搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强

王晓雷 赵洁惠 李淼 姜光科 胡晓雪 张楠 翟宏琛 刘伟伟

引用本文:
Citation:

基于人工表面等离激元探针实现太赫兹波的紧聚焦和场增强

王晓雷, 赵洁惠, 李淼, 姜光科, 胡晓雪, 张楠, 翟宏琛, 刘伟伟

Tight focus and field enhancement of terahertz waves using a probe based on spoof surface plasmons

Wang Xiao-Lei, Zhao Jie-Hui, Li Miao, Jiang Guang-Ke, Hu Xiao-Xue, Zhang Nan, Zhai Hong-Chen, Liu Wei-Wei
PDF
HTML
导出引用
  • 为提高太赫兹近场显微成像技术的分辨率, 设计了一款在Teflon探针的尖锥形表面镀上厚度渐变、具有相同占空比的超薄金属银制条带的探针, 用于实现探针尖端处人工表面等离激元的激发和太赫兹波的亚波长聚焦. 研究表明, 对于频率为0.1 THz的入射波, 厚度渐变镀银条带探针产生的紧聚焦光场的尺寸可稳定在20 μm左右(λ/150), 探针尖端处最大电场强度为入射电场强度的849倍. 研究还发现, 周期性金属条带的数目和入射电场的偏振方向可对探针尖端处产生的紧聚焦光斑的尺寸和电场强度等进行灵活有效的调控.
    In order to improve the resolution of terahertz near-field microscopic imaging technology, an ultra-thin thickness-graded silver-plated strip probe with the same duty cycle is designed to realize the excitation of spoof surface plasmons. By comparing with two other probes with different structures, it can be found that the thickness-graded silver-plated strip probe can produce a strong electric field enhancement effect. Thereafter, the influence of the polarization direction of the incident electric field and the number of periodic metal stripes on the electric field which are generated at the tip of the probe is investigated. It is found that this case is highly consistent with the electric field distribution in Richards-Wolf vector diffraction theory when the incident light is linearly polarized. The electric field intensity generated at the tip of the thickness-graded silver-plated strip probe can be flexibly and effectively manipulated by changing the polarization direction of the incident electric field. When the number of thickness-graded silver-plated strips is 12, the minimum size of the focal spot is 20 μm, which is λ/150. When the number of thickness-graded silver-plated strips is 4, the electric field intensity enhancement factor at the focal spot is 849. The electric field intensity enhancement factor at the focal spot increases continuously as the number of periodic metal stripes increases, and the size of focal spot decreases continuously as the number of periodic metal stripes decreases. This result shows that the tight focusing and electric field enhancement of terahertz waves can be achieved by using an ultra-thin thickness-graded silver-plated strip probe. The research results in this paper have important guiding significance for manipulating the electric field in the terahertz band.
      通信作者: 刘伟伟, liuweiwei@nankai.edu.cn
    • 基金项目: 国家级-国家重点研发计划(2018YFB0504400)
      Corresponding author: Liu Wei-Wei, liuweiwei@nankai.edu.cn
    [1]

    Tormo A D, Khalenkow D, Saurav K, Skirtach A G, Thomas N L 2017 Opt. Lett. 42 4410Google Scholar

    [2]

    Degl’Innocenti R, Wallis R, Wei B B, Xiao L, Kindness S J, Mitrofanov O, Weimer P B, Hofmann S, Beere H E, Ritchie D A 2017 ACS Photonics 4 2150Google Scholar

    [3]

    Liu J B, Mendis R, Mittleman D M, Sakoda N 2013 Appl. Phys. Lett. 103 031104

    [4]

    Moon K, Park H, Kim J, Do Y, Lee S, Lee G, Kang H, Han H 2015 Nano Lett. 15 549

    [5]

    Maier S A, Andrews S R, Martin-Moreno L, Garcia-Vidal F J 2006 Phys. Rev. Lett. 97 176805Google Scholar

    [6]

    Tang H H, Liu P K 2015 Opt. Lett. 40 5822

    [7]

    Shen X P, Cui T J, Martin-Cano Diego, Garcia-Vidal F J 2013 Proceedings of the National Academy of Sciences of the United States of America 110 1Google Scholar

    [8]

    Pendry J B, Martín-Moreno L, Garcia-Vidal F J 2004 Science 305 5685

    [9]

    Fernández-Domínguez A I, Martín-Moreno L, García-Vidal F J, Andrews S R, Maier S A 2008 IEEE J. Sel. Top. Quant. 14 6Google Scholar

    [10]

    Brock E M G, Hendry E, Hibbins A P 2011 Appl. Phys. Lett. 99 051108

    [11]

    Zhao W S, Eldaiki O M, Yang R X, Lu Z L 2010 Opt. Express 18 20

    [12]

    Liu L L,Li Z, Gu C Q, Ning P P, Xu B Z, Niu Z Y, Zhao Y J 2014 J. Appl. Phys. 116 013501Google Scholar

    [13]

    Li Z, Liu L L, Xu B Z, Ning P P, Chen C, Xu J, Chen X L, Gu C Q, Ning Q 2016 Sci. Rep. 6 21199Google Scholar

    [14]

    Li Z, Xu B Z, Liu L L, Xu J, Chen C, Gu C Q, Zhou Y J 2016 Sci. Rep. 6 27158Google Scholar

    [15]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 824 6950

    [16]

    Li Z, Xu J, Chen C, Sun Y H,Xu B Z, Liu L L, Gu C Q 2016 Appl. Opt. 55 36Google Scholar

    [17]

    Xu J, Li Z, Liu L L, Chen C, Xu B Z, Ning P P, Gu C Q 2016 Opt. Commun. 372 155Google Scholar

    [18]

    Mbonye M, Mendis R, Mittleman D M 2012 Appl. Phys. Lett. 100 111120Google Scholar

    [19]

    Schnell M, Alonso-González P, Arzubiaga L, Casanova F, Hueso L E, Chuvilin A, Hillenbrand R 2011 Nat. Photon. 5 283Google Scholar

    [20]

    黄铁军, 汤恒河, 谭云华, 刘濮鲲 2017全国微波毫米波会议论文集 (上册) 中国杭州, 2017年5月8日 第268页

    Huang T J, Tang H H, Tan Y H, Liu P K 2017 Proceedings of the National Conference on Microwave Millimeter Wave (Vol. I) Hangzhou, China, May 8, 2017 p268 (in Chinese)

    [21]

    汤恒河, 黄铁军, 刘濮鲲 2018 全国微波毫米波会议论文集 (下册) 中国成都, 2018年5月6日 第77页

    Tang H H, Huang T J, Liu P K 2018 Proceedings of the National Conference on Microwave Millimeter Wave (Vol. II) Chengdu, China, May 6, 2018 p77 (in Chinese)

    [22]

    Huang T J, Tang H H, Yin L Z, Liu J Y, Tan Y H, Liu P K 2018 Opt. Lett. 43 15

    [23]

    Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901

    [24]

    Wang T T, Kuang C F, Hao X, Liu X 2013 Optik 124 21

    [25]

    Youngworth K S, Brown T G 2000 Opt. Express 7 2Google Scholar

    [26]

    Quabis S, Dorn R, Eberler M, Glöckl O, Leuchs G 2000 Opt. Commun. 179 1Google Scholar

  • 图 1  厚度渐变镀银条带探针及不同平面处尖端结构放大示意图

    Fig. 1.  Thickness gradient silver plated strip probe schematic and the magnified schematic diagram of the structure at the tip in the different planes.

    图 2  三种探针的结构和y-z平面光场分布 (a) Teflon探针结构; (b) y-z平面Teflon探针的光场分布; (c) 尖端全镀银探针结构; (d) y-z平面尖端全镀银探针的光场分布; (e) 厚度渐变镀银条带探针结构; (f) y-z平面厚度渐变镀银条带探针的光场分布

    Fig. 2.  Structure of the three probes and light field distribution in the y-z plane: (a) A Teflon probe structure; (b) light field distribution of a Teflon probe in the y-z plane; (c) a fully silver-plated probe structure; (d) light field distribution at the tip of a fully silver-plated probe in the y-z plane; (e) a thickness-graded silver-plated strip probe structure; (f) light field distribution of a thickness-graded silver-plated strip probe in the y-z plane.

    图 3  y-z平面沿探针中心线 (y = 0)的尖端电场强度分布及归一化电场强度分布曲线 (a)厚度渐变镀银条带探针尖端光场分布; (b) 归一化电场强度分布

    Fig. 3.  Peak electric field intensity distribution and normalized electric field intensity distribution curve along the probe centerline (y = 0) in the y-z plane: (a) The light field distribution at the tip of a thickness-graded silver-plated strip probe; (b) the normalized electric field intensity distribution curve.

    图 4  x-y平面三种探针电场强度分布

    Fig. 4.  Distribution of electric field intensity of three kinds of probes in x-y plane.

    图 5  不同偏振的太赫兹波在厚度渐变镀银条带探针尖端处产生的x-y平面的电场强度分布 第一行到第四行分别为入射波沿y轴偏振、x轴偏振、左旋圆偏振、右旋圆偏振的紧聚焦电场强度分布; 第一列到第四列分别为紧聚焦电场的Ex分量、Ey分量、Ez分量和Etotal总场

    Fig. 5.  The electric field strength at the tip of the thickness-graded silver-plated strip probe is distributed in the x-y plane when the polarization directions of the incident terahertz waves are different. The first row to the fourth row are the tightly focused electric field intensity distributions of the incident wave along the y-axis polarization, the x-axis polarization, the left-hand circular polarization, and the right-hand circular polarization. The first to fourth columns are the Ex component, Ey component, Ez component, and Etotal of the tightly focused electric field, respectively.

    图 6  不同θ值对应的厚度渐变镀银条带探针结构的表面电流和紧聚焦光场的电场强度曲线 第一行到第四行分别为θ = 30°, 45°, 60°和90°的情况; 第一列到第三列分别为x-y平面的探针结构、表面电流分布、紧聚焦光场归一化电场强度

    Fig. 6.  Surface current and tightly focused electric field intensity curves of the thickness-graded silver-plated strip probe structure corresponding to different θ values. The first to fourth rows are the cases of θ = 30°, 45°, 60°, and 90°, respectively. The first to third columns are the probe structure, the surface current distribution, and the normalized electric field intensity of tightly focused light field in the x-y plane, respectively.

    表 1  不同θ值所对应的Emax/E0和FWHM

    Table 1.  Emax/E0 and FWHM corresponding to different θ values.

    θ30º45º60º90º
    Emax/E0672.6744.7768849
    FWHMλ/150 (20 μm)λ/125 (24 μm)λ/115 (26 μm)λ/100 (30 μm)
    下载: 导出CSV
  • [1]

    Tormo A D, Khalenkow D, Saurav K, Skirtach A G, Thomas N L 2017 Opt. Lett. 42 4410Google Scholar

    [2]

    Degl’Innocenti R, Wallis R, Wei B B, Xiao L, Kindness S J, Mitrofanov O, Weimer P B, Hofmann S, Beere H E, Ritchie D A 2017 ACS Photonics 4 2150Google Scholar

    [3]

    Liu J B, Mendis R, Mittleman D M, Sakoda N 2013 Appl. Phys. Lett. 103 031104

    [4]

    Moon K, Park H, Kim J, Do Y, Lee S, Lee G, Kang H, Han H 2015 Nano Lett. 15 549

    [5]

    Maier S A, Andrews S R, Martin-Moreno L, Garcia-Vidal F J 2006 Phys. Rev. Lett. 97 176805Google Scholar

    [6]

    Tang H H, Liu P K 2015 Opt. Lett. 40 5822

    [7]

    Shen X P, Cui T J, Martin-Cano Diego, Garcia-Vidal F J 2013 Proceedings of the National Academy of Sciences of the United States of America 110 1Google Scholar

    [8]

    Pendry J B, Martín-Moreno L, Garcia-Vidal F J 2004 Science 305 5685

    [9]

    Fernández-Domínguez A I, Martín-Moreno L, García-Vidal F J, Andrews S R, Maier S A 2008 IEEE J. Sel. Top. Quant. 14 6Google Scholar

    [10]

    Brock E M G, Hendry E, Hibbins A P 2011 Appl. Phys. Lett. 99 051108

    [11]

    Zhao W S, Eldaiki O M, Yang R X, Lu Z L 2010 Opt. Express 18 20

    [12]

    Liu L L,Li Z, Gu C Q, Ning P P, Xu B Z, Niu Z Y, Zhao Y J 2014 J. Appl. Phys. 116 013501Google Scholar

    [13]

    Li Z, Liu L L, Xu B Z, Ning P P, Chen C, Xu J, Chen X L, Gu C Q, Ning Q 2016 Sci. Rep. 6 21199Google Scholar

    [14]

    Li Z, Xu B Z, Liu L L, Xu J, Chen C, Gu C Q, Zhou Y J 2016 Sci. Rep. 6 27158Google Scholar

    [15]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 824 6950

    [16]

    Li Z, Xu J, Chen C, Sun Y H,Xu B Z, Liu L L, Gu C Q 2016 Appl. Opt. 55 36Google Scholar

    [17]

    Xu J, Li Z, Liu L L, Chen C, Xu B Z, Ning P P, Gu C Q 2016 Opt. Commun. 372 155Google Scholar

    [18]

    Mbonye M, Mendis R, Mittleman D M 2012 Appl. Phys. Lett. 100 111120Google Scholar

    [19]

    Schnell M, Alonso-González P, Arzubiaga L, Casanova F, Hueso L E, Chuvilin A, Hillenbrand R 2011 Nat. Photon. 5 283Google Scholar

    [20]

    黄铁军, 汤恒河, 谭云华, 刘濮鲲 2017全国微波毫米波会议论文集 (上册) 中国杭州, 2017年5月8日 第268页

    Huang T J, Tang H H, Tan Y H, Liu P K 2017 Proceedings of the National Conference on Microwave Millimeter Wave (Vol. I) Hangzhou, China, May 8, 2017 p268 (in Chinese)

    [21]

    汤恒河, 黄铁军, 刘濮鲲 2018 全国微波毫米波会议论文集 (下册) 中国成都, 2018年5月6日 第77页

    Tang H H, Huang T J, Liu P K 2018 Proceedings of the National Conference on Microwave Millimeter Wave (Vol. II) Chengdu, China, May 6, 2018 p77 (in Chinese)

    [22]

    Huang T J, Tang H H, Yin L Z, Liu J Y, Tan Y H, Liu P K 2018 Opt. Lett. 43 15

    [23]

    Dorn R, Quabis S, Leuchs G 2003 Phys. Rev. Lett. 91 233901

    [24]

    Wang T T, Kuang C F, Hao X, Liu X 2013 Optik 124 21

    [25]

    Youngworth K S, Brown T G 2000 Opt. Express 7 2Google Scholar

    [26]

    Quabis S, Dorn R, Eberler M, Glöckl O, Leuchs G 2000 Opt. Commun. 179 1Google Scholar

  • [1] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面. 物理学报, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [2] 张向, 王玥, 张婉莹, 张晓菊, 罗帆, 宋博晨, 张狂, 施卫. 单壁碳纳米管太赫兹超表面窄带吸收及其传感特性. 物理学报, 2024, 73(2): 026102. doi: 10.7498/aps.73.20231357
    [3] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [4] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [5] 汪静丽, 董先超, 尹亮, 杨志雄, 万洪丹, 陈鹤鸣, 钟凯. 基于二氧化钒的太赫兹双频多功能编码超表面. 物理学报, 2023, 72(9): 098101. doi: 10.7498/aps.72.20222321
    [6] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [7] 于博, 庄书磊, 王正心, 王曼诗, 郭兰军, 李鑫煜, 郭文瑞, 苏文明, 龚诚, 刘伟伟. 基于纳米印刷技术的双螺旋太赫兹可调超表面. 物理学报, 2022, 71(11): 117801. doi: 10.7498/aps.71.20212408
    [8] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [9] 李佳辉, 张雅婷, 李吉宁, 李杰, 李继涛, 郑程龙, 杨悦, 黄进, 马珍珍, 马承启, 郝璇若, 姚建铨. 基于二氧化钒的太赫兹编码超表面. 物理学报, 2020, 69(22): 228101. doi: 10.7498/aps.69.20200891
    [10] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [11] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [12] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [13] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面. 物理学报, 2017, 66(20): 204101. doi: 10.7498/aps.66.204101
    [14] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [15] 王长, 曹俊诚. 太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究. 物理学报, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [16] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究. 物理学报, 2015, 64(15): 158101. doi: 10.7498/aps.64.158101
    [17] 鲍迪, 沈晓鹏, 崔铁军. 太赫兹人工电磁媒质研究进展. 物理学报, 2015, 64(22): 228701. doi: 10.7498/aps.64.228701
    [18] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [19] 胡海峰, 蔡利康, 白文理, 张晶, 王立娜, 宋国峰. 基于表面等离子体的太赫兹光束方向调控的模拟研究. 物理学报, 2011, 60(1): 014220. doi: 10.7498/aps.60.014220
    [20] 赵维谦, 陈珊珊, 冯政德. 图像复原式整形环形光横向超分辨共焦显微测量新方法. 物理学报, 2006, 55(7): 3363-3367. doi: 10.7498/aps.55.3363
计量
  • 文章访问数:  8943
  • PDF下载量:  221
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-09
  • 修回日期:  2019-12-10
  • 刊出日期:  2020-03-05

/

返回文章
返回