搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

层状材料褶皱对几种地质活动机理研究的启示

许宏 苑争一 黄彤飞 王啸 陈正先 韦进 张翔 黄元

引用本文:
Citation:

层状材料褶皱对几种地质活动机理研究的启示

许宏, 苑争一, 黄彤飞, 王啸, 陈正先, 韦进, 张翔, 黄元

Inspiration of wrinkles in layered material for the mechanism study of several geological activities

Xu Hong, Yuan Zheng-Yi, Huang Tong-Fei, Wang Xiao, Chen Zheng-Xian, Wei Jin, Zhang Xiang, Huang Yuan
PDF
HTML
导出引用
  • 从制备层状材料褶皱得到启示, 给出了地球地质活动的一些可能的机理性解释. 层状晶体的褶皱可以通过在柔性基底上施加的单轴或双轴应力实现, 这与地球的层状结构及地球表面的山体褶皱形成机理有许多相似之处. 由于地球质量分布不均匀且存在自转, 因此各个板块的转动惯量是不一样的, 本文指出南北半球之间存在自转角速度差异, 对赤道附近的地形地貌及地质活动可能产生重要影响. 本文给出了地震、火山以及大陆漂移等地质活动新的机理解释. 针对中国特殊的地形地貌, 提出了物质流假说并详细论述了物质流的流动趋势, 指出中国大陆地质活动和板块交界处的地质活动的机理存在明显差别. 物质流假说可以较好地解释中国的地震灾害、矿藏资源分布及中东地区石油丰富的可能成因, 为中国未来预测地震灾害及矿藏资源开发提供了新的理论参考. 该工作为人类更好地避免自然灾害、理解地球上的自然现象及合理利用自然资源提供了新的启示.
    In this work, we propose a universal method of preparing wrinkle structures in layered crystals, which provides a good model for studying the physical properties of layered materials under strain. More importantly, there are some similarities between wrinkle engineering and geological activities, which inspires us to give some possible explanations to the mechanism for geological activities like earthquake and volcanic. The wrinkle structures of layered crystals can be achieved by exerting uniaxial or biaxial stress on the flexible substrate, which is very similar to the layered structure of the Earth and the formation of mountain folds on the Earth's surface. Since the Earth has an uneven mass distribution and self-rotation as well, the moments of inertia for plates are different from each other. Here in this work, we point out that there is a difference in angular velocity between the north hemisphere and south hemisphere, which may strongly influence the topography and geology activities near the equator. This work provides a possible mechanism explanation for several geological phenomena such as earthquakes, volcanoes, and continental drift. Based on China's special topography, we propose a matter flow hypothesis and discuss the orientation of matter flow in detail. We point out that the geological activity mechanism in China and the regions around plate boundaries is quite different. The matter flow hypothesis can be well applied to explain the causes of earthquake disasters in China, the distribution of mineral resources, and the possible causes of oil in the Middle East countries. Besides, it also provides a new theoretical guidance for predicting the earthquake disasters and prospecting the mineral resources in China. This work provides a new idea for humans to avoid natural disasters, to understand the natural phenomena on the Earth, and to make rational use of natural resources.
      通信作者: 张翔, zhangxiang@bit.edu.cn ; 黄元, yhuang01@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11874405)、国家重点研发计划(批准号: 2019YFA0308000, 2018YFE0109700)和中国科学院青年创新促进会(批准号: 2019007)资助的课题
      Corresponding author: Zhang Xiang, zhangxiang@bit.edu.cn ; Huang Yuan, yhuang01@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11874405), the National Key Research and Development Program of China (Grant Nos. 2019YFA0308000, 2018YFE0109700), and the Youth Innovation Promotion Association of Chinese Academy of Sciences, China (Grant No. 2019007)
    [1]

    Boddeti N G, Liu X, Long R, Xiao J, Bunch J S, Dunn M L 2013 Nano Lett. 13 6216Google Scholar

    [2]

    Feng J, Qian X F, Huang C W, Li J 2012 Nat. Photonics 6 865

    [3]

    Huang Y, Wang X, Zhang X, et al. 2018 Phys. Rev. Lett. 120 186104Google Scholar

    [4]

    Kim S, Ryu S 2016 Carbon 100 283Google Scholar

    [5]

    Bao Z, Miao F, Chen Z, Zhang H, Jang W Y, Dames C, Lau C N 2009 Nat. Nanotechnology 4 562Google Scholar

    [6]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30Google Scholar

    [7]

    Luo S W, Hao G L, Fan Y P, Kou L Z, He C Y, Qi X, Tang C, Li J, Huang K, Zhong J X 2015 Nanotechnology 26 105705Google Scholar

    [8]

    Huang Y, Sutter E, Shi N N, Zheng J B, Yang T Z, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612Google Scholar

    [9]

    许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元 2018 物理学报 67 218201Google Scholar

    Xu H, Meng L, Li Y, Yang T Z, Bao L H, Liu G D, Zhao L, Liu T Y, Xing J, Gao H J, Zhou X J, Huang Y 2018 Acta Phys. Sin. 67 218201Google Scholar

    [10]

    Castellanos-Gomez A, Roldan R, Cappelluti E, Buscema M, Guinea F, van der Zant H S J, Steele G A 2013 Nano Lett. 13 5361Google Scholar

    [11]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301Google Scholar

    [12]

    Wang Y, Yang R, Shi Z W, Zhang L C, Shi D X, Wang E G, Zhang Y Z 2011 ACS Nano 5 3645Google Scholar

    [13]

    Meng L, Li Y, Liu T S, Zhu C Y, Li Q Y, Chen X J, Zhang S, Zhang X, Bao L H, Huang Y, Xu F, Ruoff R S 2020 Carbon 156 24Google Scholar

    [14]

    陆坤权, 曹则贤, 厚美瑛, 姜泽辉, 沈容, 王强, 孙刚, 刘寄星 2014 物理学报 63 219101Google Scholar

    Lu K Q, Cao Z X, Hou M Y, Jiang Z H, Shen R, Wang Q, Sun G, Liu J X 2014 Acta Phys. Sin. 63 219101Google Scholar

    [15]

    陆坤权, 厚美瑛, 姜泽辉, 王强, 孙刚, 刘寄星 2012 物理学报 61 119103Google Scholar

    Lu K Q, Hou M Y, Jiang Z H, Wang Q, Sun G, Liu J X 2012 Acta Phys. Sin. 61 119103Google Scholar

    [16]

    Scholz C H 1996 Nature 381 556Google Scholar

    [17]

    李四光 1973 中国科学 4 400

    Li S G 1973 Scientia Sinica 4 400

    [18]

    Clark M K, Royden L H 2000 Geology 28 703Google Scholar

    [19]

    Royden L H, Burchfiel B C, King R W, Wang E, Chen Z L, Shen F, Liu Y P 1997 Science 276 788Google Scholar

    [20]

    Hand E 2018 Science 359 16Google Scholar

    [21]

    Webster C R, Mahaffy P R, Atreya S K, et al. 2018 Science 360 1093Google Scholar

    [22]

    Bar-Ona Y M, Phillips R, Milo R 2018 Proc. Natl Acad. Sci. USA 115 6506Google Scholar

    [23]

    李海兵, 司家亮, 付小方, 邱祝礼, 李宁, Woerd J, 裴军令, 王宗秀, 侯立玮, 吴富峣 2009 第四纪研究 29 387Google Scholar

    Li H B, Si J L, Fu X F, Qiu Z L, Li N, Woerd J, Pei J L, Wang Z X, Hou L W, Wu F R 2009 Quat. Sci. 29 387Google Scholar

    [24]

    Wei J, Shen C, Liu S, Dai M 2014 Geodesy and Geodynamicas 5 55

    [25]

    周玖, 黄修武 1980 地震地质 2 4

    Zhou J, Huang X W 1980 Seismol. Geol. 2 4

    [26]

    周玖 1989 地震研究 12 23

    Zhou J 1989 J. Seismol. Res. 12 23

    [27]

    Bai D H, Unsworth M J, Meju M A, et al. 2010 Nat. Geosci. 3 358Google Scholar

    [28]

    Jones L M, Wang B Q, Xu S, Fitch T J 1982 J. Geophys. Res. 87 4575Google Scholar

    [29]

    Mogi K 1987 Tectonophysics 138 33Google Scholar

    [30]

    Wyss M, Wu Z L 2014 Seismol. Res. Lett. 85 126Google Scholar

    [31]

    Lu K Q, Cao Z X, Hou M Y, Jiang Z H, Shen R, Wang Q, Sun G, Liu J X 2018 Int. J. Mod. Phys. B 32 1850080Google Scholar

    [32]

    张国民, 汪素云, 李丽, 张晓东, 马宏生 2002 科学通报 47 663Google Scholar

    Zhang G M, Wang S Y, Li L, Zhang X D, Ma H S 2002 Chin. Sci. Bull. 47 663Google Scholar

    [33]

    Aronova E 2018 Stud. Hist. Philos. Sci. 70 50Google Scholar

    [34]

    King C Y 1983 Nature 302 763Google Scholar

    [35]

    Kirschvink J L 2000 B Seismol. Soc. Am. 90 312Google Scholar

    [36]

    Logan J M 1977 Nature 265 404Google Scholar

    [37]

    Otis L 1984 Am. Sci. 72 81

    [38]

    Tributsch H 1984 MIT Press 115 24

    [39]

    Harnett C 2012 Young Scientists J. 12 60

    [40]

    Woith H, Petersen G M, Hainzl S, Dahm T 2018 Bull. Seismol. Soc. Am. 108 1031Google Scholar

    [41]

    耿庆国 1984 中国科学 27 658

    Geng Q G 1984 Sci. Sin. 27 658

  • 图 1  液氮法快速制备层状材料褶皱结构[13] (a)层状材料褶皱的制备过程示意图, 首先将层状材料解理到柔性PDMS基底上, 然后将其快速浸没到液氮中; (b)解理到PDMS上的薄层石墨烯样品光学照片; (c)液氮处理后石墨烯表面形成大量的褶皱网状结构; (d)多层WSe2褶皱的光学照片; (e) WSe2褶皱处的荧光成像(1.6 eV附近), (b)和(c)图的比例尺为50 μm, (d)和(e)的比例尺为5 μm

    Fig. 1.  Preparation of wrinkle structures on layered materials by fast-cooling treatment in liquid nitrogen[13]: (a) Schematic diagram of the preparation process of layered material wrinkles. First, the layered material is cleaved onto the flexible PDMS substrate, then rapidly immersed the substrate in liquid nitrogen; (b) optical images of one thin-layer graphene flake cleaved onto PDMS film; (c) a large number of wrinkle network structures formed on the surface of graphene after liquid nitrogen treatment; (d) optical image of multilayer WSe2 wrinkles; (e) photoluminance mapping image of the multilayer WSe2 flake with wrinkles (at ~1.6 eV). The scale bars are 50 μm for (b) and (c), and 5 μm for (d) and (e).

    图 2  地球的结构与材料中的褶皱 (a)地球的结构由内而外可以分为地核、地幔和地壳; (b)念青唐古拉山附近的卫星地图、隆起的山体交错在一起, 形成褶皱的网状结构; (c)山体断面处的褶皱; (d)石墨烯褶皱截面处的TEM照片[13]; (e)高倍下的TEM照片; (f)图(e)中黄色和红色框中的石墨烯层间距, 可以看出形变区域相比于平整区域层间距从0.33 nm增加到0.41 nm

    Fig. 2.  The structure of the Earth and wrinkles in materials: (a) The structure of the Earth can be divided into core, mantle and crust from the inside out; (b) the satellite map near the Nyainqentanglha Mountain, where the uplifted mountains are intertwined to form a wrinkle network structure; (c) wrinkle structures at the cross section of one mountain; (d) transmission electron microscopy (TEM) image at the cross section of one graphene wrinkle[13]; (e) high-resolution images of the wrinkle corner; (f) the lattice spacing at the selected areas marked by yellow and red box in (e), the interlayer distance increased from 0.33 nm at the flat region, to 0.41 nm at the strained region.

    图 3  (a)全球地震分布图; (b)全球火山分布图, 可以看出除中国大陆以外, 火山分布和地震分布是吻合的; (c)和(d)日本的富士山地面图片和卫星图片, 从图(d)中可以看出富士山恰好处于三个板块的交汇处; (e)石墨烯褶皱的原子力显微镜照片, 可以看出褶皱的交汇点与地面上火山(c), (d)有相似之处

    Fig. 3.  (a) Global seismic distribution map; (b) global volcanic map. It can be seen that volcanic distribution and seismic distribution are consistent except for mainland China; (c) and (d) are the ground and satellites pictures of Japan's Mount Fuji , it can be seen that Mount Fuji is just at the intersection of three plates (d); (e) atomic force microscopy image of the graphene wrinkle, which is similar to the volcano shown in (c) and (d).

    图 4  由于南北半球角速度之间存在差别, 赤道附近地区会出现地形的扭曲 (a)印度尼西亚地区; (b)南北美洲交界处; (c)大西洋中部. 红色虚线表示的是该地区总体的地形走势, 黑色虚线表示赤道

    Fig. 4.  Due to the angular velocity difference between the northern and southern hemispheres, the terrain distortion will occur in the vicinity of the equator: (a) The Indonesian region; (b) the border between North and South America; (c) the central Atlantic Ocean. The red dotted line indicates the overall topographic trend of the region, the black dotted line is the equator.

    图 5  中国的地势走势及地震带 针对中国特殊的地形结构, 可以将中国的大型山脉走势用虚线进行表示, 粉色部分是中国主要的地震带分布

    Fig. 5.  China's topographic trend and seismic zone. In view of China's special topographical structure, the orientation of the main mountains can be marked with the dashed lines, and the distribution map of China's seismic belt is marked with the pink color.

    图 6  水在不同结构的管道中流速模拟结果 (a)弯折管道模型的侧视图; (b)−(f)不同顶角的管道横截面流速分布图

    Fig. 6.  The simulation results of water flow rate in different channel structures: (a) The side view of one wrinkled channel; (b)−(f) the flow rate mapping images selected at cross section of channels with different top angle.

    图 7  层状材料中的褶皱与地球上的火山 (a)一座正在喷发的火山; (b)石墨烯褶皱在氢气等离子体中处理10 h后的形貌图片[13]; (c) 图7(b)中不同位置(A, B, C三个区域)测得的拉曼光谱, 结果表明在褶皱交汇处石墨烯被完全刻蚀掉, 而在褶皱上被部分刻蚀掉, 在平整区域变化最小, 位于1580和2720 cm–1的G峰和2D峰在平整区域相对较强

    Fig. 7.  The wrinkles in layered material and the volcanoes on the Earth: (a) An erupting volcano; (b) an optical image of graphene wrinkles after 10 hours hydrogen plasma treatment[13]; (c) Raman spectra of graphene measured at different locations (A, B, C) in Fig. 7(b). The Raman spectroscopy results show that the graphene is completely etched away at the intersection of the wrinkles, and partially etched away on the single wrinkles, with the smallest change in the plane region, and the G and 2D peaks (1580 and 2720 cm–1) measured at flat area are relatively strong.

    图 8  塔里木盆地形成后西侧的物质流, 途经巴基斯坦、阿富汗、伊朗和伊拉克等国家

    Fig. 8.  The matter flow on the west side after the formation of the Tarim Basin, which flow through countries such as Pakistan, Afghanistan, Iran, and Iraq.

    图 9  根据物质流假说提出的中国地形地貌的演变过程 (a)亚欧板块和印度板块撞击后形成了喜马拉雅山脉, 使得中国境内的物质流自西向东移动, 如红色虚线所示, 蓝色虚线代表塔里木盆地; (b)物质流被鄂尔多斯盆地改道朝东南方向流动, 形成了中国东南沿海的特殊地形; (c)两湖盆地, 湘中盆地和南昌盆地形成后, 物质流被进一步改道, 形成多个山脉; (d)四川盆地的形成使得朝东南方向的物质流产生了两个主要分支, 一部分向南流动形成横断山脉, 另一部分在南阳盆地和南华北盆地的影响下朝东北方向流动, 形成了太行山脉和大兴安岭; (e)受四川盆地的影响, 朝南的物质流继续向南流动, 对缅甸、老挝、泰国、越南和马来西亚的地形地貌产生了重要影响; (f)中国目前大陆周边的主要物质流走向示意图

    Fig. 9.  The evolution process of China's topography based on matter flow hypothesis: (a) After the collision of the Asia-Europe plate and the Indian plate, the Himalayas are formed, causing the matter flow in China to move from west to east, as indicated by the yellow dotted line; the red dotted line represents the Tarim Basin; (b) the matter flow is diverted to the southeast by the Ordos Basin, forming a special terrain on the southeast coast of China; (c) after the formation of the two lake basins, the Xiangzhong Basin and the Nanchang Basin, the matter flow is further diverted to form multiple mountain ranges; (d) the formation of the Sichuan Basin caused the matter flow along southeast into two main branches, one of which flows southward to form the Hengduan Mountains, and the other part flows northeastward under the influence of the Nanyang Basin and the South North-China Basin, forming the Taihang Mountains and the Daxinganling Mountains; (e) affected by the Sichuan Basin, the southward matter flow continues to flow southward, which influences the topography of Myanmar, Laos, Thailand, Vietnam, and Malaysia; (f) a schematic diagram of the main current matter flows around China's mainland.

  • [1]

    Boddeti N G, Liu X, Long R, Xiao J, Bunch J S, Dunn M L 2013 Nano Lett. 13 6216Google Scholar

    [2]

    Feng J, Qian X F, Huang C W, Li J 2012 Nat. Photonics 6 865

    [3]

    Huang Y, Wang X, Zhang X, et al. 2018 Phys. Rev. Lett. 120 186104Google Scholar

    [4]

    Kim S, Ryu S 2016 Carbon 100 283Google Scholar

    [5]

    Bao Z, Miao F, Chen Z, Zhang H, Jang W Y, Dames C, Lau C N 2009 Nat. Nanotechnology 4 562Google Scholar

    [6]

    Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30Google Scholar

    [7]

    Luo S W, Hao G L, Fan Y P, Kou L Z, He C Y, Qi X, Tang C, Li J, Huang K, Zhong J X 2015 Nanotechnology 26 105705Google Scholar

    [8]

    Huang Y, Sutter E, Shi N N, Zheng J B, Yang T Z, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612Google Scholar

    [9]

    许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元 2018 物理学报 67 218201Google Scholar

    Xu H, Meng L, Li Y, Yang T Z, Bao L H, Liu G D, Zhao L, Liu T Y, Xing J, Gao H J, Zhou X J, Huang Y 2018 Acta Phys. Sin. 67 218201Google Scholar

    [10]

    Castellanos-Gomez A, Roldan R, Cappelluti E, Buscema M, Guinea F, van der Zant H S J, Steele G A 2013 Nano Lett. 13 5361Google Scholar

    [11]

    Ni Z H, Yu T, Lu Y H, Wang Y Y, Feng Y P, Shen Z X 2008 ACS Nano 2 2301Google Scholar

    [12]

    Wang Y, Yang R, Shi Z W, Zhang L C, Shi D X, Wang E G, Zhang Y Z 2011 ACS Nano 5 3645Google Scholar

    [13]

    Meng L, Li Y, Liu T S, Zhu C Y, Li Q Y, Chen X J, Zhang S, Zhang X, Bao L H, Huang Y, Xu F, Ruoff R S 2020 Carbon 156 24Google Scholar

    [14]

    陆坤权, 曹则贤, 厚美瑛, 姜泽辉, 沈容, 王强, 孙刚, 刘寄星 2014 物理学报 63 219101Google Scholar

    Lu K Q, Cao Z X, Hou M Y, Jiang Z H, Shen R, Wang Q, Sun G, Liu J X 2014 Acta Phys. Sin. 63 219101Google Scholar

    [15]

    陆坤权, 厚美瑛, 姜泽辉, 王强, 孙刚, 刘寄星 2012 物理学报 61 119103Google Scholar

    Lu K Q, Hou M Y, Jiang Z H, Wang Q, Sun G, Liu J X 2012 Acta Phys. Sin. 61 119103Google Scholar

    [16]

    Scholz C H 1996 Nature 381 556Google Scholar

    [17]

    李四光 1973 中国科学 4 400

    Li S G 1973 Scientia Sinica 4 400

    [18]

    Clark M K, Royden L H 2000 Geology 28 703Google Scholar

    [19]

    Royden L H, Burchfiel B C, King R W, Wang E, Chen Z L, Shen F, Liu Y P 1997 Science 276 788Google Scholar

    [20]

    Hand E 2018 Science 359 16Google Scholar

    [21]

    Webster C R, Mahaffy P R, Atreya S K, et al. 2018 Science 360 1093Google Scholar

    [22]

    Bar-Ona Y M, Phillips R, Milo R 2018 Proc. Natl Acad. Sci. USA 115 6506Google Scholar

    [23]

    李海兵, 司家亮, 付小方, 邱祝礼, 李宁, Woerd J, 裴军令, 王宗秀, 侯立玮, 吴富峣 2009 第四纪研究 29 387Google Scholar

    Li H B, Si J L, Fu X F, Qiu Z L, Li N, Woerd J, Pei J L, Wang Z X, Hou L W, Wu F R 2009 Quat. Sci. 29 387Google Scholar

    [24]

    Wei J, Shen C, Liu S, Dai M 2014 Geodesy and Geodynamicas 5 55

    [25]

    周玖, 黄修武 1980 地震地质 2 4

    Zhou J, Huang X W 1980 Seismol. Geol. 2 4

    [26]

    周玖 1989 地震研究 12 23

    Zhou J 1989 J. Seismol. Res. 12 23

    [27]

    Bai D H, Unsworth M J, Meju M A, et al. 2010 Nat. Geosci. 3 358Google Scholar

    [28]

    Jones L M, Wang B Q, Xu S, Fitch T J 1982 J. Geophys. Res. 87 4575Google Scholar

    [29]

    Mogi K 1987 Tectonophysics 138 33Google Scholar

    [30]

    Wyss M, Wu Z L 2014 Seismol. Res. Lett. 85 126Google Scholar

    [31]

    Lu K Q, Cao Z X, Hou M Y, Jiang Z H, Shen R, Wang Q, Sun G, Liu J X 2018 Int. J. Mod. Phys. B 32 1850080Google Scholar

    [32]

    张国民, 汪素云, 李丽, 张晓东, 马宏生 2002 科学通报 47 663Google Scholar

    Zhang G M, Wang S Y, Li L, Zhang X D, Ma H S 2002 Chin. Sci. Bull. 47 663Google Scholar

    [33]

    Aronova E 2018 Stud. Hist. Philos. Sci. 70 50Google Scholar

    [34]

    King C Y 1983 Nature 302 763Google Scholar

    [35]

    Kirschvink J L 2000 B Seismol. Soc. Am. 90 312Google Scholar

    [36]

    Logan J M 1977 Nature 265 404Google Scholar

    [37]

    Otis L 1984 Am. Sci. 72 81

    [38]

    Tributsch H 1984 MIT Press 115 24

    [39]

    Harnett C 2012 Young Scientists J. 12 60

    [40]

    Woith H, Petersen G M, Hainzl S, Dahm T 2018 Bull. Seismol. Soc. Am. 108 1031Google Scholar

    [41]

    耿庆国 1984 中国科学 27 658

    Geng Q G 1984 Sci. Sin. 27 658

  • [1] 刘俊杰, 左慧玲, 谭鑫, 董健生. 褶皱状单层GeSe各向异性的能带漏斗效应*. 物理学报, 2024, 73(23): 236801. doi: 10.7498/aps.73.20241155
    [2] 刘淑倩, 张海燕, 张辉, 朱文发, 陈祎婷, 刘雅洁. 融合环形统计矢量的复合材料褶皱缺陷超声相位迁移成像. 物理学报, 2024, 73(17): 174301. doi: 10.7498/aps.73.20240714
    [3] 余跃, 杨恒玉, 周五星, 欧阳滔, 谢国锋. 第一性原理研究单层Ge2X4S2 (X = P, As)的热电性能. 物理学报, 2023, 72(7): 077201. doi: 10.7498/aps.72.20222244
    [4] 张海燕, 徐心语, 马雪芬, 朱琦, 彭丽. 超声图像中复合材料褶皱形态的Mask-RCNN识别方法. 物理学报, 2022, 71(7): 074302. doi: 10.7498/aps.71.20212009
    [5] 孟雨欣, 赵漪凡, 李绍春. 褶皱状蜂窝结构的单层二维材料研究进展. 物理学报, 2021, 70(14): 148101. doi: 10.7498/aps.70.20210638
    [6] 张海燕, 宋佳昕, 任燕, 朱琦, 马雪芬. 碳纤维增强复合材料褶皱缺陷的超声成像. 物理学报, 2021, 70(11): 114301. doi: 10.7498/aps.70.20210032
    [7] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳. 二维磁性材料的物性研究及性能调控. 物理学报, 2021, 70(12): 127801. doi: 10.7498/aps.70.20202146
    [8] 郭宇, 周思, 赵纪军. 新型层状Bi2Se3的第一性原理研究. 物理学报, 2021, 70(2): 027102. doi: 10.7498/aps.70.20201434
    [9] 郭文锑, 黄璐, 许桂贵, 钟克华, 张健敏, 黄志高. 本征磁性拓扑绝缘体MnBi2Te4电子结构的压力应变调控. 物理学报, 2021, 70(4): 047101. doi: 10.7498/aps.70.20201237
    [10] 王鹏程, 曹亦, 谢红光, 殷垚, 王伟, 王泽蓥, 马欣辰, 王琳, 黄维. 层状手性拓扑磁材料Cr1/3NbS2的磁学特性. 物理学报, 2020, 69(11): 117501. doi: 10.7498/aps.69.20200007
    [11] 程鹏, 杨育梅. 临界电流密度对圆柱状超导体力学特性的影响. 物理学报, 2019, 68(18): 187402. doi: 10.7498/aps.68.20190759
    [12] 彭颖吒, 张锴, 郑百林, 李泳. 广义平面应变锂离子电池柱形梯度材料颗粒电极中扩散诱导应力分析. 物理学报, 2016, 65(10): 100201. doi: 10.7498/aps.65.100201
    [13] 王彬, 冯雅辉, 王秋实, 张伟, 张丽娜, 马晋文, 张浩然, 于广辉, 王桂强. 化学气相沉积法制备的石墨烯晶畴的氢气刻蚀. 物理学报, 2016, 65(9): 098101. doi: 10.7498/aps.65.098101
    [14] 李柱松, 朱泰山. 超晶格和层状结构传热特性的连续模型及其在能源材料设计中的应用. 物理学报, 2016, 65(11): 116802. doi: 10.7498/aps.65.116802
    [15] 陆坤权, 曹则贤, 厚美瑛, 姜泽辉, 沈容, 王强, 孙刚, 刘寄星. 论地震发生机制. 物理学报, 2014, 63(21): 219101. doi: 10.7498/aps.63.219101
    [16] 陆坤权, 厚美瑛, 姜泽辉, 王强, 孙刚, 刘寄星. 以颗粒物理原理认识地震地震成因、地震前兆和地震预测. 物理学报, 2012, 61(11): 119103. doi: 10.7498/aps.61.119103
    [17] 任晓栋, 刘建军, 张文清. 应变对层状锰系锂离子电池正极材料输出电压的影响. 物理学报, 2012, 61(18): 183101. doi: 10.7498/aps.61.183101
    [18] 胡卫建, 尚红, 刘惠娟, 王夫运, 李平林. 汶川地震后中国及邻区地震活动趋势——地震能量释放特征的“振荡类比”研究. 物理学报, 2010, 59(6): 4351-4358. doi: 10.7498/aps.59.4351
    [19] 刘 浩, 柯孚久, 潘 晖, 周 敏. 铜-铝扩散焊及拉伸的分子动力学模拟. 物理学报, 2007, 56(1): 407-412. doi: 10.7498/aps.56.407
    [20] 齐国英, 郭亚平. 地震波谱与大地震前后中强地震波谱变化. 物理学报, 1976, 25(6): 527-532. doi: 10.7498/aps.25.527
计量
  • 文章访问数:  11163
  • PDF下载量:  166
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-04
  • 修回日期:  2019-11-19
  • 上网日期:  2022-04-07
  • 刊出日期:  2020-01-01

/

返回文章
返回