表明, 纳米CeB6和SmB6粉末主相为CaB6-型立方晶体结构, 球型形貌, 平均晶粒尺度为50 nm. 高分辨透射电镜观察结果表明, 在冷凝(结晶)过程中由于稀土元素Sm具有易挥发特性导致纳米SmB6结晶过程中存在大量的晶体缺陷. 光吸收结果表明, 纳米CeB6透射光波长为599 nm, 纳米SmB6透射光波长为632 nm, 均表现出了可见光穿透的特点. 为进一步定性解释光吸收机理, 采用第一性原理计算了能带、态密度及等离子共振频率能量.
    In the present work, the nanocrystalline CeB6 and SmB6 powder are successfully prepared by evaporative condensation method. The phase composition, grain morphology, microstructure and optical absorption properties for each of the prepared powders are studied systematically. The results show that the main phase of nanocrystalline CeB6 powder and SmB6 powder are both composed of CaB6-type cubic structure with space group of Pm-3m. The scanning electron microscope results show that the synthesized CeB6 and SmB6 nanoparticles display an spherical morphology with an average grain size of 50 nm. The high resolution transmission electron microscopy observation results show that there exist many intrinsic crystal defects in nanocrystalline SmB6, such as lattice distortions or edge dislocations, due to the high volatility characteristic of Sm atom in the condensation (crystallization) process. The optical absorption results show that the absorption valley of nanocrystalline CeB6 and SmB6 are respectively located at 599 nm and 632 nm, indicating the high transparency characteristic of visible light. To further qualitatively explain the difference in optical absorption mechanism between CeB6 and SmB6, the first principle calculations are employed to calculate their band structures, densities of states, optical absorption energy, and plasma resonance frequency energy. The calculation results show that there is an electron band crossing the Fermi energy for both CeB6 and SmB6, indicating their typical conductor behaviors. The upmost valence band of CeB6 and SmB6 are composed of B-2p and B-2s states, and their bottommost conduction bands are mainly composed of Ce-4f, Ce-5d, Sm-4f, Sm-5d, B-2p and B-2s states. In addition, the volume plasma of carrier electrons can be described in the electron energy-loss function. The peak position in the low energy region of the loss function corresponds to the relevant plasma frequency. As a result, the calculated low energy loss function of CeB6 and SmB6 are 1.96 eV and 1.5 eV, respectively. Moreover, the calculated absorption valley of CeB6 and SmB6 respectively appear at 639 nm and 800 nm, which are in good accordance with the experimental results. Therefore, as an efficient optical absorption materials, the nanocrystalline CeB6 and SmB6 should open the way to extending the optical applications of rare-earth hexaborides.
      通信作者: 包黎红, baolihong@imnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51662034和21663018)和内蒙古师范大学研究生科研创新基金(批准号: CXJJS19113)资助的课题
      Corresponding author: Bao Li-Hong, baolihong@imnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51662034, 21663018) and the Inner Mongolia Normal University Graduate Reaserch Innovation Fund (Grnt No. CXJJS19113)
    [1]

    Bao L H, Chao L M, Wei W, Tegus O 2014 Mater. Lett. 139 187

    [2]

    包黎红, 那仁格日乐, 特古斯, 张忻, 张久兴 2013 物理学报 62 196105Google Scholar

    Bao L H, Narengerile, Tegus O, Zhang X, Zhang J X 2013 Acta Phys. Sin. 62 196105Google Scholar

    [3]

    刘洪亮, 张忻, 王杨, 肖怡新, 张久兴 2018 物理学报 67 048101Google Scholar

    Liu H L, Zhang X, Wang Y, Xiao Y X, Zhang J X 2018 Acta Phys. Sin. 67 048101Google Scholar

    [4]

    王杨, 张忻, 张久兴, 刘洪亮, 江浩, 李录录 2016 无机化学学报 31 797

    Wang Y, Zhang X, Zhang J X, Liu H L, Jiang H, Li L L 2016 J. Inorg. Mater. 31 797

    [5]

    包黎红, 张久兴, 周身林, 张宁 2011 物理学报 60 106501Google Scholar

    Bao L H, Zhang J X, Zhou S L, Zhang N 2011 Acta Phys. Sin. 60 106501Google Scholar

    [6]

    包黎红, 朝洛蒙, 伟伟, 特古斯 2015 物理学报 64 096104Google Scholar

    Bao L H, Chao L M, Wei W, Tegus O 2015 Acta Phys. Sin. 64 096104Google Scholar

    [7]

    韩伟 2017 博士学位论文 (广州: 华南理工大学)

    Han W 2017 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)

    [8]

    吴锦雷, 刘盛 2003 贵金属 24 1Google Scholar

    Wu J L, Liu S 2003 Precious Metals 24 1Google Scholar

    [9]

    周爱秋, 许效红, 姚伟峰, 曾凡亮, 宋邦强 2004 化学物理学报 3 305Google Scholar

    Zhou A Q, Xu X H, Yao W F, Zeng F L, Song B Q 2004 Chin. J. Chem. Phys. 3 305Google Scholar

    [10]

    Chao L M, Bao L H, Shi J J, Wei W, Tegus O, Zhang Z D 2015 J. Alloys Compd. 622 618Google Scholar

    [11]

    Chen M C, Lin Z W, Ling M H 2016 ACS Nano 10 93Google Scholar

    [12]

    Bai L, Ma N, Liu F L 2009 Physica B 404 4086Google Scholar

    [13]

    Kim S S, Na S I, Jo J, Kim D Y, Nah Y C 2008 Appl. Phys. Lett. 93 073307Google Scholar

    [14]

    Nedyalkov N N, Nakajima Y, Takami A, Koleva M, Karashanova D, Terakawa M 2016 Opt. Laser Technol. 79 179Google Scholar

    [15]

    Takeda H, Kuno H, Adachi K 2008 J. Am. Ceram. Soc. 91 2897Google Scholar

    [16]

    Sato Y, Terauchi M, Mukai M, Kaneyama T, Adachi K 2011 Ultramicroscopy 111 1381Google Scholar

    [17]

    肖立华, 苏玉长, 刘仪柯, 冉景榆, 杨涛, 彭平 2017 功能材料信息 3 19

    Xiao L H, Su Y C, Liu Y K, Ran J Y, Yang T, Peng P 2017 Func. Mate. Info. 3 19

    [18]

    Zeng X S, Ye Y X, Zou S L, Gou Q D, Wen Y F, Ou P 2017 Crystals 7 320Google Scholar

    [19]

    Kimura S, Nanba T, Kunii S, Suzuki T, Kasuya T 1990 Solid State Commun. 75 717Google Scholar

    [20]

    包黎红, 陶如玉, 特古斯, 黄颖楷, 冷华倩, Anne de Visser 2017 物理学报 66 186102Google Scholar

    Bao L H, Tao R Y, Tegus O, Huang Y K, Leng H Q, Anne de Visser 2017 Acta Phys. Sin. 66 186102Google Scholar

  • 图 1  (a) 蒸发冷凝实验示意图; (b)形成稳定熔区照片

    Fig. 1.  (a) Sketch of evaporation-condensation method; (b) photo of stable molten zone.

    图 2  (a)和(b)原料CeB6和SmB6粗粉的FESEM照片; (c)和(d)蒸发冷凝法制备的纳米CeB6和SmB6的FESEM照片; (e)和(f)为纳米CeB6和SmB6的XRD图谱

    Fig. 2.  (a), (b) FESEM image of precursor powder CeB6 and SmB6; (c), (d) FESEM image of CeB6 and SmB6 nanocrystals prepared by evaporation condensation; (e), (f) XRD spectra of CeB6 and SmB6 nanocrystals prepared by evaporation condensation.

    图 3  (a) 纳米CeB6的TEM照片; 单颗粒纳米CeB6的(b) HRTEM照片、(c) 快速傅里叶变换照片、(d) HAADF-STEM分析, 以及相应(e), (f) Ce和B的元素分布照片

    Fig. 3.  (a) TEM image of nanocrystalline CeB6; (b) HRTEM image, (c) fast Fourier transform pattern, (d) HAADF-STEM, and (e), (f) elemental distribution of Ce and B for single particle of nanocrystalline CeB6.

    图 4  (a), (c) 纳米CeB6和SmB6的HRTEM照片; (b), (d) 反快速傅里叶照片

    Fig. 4.  (a), (c) HRTEM images of nanocrystalline CeB6 and SmB6; (b), (d) inverse fast Fourier transform image of nanocrystalline CeB6 and SmB6.

    图 5  纳米CeB6和SmB6光吸收图谱

    Fig. 5.  Optical absorption spectra of nanocrystalline CeB6 and SmB6.

    图 6  第一性原理计算能带结构图 (a) CeB6; (b) SmB6

    Fig. 6.  First-principle calculation results of band structure: (a) CeB6; (b) SmB6.

    图 7  第一性原理计算态密度曲线 (a) CeB6; (b) SmB6

    Fig. 7.  First-principle calculation results of total density of states (TDOS) and partial density of states (PDOS) curves: (a) CeB6; (b) SmB6.

    图 8  (a) CeB6和(b) SmB6的能量损失函数曲线

    Fig. 8.  Energy loss function curves of (a) CeB6 and (b) SmB6.

    图 9  第一性原理计算光吸收曲线 (a) CeB6; (b) SmB6

    Fig. 9.  First principle calculation results of optical absorption curves: (a) CeB6; (b) SmB6.

  • [1]

    Bao L H, Chao L M, Wei W, Tegus O 2014 Mater. Lett. 139 187

    [2]

    包黎红, 那仁格日乐, 特古斯, 张忻, 张久兴 2013 物理学报 62 196105Google Scholar

    Bao L H, Narengerile, Tegus O, Zhang X, Zhang J X 2013 Acta Phys. Sin. 62 196105Google Scholar

    [3]

    刘洪亮, 张忻, 王杨, 肖怡新, 张久兴 2018 物理学报 67 048101Google Scholar

    Liu H L, Zhang X, Wang Y, Xiao Y X, Zhang J X 2018 Acta Phys. Sin. 67 048101Google Scholar

    [4]

    王杨, 张忻, 张久兴, 刘洪亮, 江浩, 李录录 2016 无机化学学报 31 797

    Wang Y, Zhang X, Zhang J X, Liu H L, Jiang H, Li L L 2016 J. Inorg. Mater. 31 797

    [5]

    包黎红, 张久兴, 周身林, 张宁 2011 物理学报 60 106501Google Scholar

    Bao L H, Zhang J X, Zhou S L, Zhang N 2011 Acta Phys. Sin. 60 106501Google Scholar

    [6]

    包黎红, 朝洛蒙, 伟伟, 特古斯 2015 物理学报 64 096104Google Scholar

    Bao L H, Chao L M, Wei W, Tegus O 2015 Acta Phys. Sin. 64 096104Google Scholar

    [7]

    韩伟 2017 博士学位论文 (广州: 华南理工大学)

    Han W 2017 Ph. D. Dissertation (Guangzhou: South China University of Technology) (in Chinese)

    [8]

    吴锦雷, 刘盛 2003 贵金属 24 1Google Scholar

    Wu J L, Liu S 2003 Precious Metals 24 1Google Scholar

    [9]

    周爱秋, 许效红, 姚伟峰, 曾凡亮, 宋邦强 2004 化学物理学报 3 305Google Scholar

    Zhou A Q, Xu X H, Yao W F, Zeng F L, Song B Q 2004 Chin. J. Chem. Phys. 3 305Google Scholar

    [10]

    Chao L M, Bao L H, Shi J J, Wei W, Tegus O, Zhang Z D 2015 J. Alloys Compd. 622 618Google Scholar

    [11]

    Chen M C, Lin Z W, Ling M H 2016 ACS Nano 10 93Google Scholar

    [12]

    Bai L, Ma N, Liu F L 2009 Physica B 404 4086Google Scholar

    [13]

    Kim S S, Na S I, Jo J, Kim D Y, Nah Y C 2008 Appl. Phys. Lett. 93 073307Google Scholar

    [14]

    Nedyalkov N N, Nakajima Y, Takami A, Koleva M, Karashanova D, Terakawa M 2016 Opt. Laser Technol. 79 179Google Scholar

    [15]

    Takeda H, Kuno H, Adachi K 2008 J. Am. Ceram. Soc. 91 2897Google Scholar

    [16]

    Sato Y, Terauchi M, Mukai M, Kaneyama T, Adachi K 2011 Ultramicroscopy 111 1381Google Scholar

    [17]

    肖立华, 苏玉长, 刘仪柯, 冉景榆, 杨涛, 彭平 2017 功能材料信息 3 19

    Xiao L H, Su Y C, Liu Y K, Ran J Y, Yang T, Peng P 2017 Func. Mate. Info. 3 19

    [18]

    Zeng X S, Ye Y X, Zou S L, Gou Q D, Wen Y F, Ou P 2017 Crystals 7 320Google Scholar

    [19]

    Kimura S, Nanba T, Kunii S, Suzuki T, Kasuya T 1990 Solid State Commun. 75 717Google Scholar

    [20]

    包黎红, 陶如玉, 特古斯, 黄颖楷, 冷华倩, Anne de Visser 2017 物理学报 66 186102Google Scholar

    Bao L H, Tao R Y, Tegus O, Huang Y K, Leng H Q, Anne de Visser 2017 Acta Phys. Sin. 66 186102Google Scholar

  • [1] 魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. 低维纳米材料热电性能测试方法研究. 物理学报, 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [2] 石文奇, 田宏, 陆玉新, 朱虹, 李芬, 王小霞, 刘燕文. 金属卤化物钙钛矿纳米光电材料的研究进展. 物理学报, 2021, 70(8): 087303. doi: 10.7498/aps.70.20201842
    [3] 张红艳, 包黎红, 潮洛蒙, 赵凤岐, 刘子忠. 多功能多元稀土六硼化物La1–x Srx B6光吸收及热电子发射机理. 物理学报, 2021, 70(21): 214204. doi: 10.7498/aps.70.20211069
    [4] 潘晓剑, 包黎红, 宁军, 赵凤岐, 朝洛蒙, 刘子忠. 多元纳米稀土六硼化物Nd1–xEuxB6粉末的制备及光吸收研究. 物理学报, 2021, 70(3): 036101. doi: 10.7498/aps.70.20201288
    [5] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [6] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [7] 李超, 姚湲, 杨阳, 沈希, 高滨, 霍宗亮, 康晋锋, 刘明, 禹日成. 纳米材料及HfO2基存储器件的原位电子显微学研究. 物理学报, 2018, 67(12): 126802. doi: 10.7498/aps.67.20180731
    [8]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质. 物理学报, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [9] 任超, 李秀燕, 落全伟, 刘瑞萍, 杨致, 徐利春. 空位缺陷对-AgVO3电子结构和光吸收性能的影响. 物理学报, 2017, 66(15): 157101. doi: 10.7498/aps.66.157101
    [10] 薛斌, 王洪阳, 秦猛, 曹毅, 王炜. 基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台. 物理学报, 2015, 64(9): 098702. doi: 10.7498/aps.64.098702
    [11] 包黎红, 朝洛蒙, 伟伟, 特古斯. 稀土硼化物LaxCe1-xB6亚微米粉的制备及光吸收研究. 物理学报, 2015, 64(9): 096104. doi: 10.7498/aps.64.096104
    [12] 冯秋菊, 许瑞卓, 郭慧颖, 徐坤, 李荣, 陶鹏程, 梁红伟, 刘佳媛, 梅艺赢. 衬底位置对化学气相沉积法制备的磷掺杂p型ZnO纳米材料形貌和特性的影响. 物理学报, 2014, 63(16): 168101. doi: 10.7498/aps.63.168101
    [13] 蒲年年, 李海蓉, 谢龙珍. NiOx作为空穴传输层对有机太阳能电池光吸收的影响. 物理学报, 2014, 63(6): 067201. doi: 10.7498/aps.63.067201
    [14] 包黎红, 那仁格日乐, 特古斯, 张忻, 张久兴. 放电等离子烧结原位合成LaxCe1-xB6化合物及性能研究. 物理学报, 2013, 62(19): 196105. doi: 10.7498/aps.62.196105
    [15] 李晓娜, 张忻, 张久兴, 包黎红, 张宁, 张繁星. Pr1-xCexB6 阴极材料的原位反应合成及性能研究. 物理学报, 2012, 61(22): 228104. doi: 10.7498/aps.61.228104
    [16] 杨 光, 陈正豪. 脉冲激光沉积Ag:BaTiO3纳米复合薄膜及其光学特性. 物理学报, 2006, 55(8): 4342-4346. doi: 10.7498/aps.55.4342
    [17] 崔永锋, 袁志好. 表面修饰的二氧化钛纳米材料的结构相变和光吸收性质. 物理学报, 2006, 55(10): 5172-5177. doi: 10.7498/aps.55.5172
    [18] 秦 华, 傅汝廉, 郜洪云, 刘 娟, 史心刚. 三能级固体激光介质对抽运光吸收的理论研究. 物理学报, 2005, 54(4): 1587-1592. doi: 10.7498/aps.54.1587
    [19] 刘晃清, 王玲玲, 秦伟平. 二氧化锆纳米材料中Eu3+的发光特性. 物理学报, 2004, 53(1): 282-285. doi: 10.7498/aps.53.282
    [20] 王银海, 牟季美, 蔡维理, 许彦旗. 纳米Cu/Al2O3组装体模板合成与光吸收. 物理学报, 2001, 50(9): 1751-1755. doi: 10.7498/aps.50.1751
计量
  • 文章访问数:  7994
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-30
  • 修回日期:  2019-10-07
  • 上网日期:  2019-11-27
  • 刊出日期:  2019-12-01

/

返回文章
返回