搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子催化的离散调制连续变量量子密钥分发

叶炜 郭迎 夏莹 钟海 张欢 丁建枝 胡利云

引用本文:
Citation:

基于量子催化的离散调制连续变量量子密钥分发

叶炜, 郭迎, 夏莹, 钟海, 张欢, 丁建枝, 胡利云

Discrete modulation continuous-variable quantum key distribution based on quantum catalysis

Ye Wei, Guo Ying, Xia Ying, Zhong Hai, Zhang Huan, Ding Jian-Zhi, Hu Li-Yun
PDF
HTML
导出引用
  • 相比于离散变量量子密钥分发, 连续变量量子密钥分发虽然具备更高的安全码率等优势, 但是在安全传输距离上却略有不足. 尽管量子催化的运用对高斯调制连续变量量子密钥分发协议的性能, 尤其在安全传输距离方面有着显著的提升, 然而能否用来改善离散调制协议的性能却仍然未知. 鉴于上述分析, 本文提出了一种基于量子催化的离散调制协议的方案, 试图在安全密钥率、安全传输距离和最大可容忍过噪声方面进一步提升协议性能. 研究结果表明, 在相同参数下, 当优化量子催化引入的透射率T, 相比于原始四态调制协议, 所提方案能够有效地提升量子密钥分发的性能. 特别是, 对于可容忍过噪声为0.002, 量子催化可将安全通信距离突破300 km, 密钥率为 10–8 bits/pulse, 而过大的可容忍噪声会抑制量子催化对协议性能的改善效果. 此外, 为了彰显量子催化的优势, 本文给出了点对点量子通信的最终极限Pirandola-Laurenza-Ottaviani-Banchi边界, 仿真结果表明, 虽然原始方案与所提方案都未能突破这种边界, 但是相比于前者, 后者能够在远距离通信上逼近于这种边界, 这为实现全球量子安全通信的最终目标提供理论依据.
    Compared with discrete variable quantum key distribution (DVQKD), continuous variable (CV) QKD has high security bit rate and other advantages, which, however, are slightly insufficient in secure transmission distance. In addition, the application of quantum catalysis has significantly improved the performance of Gaussian modulated (GM) CVQKD, especially in secure transmission distance. Recently, the application of quantum catalysis has significantly improved the performance of GM-CVQKD. However, whether it can be used to improve the performance of discrete modulated (DM) CVQKD protocol is still ambiguous. Therefore, a scheme of DM CVQKD protocol based on quantum catalysis is proposed in this paper to further improve the performance of the proposed protocol in terms of secure key rate, secure transmission distance and maximum tolerable noise. Our results show that under the same parameters, when the transmittance T introduced by quantum catalysis is optimized, the proposed scheme can effectively further improve the performance of QKD system compared with the original four-state modulation CVQKD scheme. In particular, when the tolerable excess noise is 0.002, the use of quantum catalysis can break the safe communication distance of 300 km with a key rate of 10–8 bits/pulse. However, if this noise is too large, the improvement in the effect of quantum catalysis on protocol performance will be restrained. In addition, in order to highlight the advantages of the use of quantum catalysis, the ultimate limit PLOB (Pirandola-Laurenza-Ottaviani-Banchi) bound of point-to-point quantum communication is given in this paper. The simulation results indicate that although neither the original scheme nor the proposed scheme can break the bound, compared with the former, the latter can be close to the boundary in long-distance transmission. These results provide theoretical basis for achieving the ultimate goal of global quantum security communication.
      通信作者: 郭迎, yingguo@csu.edu.cn ; 胡利云, hlyun2008@126.com
    • 基金项目: 国家级-国家自然科学基金项目(61572529)
      Corresponding author: Guo Ying, yingguo@csu.edu.cn ; Hu Li-Yun, hlyun2008@126.com
    [1]

    李剑, 陈彦桦, 潘泽世, 孙风琪, 李娜, 黎蕾蕾 2016 物理学报 3 030302Google Scholar

    Li J, Chen Y H, Pan Z S, Sun F Q, Li N, Li L L 2016 Acta Phys. Sin. 3 030302Google Scholar

    [2]

    苗二龙, 莫小范, 桂有珍, 韩正甫, 郭光灿 2004 物理学报 53 2123Google Scholar

    Miao E L, Mo X F, Gui Y Z, Han Z F, Guo G C 2004 Acta Phys. Sin. 53 2123Google Scholar

    [3]

    曹正文, 张爽浩, 冯晓毅, 赵光, 柴庚, 李东伟 2017 物理学报 66 020301Google Scholar

    Cao Z W, Zhang S H, Peng X Y, Zhao G, Chai G, Li D W 2017 Acta Phys. Sin. 66 020301Google Scholar

    [4]

    Braunstein S L, Loock P V 2005 Rev. Mod. Phys. 77 513Google Scholar

    [5]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [6]

    Silberhorn C, Ralph T C, Lütkenhaus N, Leuchs G 2002 Phys. Rev. Lett. 89 167901Google Scholar

    [7]

    Lodewyck J, Bloch M, GarciaPatron R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar

    [8]

    Hu L Y, Liao Z Y, Zubairy M S 2017 Phys. Rev. A 95 012310Google Scholar

    [9]

    Hu L Y, Wu J N, Liao Z Y, Zubairy M S 2016 J. Phys. B: At. Mol. Phys. 49 175504Google Scholar

    [10]

    张欢, 叶炜, 周维东, 胡利云 2019 聊城大学学报 32 21

    Zhang H, Ye W, Zhou W D, Hu L Y 2019 Journal of Liaocheng University 32 1672 (in Chinese)

    [11]

    Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504Google Scholar

    [12]

    Leverrier A, Grangier P 2011 Phys. Rev. A 83 042312Google Scholar

    [13]

    Huang P, Fang J, Zeng G H 2014 Phys. Rev. A 89 042330Google Scholar

    [14]

    Huang P, Huang J Z, Zhang Z S, Zeng G H 2018 Phys. Rev. A 97 042311Google Scholar

    [15]

    Huang P, He G Q, Fang J, Zeng G H 2013 Phys. Rev. A 87 012317Google Scholar

    [16]

    Li Z Y, Zhang Y C, Wang X Y, Xu B J, Peng X, Guo H 2016 Phys. Rev. A 93 012310Google Scholar

    [17]

    Zhao Y J, Zhang Y C, Li Z Y, Yu S, Guo H 2017 Quantum Inf. Process. 16 184Google Scholar

    [18]

    Ma H X, Huang P, Bai D Y, Wang S Y, Bao W S, Zeng G H 2018 Phys. Rev. A 97 042329Google Scholar

    [19]

    Liao Q, Guo Y, Huang D, Huang P, Zeng G H 2018 New J. Phys. 20 023015Google Scholar

    [20]

    Guo Y, Ye W, Zhong H, Liao Q 2019 Phys. Rev. A 99 032327Google Scholar

    [21]

    Zhou W D, Ye W, Liu C J, Hu L Y, Liu S Q 2018 Laser Phys. Lett. 15 065203Google Scholar

    [22]

    Lvovsky A I, Mlynek J 2002 Phys. Rev. Lett. 88 250401Google Scholar

    [23]

    Ye W, Zhong H, Liao Q, Huang D, Hu L Y, Guo Y 2019 Opt. Express 27 17186Google Scholar

    [24]

    Fiurasek J, Cerf N J 2012 Phys. Rev. A 86 060302(R)Google Scholar

    [25]

    Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043Google Scholar

    [26]

    Ma H X, Huang P, Bai D Y, Wang T, Wang S Y, Bao W S, Zeng G H 2019 Phys. Rev. A 99 022322Google Scholar

  • 图 1  纠缠型的零光子催化四态调制协议原理图

    Fig. 1.  Schematic diagram of the entanglement-based (EB) model of the four-state modulation protocol using a zero-photon catalysis

    图 2  ${Z_4}$${Z_G}$随调制方差V的变化

    Fig. 2.  Both ${Z_4}$ and ${Z_G}$ as a function of the modulation variance V.

    图 3  对于不同的调制方差V下量子催化的成功概率${P_{\rm{d}}}$随透射率T的变化(图中从上往下的虚线分别表示V = 1.2, 1.3, 1.4, 1.5)

    Fig. 3.  Success probability of implementing such a zero-photon catalysis as a function of the transmittance T for several different V. The dashed lines from bottom to top correspond to V = 1.2, 1.3, 1.4, 1.5, respectively.

    图 4  离散调制量子密钥分发系统的性能比较 (a) 固定参数$\beta = 0.95, \xi = 0.005$下, 当优化透射率T时, 密钥率在不同调制方差随传输距离的变化; (b) 对应 (a) 情况下, 透射率T随传输距离的变化

    Fig. 4.  Comparison of the performances between the original protocol and the ZPC-based four-state modulation protocol: (a) At a fixed $\beta = 0.95, \xi = 0.005$, the secret key rate as a function of the transmission distance with different V = 1.2, 1.3, 1.4, when optimized over the transmittance T; (b) the transmittance T as a function of the transmission distance corresponding to panel (a).

    图 5  离散调制量子密钥分发系统的性能比较 (a) 固定参数$\beta = 0.95, V = 1.3$下, 当优化透射率T时, 密钥率在不同可容忍过噪声随传输距离的变化; (b) 对应 (a) 情况下, 透射率T随传输距离的变化曲线

    Fig. 5.  Comparison of the performances between the original protocol and the ZPC-based four-state modulation protocol: (a) At a fixed $\beta = 0.95, V = 1.3$, the secret key rate as a function of the transmission distance with different $\xi = 0.002, 0.005, 0.008$, when optimized over the transmittance T; (b) the transmittance T as a function of the transmission distance corresponding to panel (a).

    图 6  离散调制量子密钥分发系统的性能比较 (a) 固定参数$V = 1.3, \xi = 0.005$下, 当优化透射率T时, 密钥率在不同协商效率随传输距离的变化; (b) 对应 (a) 情况下, 透射率T随传输距离的变化曲线

    Fig. 6.  Comparison of the performances between the original protocol and the ZPC-based four-state modulation protocol: (a) At a fixed $V = 1.3, \xi = 0.005$, the secret key rate as a function of the transmission distance with different $\beta = 0.90, 0.95, 1.0$, when optimized over the transmittance T; (b) the transmittance T as a function of the transmission distance corresponding to panel (a).

    图 7  在固定参数$V = 1.3$下, 当优化透射率T时, 可容忍过噪声在不同协商效率随传输距离的变化

    Fig. 7.  At a fixed $V = 1.3$, the tolerable excess noise between the original protocol and the ZPC-based four-state modulation protocol as a function of a transmission distance for several different $\beta = 0.90, 0.95, 1.0$, when optimized over T.

  • [1]

    李剑, 陈彦桦, 潘泽世, 孙风琪, 李娜, 黎蕾蕾 2016 物理学报 3 030302Google Scholar

    Li J, Chen Y H, Pan Z S, Sun F Q, Li N, Li L L 2016 Acta Phys. Sin. 3 030302Google Scholar

    [2]

    苗二龙, 莫小范, 桂有珍, 韩正甫, 郭光灿 2004 物理学报 53 2123Google Scholar

    Miao E L, Mo X F, Gui Y Z, Han Z F, Guo G C 2004 Acta Phys. Sin. 53 2123Google Scholar

    [3]

    曹正文, 张爽浩, 冯晓毅, 赵光, 柴庚, 李东伟 2017 物理学报 66 020301Google Scholar

    Cao Z W, Zhang S H, Peng X Y, Zhao G, Chai G, Li D W 2017 Acta Phys. Sin. 66 020301Google Scholar

    [4]

    Braunstein S L, Loock P V 2005 Rev. Mod. Phys. 77 513Google Scholar

    [5]

    Grosshans F, Grangier P 2002 Phys. Rev. Lett. 88 057902Google Scholar

    [6]

    Silberhorn C, Ralph T C, Lütkenhaus N, Leuchs G 2002 Phys. Rev. Lett. 89 167901Google Scholar

    [7]

    Lodewyck J, Bloch M, GarciaPatron R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W, Grangier P 2007 Phys. Rev. A 76 042305Google Scholar

    [8]

    Hu L Y, Liao Z Y, Zubairy M S 2017 Phys. Rev. A 95 012310Google Scholar

    [9]

    Hu L Y, Wu J N, Liao Z Y, Zubairy M S 2016 J. Phys. B: At. Mol. Phys. 49 175504Google Scholar

    [10]

    张欢, 叶炜, 周维东, 胡利云 2019 聊城大学学报 32 21

    Zhang H, Ye W, Zhou W D, Hu L Y 2019 Journal of Liaocheng University 32 1672 (in Chinese)

    [11]

    Leverrier A, Grangier P 2009 Phys. Rev. Lett. 102 180504Google Scholar

    [12]

    Leverrier A, Grangier P 2011 Phys. Rev. A 83 042312Google Scholar

    [13]

    Huang P, Fang J, Zeng G H 2014 Phys. Rev. A 89 042330Google Scholar

    [14]

    Huang P, Huang J Z, Zhang Z S, Zeng G H 2018 Phys. Rev. A 97 042311Google Scholar

    [15]

    Huang P, He G Q, Fang J, Zeng G H 2013 Phys. Rev. A 87 012317Google Scholar

    [16]

    Li Z Y, Zhang Y C, Wang X Y, Xu B J, Peng X, Guo H 2016 Phys. Rev. A 93 012310Google Scholar

    [17]

    Zhao Y J, Zhang Y C, Li Z Y, Yu S, Guo H 2017 Quantum Inf. Process. 16 184Google Scholar

    [18]

    Ma H X, Huang P, Bai D Y, Wang S Y, Bao W S, Zeng G H 2018 Phys. Rev. A 97 042329Google Scholar

    [19]

    Liao Q, Guo Y, Huang D, Huang P, Zeng G H 2018 New J. Phys. 20 023015Google Scholar

    [20]

    Guo Y, Ye W, Zhong H, Liao Q 2019 Phys. Rev. A 99 032327Google Scholar

    [21]

    Zhou W D, Ye W, Liu C J, Hu L Y, Liu S Q 2018 Laser Phys. Lett. 15 065203Google Scholar

    [22]

    Lvovsky A I, Mlynek J 2002 Phys. Rev. Lett. 88 250401Google Scholar

    [23]

    Ye W, Zhong H, Liao Q, Huang D, Hu L Y, Guo Y 2019 Opt. Express 27 17186Google Scholar

    [24]

    Fiurasek J, Cerf N J 2012 Phys. Rev. A 86 060302(R)Google Scholar

    [25]

    Pirandola S, Laurenza R, Ottaviani C, Banchi L 2017 Nat. Commun. 8 15043Google Scholar

    [26]

    Ma H X, Huang P, Bai D Y, Wang T, Wang S Y, Bao W S, Zeng G H 2019 Phys. Rev. A 99 022322Google Scholar

  • [1] 吴晓东, 黄端. 基于非理想量子态制备的实际连续变量量子秘密共享方案. 物理学报, 2024, 73(2): 020304. doi: 10.7498/aps.73.20230138
    [2] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, 2024, 73(23): . doi: 10.7498/aps.20241094
    [3] 贺英, 王天一, 李莹莹. 线性光学克隆机改进的离散极化调制连续变量量子密钥分发可组合安全性分析. 物理学报, 2024, 73(23): 230303. doi: 10.7498/aps.73.20241094
    [4] 周江平, 周媛媛, 周学军. 非对称信道相位匹配量子密钥分发. 物理学报, 2023, 72(14): 140302. doi: 10.7498/aps.72.20230652
    [5] 吴晓东, 黄端. 基于非高斯态区分探测的往返式离散调制连续变量量子密钥分发方案. 物理学报, 2023, 72(5): 050303. doi: 10.7498/aps.72.20222253
    [6] 文镇南, 易有根, 徐效文, 郭迎. 无噪线性放大的连续变量量子隐形传态. 物理学报, 2022, 71(13): 130307. doi: 10.7498/aps.71.20212341
    [7] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [8] 吴晓东, 黄端, 黄鹏, 郭迎. 基于实际探测器补偿的离散调制连续变量测量设备无关量子密钥分发方案. 物理学报, 2022, 71(24): 240304. doi: 10.7498/aps.71.20221072
    [9] 毛宜钰, 王一军, 郭迎, 毛堉昊, 黄文体. 基于峰值补偿的连续变量量子密钥分发方案. 物理学报, 2021, 70(11): 110302. doi: 10.7498/aps.70.20202073
    [10] 徐兵杰, 唐春明, 陈晖, 张文政, 朱甫臣. 利用无噪线性光放大器增加连续变量量子密钥分发最远传输距离. 物理学报, 2013, 62(7): 070301. doi: 10.7498/aps.62.070301
    [11] 宋汉冲, 龚黎华, 周南润. 基于量子远程通信的连续变量量子确定性密钥分配协议. 物理学报, 2012, 61(15): 154206. doi: 10.7498/aps.61.154206
    [12] 沈咏, 邹宏新. 离散调制连续变量量子密钥分发的安全边界. 物理学报, 2010, 59(3): 1473-1480. doi: 10.7498/aps.59.1473
    [13] 朱畅华, 陈南, 裴昌幸, 权东晓, 易运晖. 基于信道估计的自适应连续变量量子密钥分发方法. 物理学报, 2009, 58(4): 2184-2188. doi: 10.7498/aps.58.2184
    [14] 胡华鹏, 张 静, 王金东, 黄宇娴, 路轶群, 刘颂豪, 路 巍. 双协议量子密钥分发系统实验研究. 物理学报, 2008, 57(9): 5605-5611. doi: 10.7498/aps.57.5605
    [15] 张 静, 王发强, 赵 峰, 路轶群, 刘颂豪. 时间和相位混合编码的量子密钥分发方案. 物理学报, 2008, 57(8): 4941-4946. doi: 10.7498/aps.57.4941
    [16] 何广强, 郭红斌, 李昱丹, 朱思维, 曾贵华. 基于二进制均匀调制相干态的量子密钥分发方案. 物理学报, 2008, 57(4): 2212-2217. doi: 10.7498/aps.57.2212
    [17] 冯发勇, 张 强. 基于超纠缠交换的量子密钥分发. 物理学报, 2007, 56(4): 1924-1927. doi: 10.7498/aps.56.1924
    [18] 陈 杰, 黎 遥, 吴 光, 曾和平. 偏振稳定控制下的量子密钥分发. 物理学报, 2007, 56(9): 5243-5247. doi: 10.7498/aps.56.5243
    [19] 陈 霞, 王发强, 路轶群, 赵 峰, 李明明, 米景隆, 梁瑞生, 刘颂豪. 运行双协议相位调制的量子密钥分发系统. 物理学报, 2007, 56(11): 6434-6440. doi: 10.7498/aps.56.6434
    [20] 陈进建, 韩正甫, 赵义博, 桂有珍, 郭光灿. 平衡零拍测量对连续变量量子密钥分配的影响. 物理学报, 2007, 56(1): 5-9. doi: 10.7498/aps.56.5
计量
  • 文章访问数:  9052
  • PDF下载量:  182
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-04
  • 修回日期:  2019-11-30
  • 刊出日期:  2020-03-20

/

返回文章
返回