搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

上海光源硬X射线相干衍射成像实验方法初探

周光照 胡哲 杨树敏 廖可梁 周平 刘科 滑文强 王玉柱 边风刚 王劼

引用本文:
Citation:

上海光源硬X射线相干衍射成像实验方法初探

周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼

Preliminary exploration of hard X-ray coherent diffraction imaging method at SSRF

Zhou Guang-Zhao, Hu Zhe, Yang Shu-Min, Liao Ke-Liang, Zhou Ping, Liu Ke, Hua Wen-Qiang, Wang Yu-Zhu, Bian Feng-Gang, Wang Jie
PDF
HTML
导出引用
  • 相干X射线衍射成像方法是一种先进的成像技术, 分辨率可达纳米量级. 国际上大多数的同步辐射装置和自由电子激光装置都建立了该成像方法, 并有将其作为主要成像技术的趋势. 上海光源作为目前国内唯一的一台第三代同步辐射光源, 尚未建立基于硬X射线的相干衍射成像实验平台. 随着一批以波荡器为光源的光束线站投入使用, 使得该方法的建立成为了可能. 本文基于上海光源BL19U2生物小角散射线站, 通过有效的光路设计, 搭建了相干衍射实验平台, 在12 keV和13.5 keV能量点均获得了硬X射线相干光束, 并基于小孔衍射测量了入射光束的空间相干长度. 该平台支持常规和扫描相干衍射实验模式, 对小孔衍射图样及波带片扫描衍射图样实现了正确的相位重建, 证明了该平台初步具备开展硬X射线相干衍射成像实验的能力. 硬X射线相干衍射成像实验平台为国内首次建立, 将为国内该实验方法的发展和应用提供有效的软硬件支持.
    Coherent X-ray diffraction imaging (CDI) method is a powerful X-ray imaging technique with high resolution up to nanometer scale. Most of the synchrotron radiation facilities and free electron laser facilities are equipped with this state-of-the-art imaging technique and have made many outstanding achievements in multiple scientific areas. Up to now, although scanning CDI (ptychography) method based on a soft X-ray source has been opened to users, the hard X-ray CDI experimental platform has not been built at Shanghai Synchrotron Radiation Facility (SSRF) which can research some relatively thick specimens and easily extend to three-dimensional imaging. As some new beamlines with undulator source were put into operation recently, it is possible and feasible to build up the CDI experimental platform with hard X-ray. In this article, we report the hard X-ray CDI experimental platform development process and preliminary experimental results of coherent diffraction pattern and image reconstruction at SSRF. Based on the operating BL19U2 biological small-angle X-ray scattering (SAXS) beamline at SSRF, the hard X-ray coherent beam is obtained through effective optical path designation at 12 keV and 13.5 keV. The hard X-ray optimization includes tuning several slits, double crystal monochromator (DCM), horizontal deflection mirror, focusing mirror system and pinhole, etc. Furthermore, hard X-ray CDI experiments are conducted. The spatial coherent length of the incident beam is also measured from the pinhole diffraction pattern. This platform can provide both conventional mode and scanning mode (ptychography) for the coherent diffraction imaging method, and the correct image reconstruction from the experimental diffraction patterns proves that the platform has the experimental capability for hard X-ray CDI. In the conventional forward scattering CDI mode, coherent diffraction patterns of pinhole are collected and used to analyse the coherence property of the optimized X-ray beam. The structure of pinhole is also reconstructed from the diffraction pattern. In the scanning CDI mode, a zone plate is used as a sample. The central area of zone plate is reconstructed correctly. About 90 nm/pixel resolution of reconstruction is achieved which is extremely dependent on the X-ray flux density from the undulator source emission. Hard X-ray CDI experimental platform based on the synchrotron radiation facility is first built in China. It will provide effective software and hardware supporting for the development and application of hard X-ray CDI experiments in China in the future.
      通信作者: 滑文强, huawenqiang@zjlab.org.cn ; 王玉柱, wangyuzhu@zjlab.org.cn
    • 基金项目: 国家级-X射线反射镜表面的功率谱密度的工作波长检测方法研究(11675253)
      Corresponding author: Hua Wen-Qiang, huawenqiang@zjlab.org.cn ; Wang Yu-Zhu, wangyuzhu@zjlab.org.cn
    [1]

    Xu H J, Zhao Z T 2008 Nucl. Sci. Tech. 19 1Google Scholar

    [2]

    Jiao Y, Xu G, Cui X H, Duan Z, Guo Y Y, He P, Ji D H, Li J Y, Li X Y, Meng C, Peng Y M, Tian S K, Wang J Q, Wang N, Wei Y Y, Xu H S, Yan F, Yu C H, Zhao Y L, Qin Q 2018 J. Synchrotron Radiat. 25 1611Google Scholar

    [3]

    Hua W Q, Zhou G Z, Hu Z, Yang S M, Liao K L, Zhou P, Dong X H, Wang Y Z, Bian F G, Wang J 2019 J. Synchrotron Radiat. 26 619Google Scholar

    [4]

    Mcneil B W J, Thompson N R 2010 Nat. Photon. 4 814Google Scholar

    [5]

    Nugent K A 2010 Adv. Phys. 59 1Google Scholar

    [6]

    范家东, 江怀东 2012 物理学报 61 218702Google Scholar

    Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702Google Scholar

    [7]

    周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔 2011 物理学报 60 028701Google Scholar

    Zhou G Z, Tong Y J, Chen C, Ren Y Q, Wang Y D, Xiao T Q 2011 Acta Phys. Sin. 60 028701Google Scholar

    [8]

    周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔 2012 物理学报 61 018701Google Scholar

    Zhou G Z, Wang Y D, Ren Y Q, Chen C, Ye L L, Xiao T Q 2012 Acta Phys. Sin. 61 018701Google Scholar

    [9]

    Miao J W, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342Google Scholar

    [10]

    Shi X W, Burdet N, Chen B, Xiong G, Streubel R, Harder R, Robinson I K 2019 Appl. Phys. Res. 6 011306

    [11]

    Jiang H D, Song C Y, Chen C C, Xu R, Raines K S, Fahimian B P, Lu C H, Lee T K, Nakashima A, Urano J, Ishikawa T, Tamano F, Miao J W 2010 Proc. Natl. Acad. Sci. USA 107 11234Google Scholar

    [12]

    Rodriguez J A, Xu R, Chen C C, Huang Z F, Jiang H D, Chen A L, Raines K S, Jr A P, Nam D, Wiegart L, Song C Y, Madsen A, Chushkin Y, Zontone F, Bradley P J, Miao J W 2015 IUCrJ 2 575Google Scholar

    [13]

    Yang W G, Huang X J, Harder R, Clark J N, Robinson I K, Mao H K 2013 Nat. Commun. 4 1680Google Scholar

    [14]

    Holler M, Sicairos M G, Tsai E H R, Dinapoli R, M, Müller E, Bunk O, Raabe J, Aeppli G 2017 Nature 543 402Google Scholar

    [15]

    Miao J W, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530Google Scholar

    [16]

    Zhang X Y 2018 Synchrotron Radiation Applications (Singapore: World Scientific Hackensack) pp343−388

    [17]

    Grübel G, Madsen A, Robert A (Borsali R, Pecora R eds) 2008 Soft Matter Characterization (Heidelberg: Springer Netherlands) pp953−995

    [18]

    Sinha S K, Jiang Z, Lurio L B 2014 Adv. Mater. 26 7764Google Scholar

    [19]

    张明俊, 郭智, 邰仁忠, 张祥志, 罗豪甦 2015 物理学报 64 147801Google Scholar

    Zhang M J, Guo Z, Tai R Z, Zhang X Z, Luo H S 2015 Acta Phys. Sin. 64 147801Google Scholar

    [20]

    Xu R, Salha S, Raines K S, Jiang H D, Chen C C, Takahashi Y, Kohmura Y, Nishino Y, Song C Y, Ishikawa T, Miao J W 2011 J. Synchrotron Radiat. 18 293Google Scholar

    [21]

    Rau C, Wagner U, Pesic Z, Fanis A D 2011 Phys. Status Solidi A 208 2522Google Scholar

    [22]

    Xu Z J, Wang C P, Liu H G, Tao X L, Tai R Z 2017 J. Phy. Conf. Ser. 849 012033Google Scholar

    [23]

    Li N, Li X, Wang Y, Liu G, Zhou P, Wu H, Hong C, Bian F, Zhang R 2016 J. Appl. Crystallogr. 49 1428Google Scholar

    [24]

    玻恩M, 沃耳夫E 著 (杨葭荪 译)2009 光学原理: 光的传播、干涉和衍射的电磁理论(第7版) (北京: 电子工业出版社) 第459−525页

    Born M, Wolf E (translated by Yang J S) 2009 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp459−525 (in Chinese)

    [25]

    徐朝银 著 2013 同步辐射光学与工程 (合肥: 中国科学技术大学出版社) 第24−37页

    Xu C Y 2013 Synchrotron Radiation Optics and Engineering (Hefei: Press of University of Science and Technology of China) pp24−37 (in Chinese)

    [26]

    王华, 闫帅, 闫芬, 蒋升, 毛成文, 梁东旭, 杨科, 李爱国, 余笑寒 2012 物理学报 61 144102Google Scholar

    Wang H, Yan S, Yan F, Jiang S, Mao C W, Liang D X, Yang K, Li A G, Yu X H 2012 Acta Phys. Sin. 61 144102Google Scholar

    [27]

    Tanaka T, Kitamura H 2001 J. Synchrotron Radiat. 8 1221Google Scholar

    [28]

    Hua W Q, Bian F G, Song L, Li X H, Wang J 2013 Chin. Phys. C 37 068001Google Scholar

    [29]

    Yu C J, Lee H C, Chan K, Cha W, Carnis J, Kim Y, Noh D Y, Kim H 2014 J. Synchrotron Radiat. 21 264Google Scholar

    [30]

    Hua W Q, Zhou G Z, Wang Y Z, Zhou P, Yang S M, Peng C Q, Bian F G, Li X H, Wang J 2017 Chin. Opt. Lett. 15 033401Google Scholar

    [31]

    Deng J J, Vine D J, Chen S, Jin Q L, Nashed Y S G, Peterka T, Vogt S, Jacobsen C 2017 Sci. Rep. 7 445Google Scholar

    [32]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256Google Scholar

  • 图 1  储存环流强为300 mA时, 不同波荡器K值下, 计算得到不同奇次谐波的(a)能量和(b)亮度分布

    Fig. 1.  Calculated (a) energy and (b) brilliance for odd harmonics as a function of the undulator K-value (a target ring current of 300 mA is used).

    图 2  相干衍射实验模式@BL19U2光束线站布局图 (a)侧视图, 垂直方向; (b)上视图, 水平方向

    Fig. 2.  Beamline layout of the coherent scattering experimental modes on BL19U2: (a) Side view, vertical direction; (b) top view, horizontal direction.

    图 3  (a)实验装置示意图; (b)现场照片

    Fig. 3.  (a) Schematic diagram of experimental equipment; (b) on-site picture.

    图 4  (a), (b)不同入射光束相干度下的针孔衍射图样; (c)水平和(d)垂直方向上的衍射强度分布(图(a), (b)中白色虚线位置); 强度分布均为对数显示

    Fig. 4.  (a), (b) Measured diffraction patterns of pinhole with incident beam of reduced coherence; diffracted intensity distribution in the horizontal (c) and vertical (d) direction along the dotted line profile in panel (a) and (b), and the intensity distribution are shown in log scale.

    图 5  针孔样品的(a)相干衍射图, (b) 结构重建图, (c)扫描电镜图

    Fig. 5.  Coherent diffraction pattern (a), reconstruction (b) and SEM image (c) of pinhole.

    图 6  (a)探测器采集到的第441张衍射图; 根据衍射图重建波带片样品结构的(b)振幅和(c)相位信息; (d)波带片样品相应结构的电子显微镜图片; 根据衍射图重建的入射光束的(e)振幅和(f)相位信息

    Fig. 6.  (a) The 441st diffraction pattern collected by the detector; recovered (b) amplitude and (c) phase information of the sample structure of the Fresnel zone plate according to the diffraction patterns; (d) electron microscope image of the corresponding structures of the wave band specimens; reconstructed (e) amplitude and (f) phase information of the incident beam simultaneously according to the diffraction pattern.

    表 1  国际上同步辐射相干散射(衍射)线站举例列表

    Table 1.  Well-known coherent scattering beamlines in the world.

    光束线站能量范围/keV光斑尺寸/μm相干通量相干实验方法
    NSLS 11-ID6—163—105 × 1011 ph/s@9.65 keVCoSAXS, XPCS
    PETRA-III P105—204.5—403 × 109 ph/sCDI, Bragg CDI, XPCS
    SPring-8 29 XUL4.5—18.7~1—20~109 ph/sCDI, Ptychography
    Diamond I13-16—351 × 1010 ph/s@8 keVCDI, Bragg CDI, Ptychography, XPCS
    APS 34-ID-C5—15~0.75 × 109 ph/s@10 keVCoSAXS, Ptychography
    MAX IV CoSAXS4—2010 or 1001.5 × 1012 ph/s@10 keVCoSAXS, XPCS
    SLS X12 SA4.4—17.925 × 107 × 108 ph/s@6.2 keVCoSAXS
    PLS-II 9 C5—15 < 3001.7 × 1010 ph/s@10 keVCDI, Bragg CDI, XPCS
    TPS 25 A5.5—201—101 × 1010 ph/s@6 keVCDI, XPCS
    下载: 导出CSV

    表 2  储存环流强为300 mA时, 波荡器不同参数下辐射出的能量、亮度、通量和相干通量

    Table 2.  Photon energy and highest brilliance/flux/coherent flux with corresponding undulator parameters (a target ring current of 300 mA is used).

    光子能量/
    keV
    谐波阶数磁场/TK亮度/
    1018 flux·mm–2·mrad–2
    光通量/
    1014 ph·s–1·0.1%BW–1
    相干光通量/
    109 ph·s–1·0.1%BW–1
    830.8221.53519.54.43111
    1030.6541.22112.52.8044.9
    1230.5120.9556.261.3715.3
    13.550.8161.5238.641.6814.8
    1550.7341.3706.091.178.34
    下载: 导出CSV

    表 3  上海光源BL19U2光源点(12 keV时)及传播时的光束相干特性

    Table 3.  Beam parameters of BL19U2 (@12 keV) at the source and KB mirrors.

    水平方向垂直方向
    光源点光斑尺寸397 µm26 µm
    光源点发散度78 µrad23 µrad
    光源点相干长度0.48 µm1.29 µm
    光源点相干度0.15%7.59%
    KB镜处光斑尺寸1073 µm距离光源31.2 m434 µm距离光源点34 m
    KB镜处相干长度3.36 µm57.3 µm
    下载: 导出CSV
  • [1]

    Xu H J, Zhao Z T 2008 Nucl. Sci. Tech. 19 1Google Scholar

    [2]

    Jiao Y, Xu G, Cui X H, Duan Z, Guo Y Y, He P, Ji D H, Li J Y, Li X Y, Meng C, Peng Y M, Tian S K, Wang J Q, Wang N, Wei Y Y, Xu H S, Yan F, Yu C H, Zhao Y L, Qin Q 2018 J. Synchrotron Radiat. 25 1611Google Scholar

    [3]

    Hua W Q, Zhou G Z, Hu Z, Yang S M, Liao K L, Zhou P, Dong X H, Wang Y Z, Bian F G, Wang J 2019 J. Synchrotron Radiat. 26 619Google Scholar

    [4]

    Mcneil B W J, Thompson N R 2010 Nat. Photon. 4 814Google Scholar

    [5]

    Nugent K A 2010 Adv. Phys. 59 1Google Scholar

    [6]

    范家东, 江怀东 2012 物理学报 61 218702Google Scholar

    Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702Google Scholar

    [7]

    周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔 2011 物理学报 60 028701Google Scholar

    Zhou G Z, Tong Y J, Chen C, Ren Y Q, Wang Y D, Xiao T Q 2011 Acta Phys. Sin. 60 028701Google Scholar

    [8]

    周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔 2012 物理学报 61 018701Google Scholar

    Zhou G Z, Wang Y D, Ren Y Q, Chen C, Ye L L, Xiao T Q 2012 Acta Phys. Sin. 61 018701Google Scholar

    [9]

    Miao J W, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342Google Scholar

    [10]

    Shi X W, Burdet N, Chen B, Xiong G, Streubel R, Harder R, Robinson I K 2019 Appl. Phys. Res. 6 011306

    [11]

    Jiang H D, Song C Y, Chen C C, Xu R, Raines K S, Fahimian B P, Lu C H, Lee T K, Nakashima A, Urano J, Ishikawa T, Tamano F, Miao J W 2010 Proc. Natl. Acad. Sci. USA 107 11234Google Scholar

    [12]

    Rodriguez J A, Xu R, Chen C C, Huang Z F, Jiang H D, Chen A L, Raines K S, Jr A P, Nam D, Wiegart L, Song C Y, Madsen A, Chushkin Y, Zontone F, Bradley P J, Miao J W 2015 IUCrJ 2 575Google Scholar

    [13]

    Yang W G, Huang X J, Harder R, Clark J N, Robinson I K, Mao H K 2013 Nat. Commun. 4 1680Google Scholar

    [14]

    Holler M, Sicairos M G, Tsai E H R, Dinapoli R, M, Müller E, Bunk O, Raabe J, Aeppli G 2017 Nature 543 402Google Scholar

    [15]

    Miao J W, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530Google Scholar

    [16]

    Zhang X Y 2018 Synchrotron Radiation Applications (Singapore: World Scientific Hackensack) pp343−388

    [17]

    Grübel G, Madsen A, Robert A (Borsali R, Pecora R eds) 2008 Soft Matter Characterization (Heidelberg: Springer Netherlands) pp953−995

    [18]

    Sinha S K, Jiang Z, Lurio L B 2014 Adv. Mater. 26 7764Google Scholar

    [19]

    张明俊, 郭智, 邰仁忠, 张祥志, 罗豪甦 2015 物理学报 64 147801Google Scholar

    Zhang M J, Guo Z, Tai R Z, Zhang X Z, Luo H S 2015 Acta Phys. Sin. 64 147801Google Scholar

    [20]

    Xu R, Salha S, Raines K S, Jiang H D, Chen C C, Takahashi Y, Kohmura Y, Nishino Y, Song C Y, Ishikawa T, Miao J W 2011 J. Synchrotron Radiat. 18 293Google Scholar

    [21]

    Rau C, Wagner U, Pesic Z, Fanis A D 2011 Phys. Status Solidi A 208 2522Google Scholar

    [22]

    Xu Z J, Wang C P, Liu H G, Tao X L, Tai R Z 2017 J. Phy. Conf. Ser. 849 012033Google Scholar

    [23]

    Li N, Li X, Wang Y, Liu G, Zhou P, Wu H, Hong C, Bian F, Zhang R 2016 J. Appl. Crystallogr. 49 1428Google Scholar

    [24]

    玻恩M, 沃耳夫E 著 (杨葭荪 译)2009 光学原理: 光的传播、干涉和衍射的电磁理论(第7版) (北京: 电子工业出版社) 第459−525页

    Born M, Wolf E (translated by Yang J S) 2009 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp459−525 (in Chinese)

    [25]

    徐朝银 著 2013 同步辐射光学与工程 (合肥: 中国科学技术大学出版社) 第24−37页

    Xu C Y 2013 Synchrotron Radiation Optics and Engineering (Hefei: Press of University of Science and Technology of China) pp24−37 (in Chinese)

    [26]

    王华, 闫帅, 闫芬, 蒋升, 毛成文, 梁东旭, 杨科, 李爱国, 余笑寒 2012 物理学报 61 144102Google Scholar

    Wang H, Yan S, Yan F, Jiang S, Mao C W, Liang D X, Yang K, Li A G, Yu X H 2012 Acta Phys. Sin. 61 144102Google Scholar

    [27]

    Tanaka T, Kitamura H 2001 J. Synchrotron Radiat. 8 1221Google Scholar

    [28]

    Hua W Q, Bian F G, Song L, Li X H, Wang J 2013 Chin. Phys. C 37 068001Google Scholar

    [29]

    Yu C J, Lee H C, Chan K, Cha W, Carnis J, Kim Y, Noh D Y, Kim H 2014 J. Synchrotron Radiat. 21 264Google Scholar

    [30]

    Hua W Q, Zhou G Z, Wang Y Z, Zhou P, Yang S M, Peng C Q, Bian F G, Li X H, Wang J 2017 Chin. Opt. Lett. 15 033401Google Scholar

    [31]

    Deng J J, Vine D J, Chen S, Jin Q L, Nashed Y S G, Peterka T, Vogt S, Jacobsen C 2017 Sci. Rep. 7 445Google Scholar

    [32]

    Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256Google Scholar

  • [1] 齐乃杰, 何小亮, 吴丽青, 刘诚, 朱健强. 探测器光电特性对叠层相干衍射成像的影响. 物理学报, 2023, 72(15): 154202. doi: 10.7498/aps.72.20230603
    [2] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术. 物理学报, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [3] 许文慧, 宁守琮, 张福才. 部分相干衍射成像综述. 物理学报, 2021, 70(21): 214201. doi: 10.7498/aps.70.20211020
    [4] 杨俊亮, 李中亮, 李瑭, 朱晔, 宋丽, 薛莲, 张小威. 多晶体光路配置的X射线衍射特性及在表征同步辐射光束线带宽上的应用. 物理学报, 2020, 69(10): 104101. doi: 10.7498/aps.69.20200165
    [5] 葛银娟, 潘兴臣, 刘诚, 朱健强. 基于相干调制成像的光学检测技术. 物理学报, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [6] 张洪波, 张希仁. 用于实现散射介质中时间反演的数字相位共轭的相干性. 物理学报, 2018, 67(5): 054201. doi: 10.7498/aps.67.20172308
    [7] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术. 物理学报, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [8] 余伟, 何小亮, 刘诚, 朱健强. 非相干照明条件下的ptychographic iterative engine成像技术. 物理学报, 2015, 64(24): 244201. doi: 10.7498/aps.64.244201
    [9] 何小亮, 刘诚, 王继成, 王跃科, 高淑梅, 朱健强. PIE成像中周期性重建误差的研究. 物理学报, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [10] 戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔. 第三代同步辐射光源X射线相干性测量研究. 物理学报, 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [11] 满天龙, 万玉红, 江竹青, 王大勇, 陶世荃. 孪生光束干涉法测量光源的空间相干性. 物理学报, 2013, 62(21): 214203. doi: 10.7498/aps.62.214203
    [12] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像. 物理学报, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [13] 靳爱军, 王泽锋, 侯静, 郭良, 姜宗福. 光子晶体光纤反常色散区抽运产生超连续谱的相干特性分析. 物理学报, 2012, 61(12): 124211. doi: 10.7498/aps.61.124211
    [14] 江浩, 张新廷, 国承山. 基于菲涅耳衍射的无透镜相干衍射成像. 物理学报, 2012, 61(24): 244203. doi: 10.7498/aps.61.244203
    [15] 靳爱军, 王泽锋, 侯静, 郭良, 姜宗福, 肖瑞. 复自相干度度量超连续谱相干性. 物理学报, 2012, 61(15): 154201. doi: 10.7498/aps.61.154201
    [16] 闫芬, 张继超, 李爱国, 杨科, 王华, 毛成文, 梁东旭, 闫帅, 李炯, 余笑寒. 基于同步辐射的快速扫描X射线微束荧光成像方法. 物理学报, 2011, 60(9): 090702. doi: 10.7498/aps.60.090702
    [17] 张强, 户田裕之. 同步辐射K边减影成像及其在多孔金属材料中的应用. 物理学报, 2011, 60(11): 114103. doi: 10.7498/aps.60.114103
    [18] 邓玉强, 张志刚, 柴 路, 王清月. 小波变换重建超短脉冲光谱相位的误差分析. 物理学报, 2005, 54(9): 4176-4181. doi: 10.7498/aps.54.4176
    [19] 黄万霞, 袁清习, 田玉莲, 朱佩平, 姜晓明, 王寯越. 同步辐射硬x射线衍射增强成像新进展. 物理学报, 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
    [20] 邓玉强, 吴祖斌, 陈盛华, 柴 路, 王清月, 张志刚. 自参考光谱相干法的小波变换相位重建. 物理学报, 2005, 54(8): 3716-3721. doi: 10.7498/aps.54.3716
计量
  • 文章访问数:  12785
  • PDF下载量:  444
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-17
  • 修回日期:  2019-11-19
  • 刊出日期:  2020-02-05

/

返回文章
返回