搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比

张战刚 雷志锋 童腾 李晓辉 王松林 梁天骄 习凯 彭超 何玉娟 黄云 恩云飞

引用本文:
Citation:

14 nm FinFET和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比

张战刚, 雷志锋, 童腾, 李晓辉, 王松林, 梁天骄, 习凯, 彭超, 何玉娟, 黄云, 恩云飞

Comparison of neutron induced single event upsets in 14 nm FinFET and 65 nm planar static random access memory devices

Zhang Zhan-Gang, Lei Zhi-Feng, Tong Teng, Li Xiao-Hui, Wang Song-Lin, Liang Tian-Jiao, Xi Kai, Peng Chao, He Yu-Juan, Huang Yun, En Yun-Fei
PDF
HTML
导出引用
  • 使用中国散裂中子源提供的宽能谱中子束流, 开展14 nm FinFET工艺和65 nm平面工艺静态随机存取存储器中子单粒子翻转对比研究, 发现相比于65 nm器件, 14 nm FinFET器件的大气中子单粒子翻转截面下降至约1/40, 而多位翻转比例从2.2%增大至7.6%, 源于14 nm FinFET器件灵敏区尺寸(80 nm × 30 nm × 45 nm)、间距和临界电荷(0.05 fC)的减小. 不同于65 nm器件对热中子免疫的现象, 14 nm FinFET器件中M0附近10B元素的使用导致其表现出一定的热中子敏感性. 进一步的中子输运仿真结果表明, 高能中子在器件灵敏区中产生的大量的射程长、LET值大的高Z二次粒子是多位翻转的产生诱因, 而单粒子翻转主要来自于p, He, Si等轻离子的贡献.
    Based on the wide-spectrum neutron beam (covering thermal neutrons and E > 10 MeV neutrons, with maximum energy of 1.6 GeV) provided by the China Spallation Neutron Source (CSNS), this paper focuses on the single event effect study of 14 nm FinFET large-capacity SRAM and 65 nm planar process SRAM device, using combined techniques of irradiation experiment, reverse analysis, and Monte-Carlo neutron transport simulation. The aim is to reveal the effect of integrated circuit process changing on the sensitivity of neutron induced single-bit and multiple-bit upsets (MBU), and to analyze the inner mechanisms, including the distribution of secondary particles in the sensitive volume, the characteristics of deposited charges, etc. The results show that compared with the 65 nm device, single event upset (SEU) cross section of the 14 nm FinFET device, induced by E > 10 MeV neutrons, is reduced by about 40 times, while the MBU ratio increases from 2.2% to 7.6%, which is due to the reduction of sensitive volume size of the 14 nm FinFET device (80 nm × 30 nm × 45 nm), pitch, and critical charge (0.05 fC). The main forms of MBU are double-bit upset, triple-bit upset and quadruple-bit upset. Unlike the phenomenon that the 65 nm device is immune to thermal neutrons, the use of the 10B element near M0 in the 14 nm FinFET device causes it to present the thermal neutron sensitivity to a certain extent. The SEU cross section induced by thermal neutrons is about 4.8 times smaller than that induced by E > 10 MeV neutrons. Based on the device cross-section and memory area images obtained from the reverse analysis, a device model is established and neutron transport simulation based on Geant4 toolkit is carried out. The E > 10 MeV neutrons result in abundant secondary particle distribution in the sensitive volume of the device, covering n, p into even W. The neutron energy and presence or absence of the W plug near the sensitive volume have an importantinfluence on the type and probability of secondary particles in the sensitive volume. The analysis and calculations show that a large number of high-Z secondary particles with long range and large LET values generated by high-energy neutrons in the sensitive volume of the device are the inducement of MBU, and SEUs mainly result from the contribution of light ions such as p, He, and Si.
      通信作者: 雷志锋, leizf@ceprei.com
    • 基金项目: 国家级-国家自然科学基金项目(61704031)
      Corresponding author: Lei Zhi-Feng, leizf@ceprei.com
    [1]

    Lu D D, Dunga M V, Lin C S, Niknejad A M, Hu C 2007 IEEE International Electron Devices Meeting Washington, DC, USA, December 10–12, 2007 p565

    [2]

    Park T, Choi S, Lee D H, Yoo J R, Lee B C, Kim J Y, Lee C G, Chi K K, Hong S H, Hynn S J, Shin Y G, Han J N, Park I S, Chung U I, Moon J T, Yoon E, Lee J H 2003 Symposium on VLSI Technology Kyoto, Japan, June 10–12, 2003 p135

    [3]

    Manoj C R, Meenakshi N, Dhanya V, Rao V R 2007 International Workshop on Physics of Semiconductor Devices Mumbai, India, December 16–20, 2007 p134

    [4]

    Ma C, Li B, Zhang L, He J, Zhang X, Lin X, Chan M 2009 10th International Symposium on Quality Electronic Design San Jose, CA, USA, March 16–18, 2009 p7

    [5]

    Bhuva B 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, December 1–5, 2018 p34.4.1

    [6]

    Lei Z F, Zhang Z G, En Y F, Huang Y 2018 Chin. Phys. B 27 066105Google Scholar

    [7]

    JESD89 A Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices JEDEC standard, October 2006

    [8]

    May T C, Woods M H 1979 IEEE Trans. Electron Dev. ED-26 2

    [9]

    Autran J L, Munteanu D, Sauze S, Gasiot G, Roche P 2014 IEEE Radiation Effects Data Workshop (REDW) Paris, France, July 14–18, 2014 p1

    [10]

    Auden E C, Quinn H M, Wender S A, O’Donnell J M, Lisowski P W, George J S, Xu N, Black D A, Black J D 2019 IEEE Trans. Nucl. Sci. Early Access 1

    [11]

    Weulersse C, Houssany S, Guibbaud N, Segura-Ruiz J, Beaucour J, Miller F, Mazurek M 2018 IEEE Trans. Nucl. Sci. 65 1851Google Scholar

    [12]

    Zhang H, Jiang H, Brockman J D, Assis T R, Fan X, Bhuva B L, Narasimham B, Wen S J, Wong R 2017 IEEE International Reliability Physics Symposium (IRPS) Monterey, CA, USA, April 2–6, 2017 p3 D-3.1

    [13]

    Seifert N, Jahinuzzaman S, Velamala J, Ascazubi R, Patel N, Gill B, Basile J, Hicks J 2015 IEEE Trans. Nucl. Sci. 62 2570Google Scholar

    [14]

    Fang Y, Oates A S 2011 IEEE Trans. Dev. Mater. Reliab. 11 551Google Scholar

    [15]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 物理学报 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [16]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids (New York: Pergamon Press)

    [17]

    SRIM & TRIM, Ziegler J F http://www.srim.org/ [2019-7-11]

    [18]

    Zhang Z G, Lei Z F, En Y F, Liu J 2016 Radiation Effects on Components & Systems Conference (RADECS) Bremen, Germany, September 19–23, 2016 Paper H14

    [19]

    Sierawski B D, Mendenhall M H, Reed R A, Clemens M A, Weller R A, Schrimpf R D, Blackmore E W, Trinczek M, Hitti B, Pellish J A, Baumann R C, Wen S J, Wong R, Tam N 2010 IEEE Tran. Nucl. Sci. 57 3273

    [20]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Meth. Phys. Res. A 506 250Google Scholar

    [21]

    Zhang Z G, Liu J, Sun Y M, Hou M D, Tong T, Gu S, Liu T Q, Geng C, Xi K, Yao H J, Luo J, Duan J L, Mo D, Su H, Lei Z F, En Y F, Huang Y 2014 10th International Conference on Reliability, Maintainability and Safety (ICRMS) Guangzhou, China, August 6–8, 2014 p114

  • 图 1  实验现场图(中子束流孔道位于测试板背后, 中子束流对准被测器件)

    Fig. 1.  Experimental setup (neutron beam channel is loca-ted behind the test board, and aligned with the device under test).

    图 2  实验终端的中子能谱

    Fig. 2.  Neutron energy spectrum of the experimental terminal.

    图 3  65 nm平面工艺和14 nm FinFET工艺SRAM的中子(E > 10 MeV)SEU截面对比

    Fig. 3.  Comparison of neutron (E > 10 MeV) SEU cross section of 65 nm planar and 14 nm FinFET SRAM devices.

    图 4  65 nm平面工艺和14 nm FinFET工艺SRAM的热中子SEU截面对比

    Fig. 4.  Comparison of thermal neutron SEU cross section of 65 nm planar and 14 nm FinFET SRAM devices.

    图 5  (a) Li离子和(b) He离子在硅材料中的LET值与能量的关系

    Fig. 5.  Relationship between LET value and energy of (a) Li ion and (b) He ion in silicon material.

    图 6  14 nm FinFET SRAM的重离子实验结果

    Fig. 6.  Heavy ion experiment results of 14 nm FinFET SRAM.

    图 7  65 nm平面工艺和14 nm FinFET工艺SRAM的中子MBU比例对比(使用图2的全能谱)

    Fig. 7.  Comparison of neutron MBU ratio of 65 nm planar and 14 nm FinFET SRAM devices (using the full spectrum in Fig. 2).

    图 8  14 nm FinFET SRAM的反向分析 (a)横切面; (b)存储区图像

    Fig. 8.  Reverse analysis of 14 nm FinFET SRAM: (a) Cross section; (b) memory area image.

    图 9  65 nm SRAM的反向分析 (a) 横切面; (b) 存储区图像

    Fig. 9.  Reverse analysis of 65 nm SRAM: (a) Cross section; (b) memory area image.

    图 10  14 MeV和1600 MeV中子在器件灵敏区中产生的二次粒子分布(器件模型中的W材料被二氧化硅替代)

    Fig. 10.  14 MeV and 1600 MeV neutron induced secondary particle distribution in the device SV (W material in the device model is replaced by silica).

    图 11  14 MeV和1600 MeV中子在器件灵敏区中产生的二次粒子分布(真实器件模型)

    Fig. 11.  14 MeV and 1600 MeV neutron induced secondary particle distribution in the device SV (real device model).

    图 12  14 MeV和1600 MeV中子在器件灵敏区中产生的二次粒子的LET值与射程

    Fig. 12.  The LET value and range of secondary particles generated by 14 MeV and 1600 MeV neutrons in the device SV.

    图 13  14 MeV和1600 MeV中子在器件灵敏区中的沉积电荷

    Fig. 13.  The deposition charge of 14 MeV and 1600 MeV neutrons in the device SV.

    表 1  被测器件参数

    Table 1.  Parameters of devices under test.

    编号SRAM工艺型号容量供电电压(core)/V封装形式
    1#65 nm平面CY7 C1663 KV188 Mb × 181.8BGA, 非倒装
    2#14 nm FinFET8 Mb × 160.8BGA, 倒装
    下载: 导出CSV

    表 2  14 nm FinFET SRAM和65 nm SRAM的存储单元尺寸和灵敏区参数

    Table 2.  Memory cell size and SV parameters for the 14 nm FinFET SRAM and 65 nm SRAM devices.

    器件存储单元尺寸/
    μm × μm
    灵敏区尺寸/
    μm × μm
    灵敏区厚度/nm重离子LET阈值/
    MeV·cm2·mg–1
    临界电荷/fC
    14 nm FinFET SRAM0.37 × 0.180.08 × 0.03450.10.05
    65 nm SRAM1.0 × 0.50.20 × 0.194500.22 [18]1[19]
    下载: 导出CSV
  • [1]

    Lu D D, Dunga M V, Lin C S, Niknejad A M, Hu C 2007 IEEE International Electron Devices Meeting Washington, DC, USA, December 10–12, 2007 p565

    [2]

    Park T, Choi S, Lee D H, Yoo J R, Lee B C, Kim J Y, Lee C G, Chi K K, Hong S H, Hynn S J, Shin Y G, Han J N, Park I S, Chung U I, Moon J T, Yoon E, Lee J H 2003 Symposium on VLSI Technology Kyoto, Japan, June 10–12, 2003 p135

    [3]

    Manoj C R, Meenakshi N, Dhanya V, Rao V R 2007 International Workshop on Physics of Semiconductor Devices Mumbai, India, December 16–20, 2007 p134

    [4]

    Ma C, Li B, Zhang L, He J, Zhang X, Lin X, Chan M 2009 10th International Symposium on Quality Electronic Design San Jose, CA, USA, March 16–18, 2009 p7

    [5]

    Bhuva B 2018 IEEE International Electron Devices Meeting (IEDM) San Francisco, CA, USA, December 1–5, 2018 p34.4.1

    [6]

    Lei Z F, Zhang Z G, En Y F, Huang Y 2018 Chin. Phys. B 27 066105Google Scholar

    [7]

    JESD89 A Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices JEDEC standard, October 2006

    [8]

    May T C, Woods M H 1979 IEEE Trans. Electron Dev. ED-26 2

    [9]

    Autran J L, Munteanu D, Sauze S, Gasiot G, Roche P 2014 IEEE Radiation Effects Data Workshop (REDW) Paris, France, July 14–18, 2014 p1

    [10]

    Auden E C, Quinn H M, Wender S A, O’Donnell J M, Lisowski P W, George J S, Xu N, Black D A, Black J D 2019 IEEE Trans. Nucl. Sci. Early Access 1

    [11]

    Weulersse C, Houssany S, Guibbaud N, Segura-Ruiz J, Beaucour J, Miller F, Mazurek M 2018 IEEE Trans. Nucl. Sci. 65 1851Google Scholar

    [12]

    Zhang H, Jiang H, Brockman J D, Assis T R, Fan X, Bhuva B L, Narasimham B, Wen S J, Wong R 2017 IEEE International Reliability Physics Symposium (IRPS) Monterey, CA, USA, April 2–6, 2017 p3 D-3.1

    [13]

    Seifert N, Jahinuzzaman S, Velamala J, Ascazubi R, Patel N, Gill B, Basile J, Hicks J 2015 IEEE Trans. Nucl. Sci. 62 2570Google Scholar

    [14]

    Fang Y, Oates A S 2011 IEEE Trans. Dev. Mater. Reliab. 11 551Google Scholar

    [15]

    王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹 2019 物理学报 68 052901Google Scholar

    Wang X, Zhang F Q, Chen W, Guo X Q, Ding L L, Luo Y H 2019 Acta Phys. Sin. 68 052901Google Scholar

    [16]

    Ziegler J F, Biersack J P, Littmark U 1985 The Stopping and Range of Ions in Solids (New York: Pergamon Press)

    [17]

    SRIM & TRIM, Ziegler J F http://www.srim.org/ [2019-7-11]

    [18]

    Zhang Z G, Lei Z F, En Y F, Liu J 2016 Radiation Effects on Components & Systems Conference (RADECS) Bremen, Germany, September 19–23, 2016 Paper H14

    [19]

    Sierawski B D, Mendenhall M H, Reed R A, Clemens M A, Weller R A, Schrimpf R D, Blackmore E W, Trinczek M, Hitti B, Pellish J A, Baumann R C, Wen S J, Wong R, Tam N 2010 IEEE Tran. Nucl. Sci. 57 3273

    [20]

    Agostinelli S, Allison J, Amako K, et al. 2003 Nucl. Instrum. Meth. Phys. Res. A 506 250Google Scholar

    [21]

    Zhang Z G, Liu J, Sun Y M, Hou M D, Tong T, Gu S, Liu T Q, Geng C, Xi K, Yao H J, Luo J, Duan J L, Mo D, Su H, Lei Z F, En Y F, Huang Y 2014 10th International Conference on Reliability, Maintainability and Safety (ICRMS) Guangzhou, China, August 6–8, 2014 p114

  • [1] 肖石良, 王朝辉, 吴鸿毅, 陈雄军, 孙琪, 谭博宇, 王昊, 齐福刚. 中子诱发伽马产生截面测量中的谱分析技术. 物理学报, 2024, 73(7): 072901. doi: 10.7498/aps.73.20231980
    [2] 张战刚, 杨少华, 林倩, 雷志锋, 彭超, 何玉娟. 基于青藏高原的14 nm FinFET和28 nm平面CMOS工艺SRAM单粒子效应实时测量试验. 物理学报, 2023, 72(14): 146101. doi: 10.7498/aps.72.20230161
    [3] 刘晔, 郭红霞, 琚安安, 张凤祁, 潘霄宇, 张鸿, 顾朝桥, 柳奕天, 冯亚辉. 质子辐照作用下浮栅单元的数据翻转及错误退火. 物理学报, 2022, 71(11): 118501. doi: 10.7498/aps.71.20212405
    [4] 李薇, 白雨蓉, 郭昊轩, 贺朝会, 李永宏. InP中子位移损伤效应的Geant4模拟. 物理学报, 2022, 71(8): 082401. doi: 10.7498/aps.71.20211722
    [5] 张战刚, 叶兵, 姬庆刚, 郭金龙, 习凯, 雷志锋, 黄云, 彭超, 何玉娟, 刘杰, 杜广华. 纳米级静态随机存取存储器的α粒子软错误机理研究. 物理学报, 2020, (): 006100. doi: 10.7498/aps.69.20191796
    [6] 张战刚, 叶兵, 姬庆刚, 郭金龙, 习凯, 雷志锋, 黄云, 彭超, 何玉娟, 刘杰, 杜广华. 纳米级静态随机存取存储器的α粒子软错误机理研究. 物理学报, 2020, 69(13): 136103. doi: 10.7498/aps.69.20201796
    [7] 罗尹虹, 张凤祁, 郭红霞, Wojtek Hajdas. 基于重离子试验数据预测纳米加固静态随机存储器质子单粒子效应敏感性. 物理学报, 2020, 69(1): 018501. doi: 10.7498/aps.69.20190878
    [8] 黎华梅, 侯鹏飞, 王金斌, 宋宏甲, 钟向丽. HfO2基铁电场效应晶体管读写电路的单粒子翻转效应模拟. 物理学报, 2020, 69(9): 098502. doi: 10.7498/aps.69.20200123
    [9] 王勋, 张凤祁, 陈伟, 郭晓强, 丁李利, 罗尹虹. 基于中国散裂中子源的商用静态随机存取存储器中子单粒子效应实验研究. 物理学报, 2020, 69(16): 162901. doi: 10.7498/aps.69.20200265
    [10] 张战刚, 雷志锋, 岳龙, 刘远, 何玉娟, 彭超, 师谦, 黄云, 恩云飞. 空间高能离子在纳米级SOI SRAM中引起的单粒子翻转特性及物理机理研究. 物理学报, 2017, 66(24): 246102. doi: 10.7498/aps.66.246102
    [11] 罗尹虹, 郭晓强, 陈伟, 郭刚, 范辉. 欧空局监测器单粒子翻转能量和角度相关性. 物理学报, 2016, 65(20): 206103. doi: 10.7498/aps.65.206103
    [12] 罗尹虹, 张凤祁, 王燕萍, 王圆明, 郭晓强, 郭红霞. 纳米静态随机存储器低能质子单粒子翻转敏感性研究. 物理学报, 2016, 65(6): 068501. doi: 10.7498/aps.65.068501
    [13] 赵雯, 郭晓强, 陈伟, 邱孟通, 罗尹虹, 王忠明, 郭红霞. 质子与金属布线层核反应对微纳级静态随机存储器单粒子效应的影响分析. 物理学报, 2015, 64(17): 178501. doi: 10.7498/aps.64.178501
    [14] 王晓晗, 郭红霞, 雷志锋, 郭刚, 张科营, 高丽娟, 张战刚. 基于蒙特卡洛和器件仿真的单粒子翻转计算方法. 物理学报, 2014, 63(19): 196102. doi: 10.7498/aps.63.196102
    [15] 丁李利, 郭红霞, 陈伟, 闫逸华, 肖尧, 范如玉. 累积辐照影响静态随机存储器单粒子翻转敏感性的仿真研究. 物理学报, 2013, 62(18): 188502. doi: 10.7498/aps.62.188502
    [16] 黄力, 黄安平, 郑晓虎, 肖志松, 王 玫. 高k介质在新型半导体器件中的应用. 物理学报, 2012, 61(13): 137701. doi: 10.7498/aps.61.137701
    [17] 钟国强, 胡立群, 王相綦, 李晓玲, 林士耀, 许平, 段艳敏, 毛松涛, 张继忠. HT-7上射频波加热时中子辐射行为的研究. 物理学报, 2011, 60(1): 012901. doi: 10.7498/aps.60.012901
    [18] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟. 物理学报, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [19] 张庆祥, 侯明东, 刘 杰, 王志光, 金运范, 朱智勇, 孙友梅. 静态随机存储器单粒子效应的角度影响研究. 物理学报, 2004, 53(2): 566-570. doi: 10.7498/aps.53.566
    [20] 王营冠, 罗正明. 非弹性核反应对质子束能量沉积的影响. 物理学报, 2000, 49(8): 1639-1643. doi: 10.7498/aps.49.1639
计量
  • 文章访问数:  11157
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-08
  • 修回日期:  2019-12-20
  • 刊出日期:  2020-03-05

/

返回文章
返回