搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲射频容性耦合氩等离子体的发射探针诊断

周瑜 操礼阳 马晓萍 邓丽丽 辛煜

引用本文:
Citation:

脉冲射频容性耦合氩等离子体的发射探针诊断

周瑜, 操礼阳, 马晓萍, 邓丽丽, 辛煜

Diagnosis of capacitively coupled plasma driven by pulse-modulated 27.12 MHz by using an emissive probe

Zhou Yu, Cao Li-Yang, Ma Xiao-Ping, Deng Li-Li, Xin Yu
PDF
HTML
导出引用
  • 利用工作在浮点模式下的发射探针, 对500 Hz脉冲调制的27.12 MHz容性耦合氩气等离子体的空间电位和电子温度的时变特性进行了诊断. 等离子体空间电位是通过测量强热状态下的发射探针电位获得的, 而电子温度则是由发射探针在冷、热状态下的电位差来估算得到. 测量结果表明: 脉冲开启时, 空间电位会快速上升并在300 μs内趋于饱和; 当脉冲关断后, 空间电位经历了快速下降后趋于稳定的过程. 电子温度在脉冲开启时存在过冲并趋于稳定的特征; 而在脉冲关断期间, 电子温度在300 μs内则快速下降到0.45 eV后略有上升. 无论在脉冲开启或关断期间, 空间电位基本上都随功率和气压的变化存在有线性的依赖关系; 而放电功率对脉冲开启期间过冲电子温度与稳态电子温度差异的影响较大. 针对空间电位和电子温度在各阶段及不同放电条件下的时变特性, 给出了相应的解释.
    There are several methods of diagnosing the capacitively coupled plasma, such as microwave resonance probe, Langmuir probe, etc, but methods like microwave resonance probe are mainly used for determining the electron density. Moreover, in the diagnosing of plasma potential, the emissive probe has a higher accuracy than the traditional electrostatic probes, and it can directly monitor the potential in real time. However, in the existing work, emissive probe is mostly applied to the diagnosis of plasmas with high density or plasmas modulated by pulsed dual frequency (one of the radio frequency sources is modulated), the experiments on the emissive probe diagonising plasma excited by a pulsed single frequency are quite rare. In this paper, the temporal evolution of the plasma potential and electron temperature with input power and pressure in a pulsed 27.12 MHz capacitively coupled argon plasma are investigated by using an emissive probe operated in floating point mode. The plasma potential is obtained by measuring emissive probe potential under a strongly heated condition, while the electron temperature is estimated from the potential difference between the emissive probe under strongly heating and cold conditions. The measurements show that as the pulse is on, the plasma potential will rise rapidly and become saturated within 300 μs due to the requirement for neutrality condition; while the pulse is off, the plasma potential undergoes a rapid decline and then stabilizes. An overshoot for the electron temperature occurs as the onset of the pulse, because of the influence of radio frequency electric field and residual electrons from the last pulse; during the pulse-off time, rapid loss of high-energy electrons causes the electron temperature to rapidly drops to 0.45 eV within 300 μs, then it rises slightly, which is related to the electrons emitted by the probe. The plasma potential basically has a linear dependence on the change of input power and pressure for the pulse-on and pulse-off time; and the input power has a greater influence on the difference between the overshoot electron temperature and the steady state electron temperature during the pulse-on time. Corresponding explanations are given for the temporal evolution of plasma potential and electron temperature in different pulse stages and under different discharge conditions.
      通信作者: 辛煜, yuxin@suda.edu.cn
    • 基金项目: 国家级-国家自然科学基金(11675117,11175127)
      Corresponding author: Xin Yu, yuxin@suda.edu.cn
    [1]

    迈克尔·A·力伯曼, 阿伦·J·里登伯格 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第1−5页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Processing (Beijing: Science Press) pp1−5 (in Chinese)

    [2]

    Chang C Y, Sze S M 1996 McGraw-Hill Dictionary of Scientific and Technical Terms (New York: ULSI Technology) p329

    [3]

    Hopwood J 1992 Plasma Sources Sci. Technol. 1 109Google Scholar

    [4]

    Kahoh M, Suzuki K, Tonotani J, Aoki K, Yamage M 2001 Jpn. J. Appl. Phys. 40 5419Google Scholar

    [5]

    Lieberman M A, Booth J P, Chabert P, Rax J M, TurnerM M 2002 Plasma Sources Sci. Technol. 11 283Google Scholar

    [6]

    Hebner G A, Barnat E V, Miller P A, Paterson A M, Holland J P 2006 Plasma Sources Sci. Technol. 15 879Google Scholar

    [7]

    Chabert P 2007 J. Phys. D: Appl. Phys. 40 R63Google Scholar

    [8]

    Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018Google Scholar

    [9]

    Goto H H, Lowe H D, Ohmi T 1992 J. Vac. Sci. Technol., A 10 3048Google Scholar

    [10]

    Mishra A, Kim K N, Kim T H, Yeom G Y 2012 Plasma Source Sci. Technol. 21 035018Google Scholar

    [11]

    Samukawa S, Furuoya S 1993 Appl. Phys. Lett. 63 2044Google Scholar

    [12]

    Samukawa S, Mieno T 1996 Plasma Sources Sci. Technol. 5 132Google Scholar

    [13]

    Verdeyen J T, Beberman J, Overzet L 1990 J. Vac. Sci. Technol. A 8 1851Google Scholar

    [14]

    Howling A A, Sansonnens L, Dorier J L, Hollenstein C 1994 J. Appl. Phys. 75 1340Google Scholar

    [15]

    Wu H P, Tian Q W, Tian X B, Gong C Z, Zhang X Y, Wu Z Z 2019 Surf. Coat. Technol. 374 383Google Scholar

    [16]

    Sun X Y, Zhang Y R, Chai S, Wang Y N, He J X 2019 Phys. Plasmas 26 043503Google Scholar

    [17]

    Imamura T, Yamamoto K, Kurihara K, Hayashi H 2017 J. Vac. Sci. Technol., B 35 062201Google Scholar

    [18]

    Rahman M T, Hossain M M 2017 Phys. Plasmas 24 013516Google Scholar

    [19]

    Jeon M H, Park J W, Kim T H, Yun D H, Kim K N, Yeom G Y 2016 J. NanoSci. Nanotechnol. 16 11831Google Scholar

    [20]

    Liu R Q, Liu Y, Jia W Z, Zhou Y W 2017 Phys. Plasmas 24 013517Google Scholar

    [21]

    Thorsteinsson E G, Gudmundsson J T 2009 Plasma Sources Sci. Technol. 18 045002Google Scholar

    [22]

    Maresca A, Orlov K, Kortshagen U 2002 Phys. Rev. E 65 056405Google Scholar

    [23]

    Liu F X, Tsankov T V, Pu Y K 2015 J. Phys. D: Appl. Phys. 48 035206Google Scholar

    [24]

    Xue C, Wen D Q, Liu W, Zhang Y R, Gao F, Wang Y N 2017 J. Vac. Sci. Technol. A 35 021301Google Scholar

    [25]

    Wang E Y, Intrator T, Hershkowitz N 1985 Rev. Sci. Instrum. 56 519Google Scholar

    [26]

    Fujita H, Yagura S 1983 Jpn. J. Appl. Phys. 22 148

    [27]

    Li J Q, Xu J, Bai Y J, Lu W Q, Wang Y N 2016 J. Vac. Sci. Technol. A 34 061304Google Scholar

    [28]

    Sheehan J P, Hershkowitz N 2011 Plasma Sources Sci. Technol. 20 063001Google Scholar

    [29]

    Langmuir I 1923 J. Franklin Inst. 196 751Google Scholar

    [30]

    Chen F F 1965 Electric Probes Plasma Diagnostic Techniques (New York: Academic) p184

    [31]

    Sheehan J P, Barnat E V, Weatherford B R, Kaganovich D, Hershkowitz N 2014 Phys. Plasmas 21 013510Google Scholar

    [32]

    Mishra A, Seo J S, Kim K N, Yeom G Y 2013 J. Phys. D: Appl. Phys. 46 235203Google Scholar

    [33]

    Mishra A, Yeom G Y 2016 AIP Adv. 6 095101Google Scholar

    [34]

    Mishra A, Jeon M H, Kim K N, Yeom G Y 2012 Plasma Sources Sci. Technol. 21 055006Google Scholar

    [35]

    Mishra A, Kelly P J, Bradley J W 2011 J. Phys. D: Appl. Phys. 44 425201Google Scholar

    [36]

    Liebig B, Bradley J W 2013 Plasma Sources Sci. Technol. 22 045020Google Scholar

    [37]

    Piejak R B, Godyak V A, Garner R, Alexandrovich B M, Sternberg N 2004 J. Appl. Phys. 95 3785Google Scholar

    [38]

    Karkari S K, Ellingboe A R, Gaman C 2008 Appl. Phys. Lett. 93 071501Google Scholar

    [39]

    Chen F F, Chang J P 2002 Principles of Plasma Processing (Dordrecht/New York: Kluwer/Plenum) pp31–32

    [40]

    Zhao Y F, Zhou Y, Ma X P, Cao L Y, Zheng F G, Xin Y 2019 Phys. Plasmas 26 033502Google Scholar

    [41]

    Karkari S K, Gaman C, Ellingboe A R, Swindells I, Bradley J W 2007 Meas. Sci. Technol. 18 2649Google Scholar

    [42]

    Welzel T, Dunger T, Leibig B, Richter F 2008 New J. Phys. 10 123008Google Scholar

    [43]

    Bradley J W, Karkari S K, Vetushka A 2004 Plasma Sources Sci. Technol. 13 189Google Scholar

    [44]

    Arslanbekov R R, Kudryavtsev A A 2001 Phys. Rev. E 64 016401Google Scholar

    [45]

    Liu F X, Guo X M, Pu Y K 2015 Plasma Sources Sci. Technol. 24 034013Google Scholar

    [46]

    You S D, Dodd R, Edwards A, Bradley J W 2010 J. Phys. D: Appl. Phys. 43 505205Google Scholar

    [47]

    Wenig G, Schulze M, Awakowicz P, Keudell A V 2006 Plasma Sources Sci. Technol. 15 S35Google Scholar

    [48]

    Poolcharuansin P, BradleyJ W 2010 Plasma Sources Sci. Technol. 19 025010Google Scholar

  • 图 1  装置着发射探针系统的脉冲容性耦合等离子体装置示意图

    Fig. 1.  Schematic diagram of the pulsed capacitively coupled plasma apparatus equipped with an emissive probe system.

    图 2  连续波激发的容性耦合等离子体中测得的探针悬浮电位(Vf)与加热电流(Iht)的关系图, 测量在气压为3.0 Pa、射频功率为50 W的氩气等离子体中进行

    Fig. 2.  A plot of measured floating potential (Vf) versus heating current (Iht) in a CCP discharge in a continuous wave mode. The measurements were carried out at argon plasma with pressure of 3.0 Pa and input power of 50 W.

    图 3  放电气压为3.0 Pa、脉冲射频功率为30 W氩气等离子体中, 发射探针测量得到的数据, 调制频率为500 Hz, 占空比50% (a)悬浮电位及空间电位的时变特性; (b) 电子温度的时变特性

    Fig. 3.  The data measured by an emissive probe in an argon plasma with a discharge pressure of 3.0 Pa and a pulsed RF power of 30 W: (a) Temporal evolution of floating potential and plasma potential; (b) temporal evolution of electron temperature. The discharge was pulsed at 500 Hz with 50% duty cycle.

    图 4  不同放电条件下VpTe的时变特性(测量在频率为500 Hz, 占空比50%调制的氩气等离子体中进行) (a), (c) 在3 Pa不同功率条件下VpTe的时变特性; (b), (d) 在50 W不同气压条件下VpTe的时变特性

    Fig. 4.  A plot of temporal evolution of plasma potential and electron temperature: (a) plasma potential (Vp) with power (3 Pa); (b) plasma potential (Vp) with pressure (50 W); (c) electron temperature (Te) with power (3 Pa); (d) electron temperature (Te) with pressure (50 W). The measurements are carried out at argon plasma and the discharge is pulsed at 500 Hz with 50% duty cycle.

    图 5  不同放电条件下各阶段对应的空间电位及电子温度, 4幅图分别对应图4中的(a), (b), (c), (d)

    Fig. 5.  The plasma potential and electron temperature in each stage under different discharge conditions. The four figures correspond to (a), (b), (c), and (d) in Fig. 4, respectively.

  • [1]

    迈克尔·A·力伯曼, 阿伦·J·里登伯格 著 (蒲以康 译) 2007 等离子体放电原理与材料处理 (北京: 科学出版社) 第1−5页

    Lieberman M A, Lichtenberg A J (translated by Pu Y K) 2007 Principles of Plasma Discharges and Processing (Beijing: Science Press) pp1−5 (in Chinese)

    [2]

    Chang C Y, Sze S M 1996 McGraw-Hill Dictionary of Scientific and Technical Terms (New York: ULSI Technology) p329

    [3]

    Hopwood J 1992 Plasma Sources Sci. Technol. 1 109Google Scholar

    [4]

    Kahoh M, Suzuki K, Tonotani J, Aoki K, Yamage M 2001 Jpn. J. Appl. Phys. 40 5419Google Scholar

    [5]

    Lieberman M A, Booth J P, Chabert P, Rax J M, TurnerM M 2002 Plasma Sources Sci. Technol. 11 283Google Scholar

    [6]

    Hebner G A, Barnat E V, Miller P A, Paterson A M, Holland J P 2006 Plasma Sources Sci. Technol. 15 879Google Scholar

    [7]

    Chabert P 2007 J. Phys. D: Appl. Phys. 40 R63Google Scholar

    [8]

    Lee I, Graves D B, Lieberman M A 2008 Plasma Sources Sci. Technol. 17 015018Google Scholar

    [9]

    Goto H H, Lowe H D, Ohmi T 1992 J. Vac. Sci. Technol., A 10 3048Google Scholar

    [10]

    Mishra A, Kim K N, Kim T H, Yeom G Y 2012 Plasma Source Sci. Technol. 21 035018Google Scholar

    [11]

    Samukawa S, Furuoya S 1993 Appl. Phys. Lett. 63 2044Google Scholar

    [12]

    Samukawa S, Mieno T 1996 Plasma Sources Sci. Technol. 5 132Google Scholar

    [13]

    Verdeyen J T, Beberman J, Overzet L 1990 J. Vac. Sci. Technol. A 8 1851Google Scholar

    [14]

    Howling A A, Sansonnens L, Dorier J L, Hollenstein C 1994 J. Appl. Phys. 75 1340Google Scholar

    [15]

    Wu H P, Tian Q W, Tian X B, Gong C Z, Zhang X Y, Wu Z Z 2019 Surf. Coat. Technol. 374 383Google Scholar

    [16]

    Sun X Y, Zhang Y R, Chai S, Wang Y N, He J X 2019 Phys. Plasmas 26 043503Google Scholar

    [17]

    Imamura T, Yamamoto K, Kurihara K, Hayashi H 2017 J. Vac. Sci. Technol., B 35 062201Google Scholar

    [18]

    Rahman M T, Hossain M M 2017 Phys. Plasmas 24 013516Google Scholar

    [19]

    Jeon M H, Park J W, Kim T H, Yun D H, Kim K N, Yeom G Y 2016 J. NanoSci. Nanotechnol. 16 11831Google Scholar

    [20]

    Liu R Q, Liu Y, Jia W Z, Zhou Y W 2017 Phys. Plasmas 24 013517Google Scholar

    [21]

    Thorsteinsson E G, Gudmundsson J T 2009 Plasma Sources Sci. Technol. 18 045002Google Scholar

    [22]

    Maresca A, Orlov K, Kortshagen U 2002 Phys. Rev. E 65 056405Google Scholar

    [23]

    Liu F X, Tsankov T V, Pu Y K 2015 J. Phys. D: Appl. Phys. 48 035206Google Scholar

    [24]

    Xue C, Wen D Q, Liu W, Zhang Y R, Gao F, Wang Y N 2017 J. Vac. Sci. Technol. A 35 021301Google Scholar

    [25]

    Wang E Y, Intrator T, Hershkowitz N 1985 Rev. Sci. Instrum. 56 519Google Scholar

    [26]

    Fujita H, Yagura S 1983 Jpn. J. Appl. Phys. 22 148

    [27]

    Li J Q, Xu J, Bai Y J, Lu W Q, Wang Y N 2016 J. Vac. Sci. Technol. A 34 061304Google Scholar

    [28]

    Sheehan J P, Hershkowitz N 2011 Plasma Sources Sci. Technol. 20 063001Google Scholar

    [29]

    Langmuir I 1923 J. Franklin Inst. 196 751Google Scholar

    [30]

    Chen F F 1965 Electric Probes Plasma Diagnostic Techniques (New York: Academic) p184

    [31]

    Sheehan J P, Barnat E V, Weatherford B R, Kaganovich D, Hershkowitz N 2014 Phys. Plasmas 21 013510Google Scholar

    [32]

    Mishra A, Seo J S, Kim K N, Yeom G Y 2013 J. Phys. D: Appl. Phys. 46 235203Google Scholar

    [33]

    Mishra A, Yeom G Y 2016 AIP Adv. 6 095101Google Scholar

    [34]

    Mishra A, Jeon M H, Kim K N, Yeom G Y 2012 Plasma Sources Sci. Technol. 21 055006Google Scholar

    [35]

    Mishra A, Kelly P J, Bradley J W 2011 J. Phys. D: Appl. Phys. 44 425201Google Scholar

    [36]

    Liebig B, Bradley J W 2013 Plasma Sources Sci. Technol. 22 045020Google Scholar

    [37]

    Piejak R B, Godyak V A, Garner R, Alexandrovich B M, Sternberg N 2004 J. Appl. Phys. 95 3785Google Scholar

    [38]

    Karkari S K, Ellingboe A R, Gaman C 2008 Appl. Phys. Lett. 93 071501Google Scholar

    [39]

    Chen F F, Chang J P 2002 Principles of Plasma Processing (Dordrecht/New York: Kluwer/Plenum) pp31–32

    [40]

    Zhao Y F, Zhou Y, Ma X P, Cao L Y, Zheng F G, Xin Y 2019 Phys. Plasmas 26 033502Google Scholar

    [41]

    Karkari S K, Gaman C, Ellingboe A R, Swindells I, Bradley J W 2007 Meas. Sci. Technol. 18 2649Google Scholar

    [42]

    Welzel T, Dunger T, Leibig B, Richter F 2008 New J. Phys. 10 123008Google Scholar

    [43]

    Bradley J W, Karkari S K, Vetushka A 2004 Plasma Sources Sci. Technol. 13 189Google Scholar

    [44]

    Arslanbekov R R, Kudryavtsev A A 2001 Phys. Rev. E 64 016401Google Scholar

    [45]

    Liu F X, Guo X M, Pu Y K 2015 Plasma Sources Sci. Technol. 24 034013Google Scholar

    [46]

    You S D, Dodd R, Edwards A, Bradley J W 2010 J. Phys. D: Appl. Phys. 43 505205Google Scholar

    [47]

    Wenig G, Schulze M, Awakowicz P, Keudell A V 2006 Plasma Sources Sci. Technol. 15 S35Google Scholar

    [48]

    Poolcharuansin P, BradleyJ W 2010 Plasma Sources Sci. Technol. 19 025010Google Scholar

  • [1] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与近临界密度等离子体相互作用中的无碰撞静电冲击波产生. 物理学报, 2023, 72(11): 115202. doi: 10.7498/aps.72.20230271
    [2] 张梦, 姚若河, 刘玉荣. 纳米尺度金属-氧化物半导体场效应晶体管沟道热噪声模型. 物理学报, 2020, 69(5): 057101. doi: 10.7498/aps.69.20191512
    [3] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 物理学报, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [4] 赵晓云, 张丙开, 王春晓, 唐义甲. 电子的非广延分布对等离子体鞘层中二次电子发射的影响. 物理学报, 2019, 68(18): 185204. doi: 10.7498/aps.68.20190225
    [5] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X辐射谱线的分离及电子温度的提取. 物理学报, 2014, 63(9): 095201. doi: 10.7498/aps.63.095201
    [6] 洪布双, 苑涛, 邹帅, 唐中华, 徐东升, 虞一青, 王栩生, 辛煜. 电负性气体的掺入对容性耦合Ar等离子体的影响. 物理学报, 2013, 62(11): 115202. doi: 10.7498/aps.62.115202
    [7] 陈根余, 邓辉, 徐建波, 李宗根, 张玲. 脉冲光纤激光修锐青铜金刚石砂轮等离子体特性研究. 物理学报, 2013, 62(14): 144204. doi: 10.7498/aps.62.144204
    [8] 段萍, 曹安宁, 沈鸿娟, 周新维, 覃海娟, 刘金远, 卿绍伟. 电子温度对霍尔推进器等离子体鞘层特性的影响. 物理学报, 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [9] 邹帅, 唐中华, 吉亮亮, 苏晓东, 辛煜. 悬浮型微波共振探针在电负性容性耦合等离子体中电子密度的测量. 物理学报, 2012, 61(7): 075204. doi: 10.7498/aps.61.075204
    [10] 蒙世坚, 李正宏, 秦义, 叶繁, 徐荣昆. X射线连续谱法诊断铝丝阵Z箍缩等离子体温度. 物理学报, 2011, 60(4): 045211. doi: 10.7498/aps.60.045211
    [11] 韩晓艳, 耿新华, 侯国付, 张晓丹, 李贵君, 袁育杰, 魏长春, 孙建, 张德坤, 赵颖. 高速沉积微晶硅薄膜光发射谱的研究. 物理学报, 2009, 58(2): 1344-1347. doi: 10.7498/aps.58.1344
    [12] 张 民, 吴振森. 脉冲波在空间等离子体介质中传播的矩分析及其应用. 物理学报, 2007, 56(10): 5937-5944. doi: 10.7498/aps.56.5937
    [13] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术. 物理学报, 2007, 56(4): 2330-2336. doi: 10.7498/aps.56.2330
    [14] 郭庆林, 周玉龙, 张 博, 张秋琳, 张金平, 怀素芳. 减压氩气下基体对激光微等离子体电子温度的影响. 物理学报, 2007, 56(9): 5318-5322. doi: 10.7498/aps.56.5318
    [15] 陈 卓, 何 威, 蒲以康. 电子回旋共振氩等离子体中亚稳态粒子数密度及电子温度的测量. 物理学报, 2005, 54(5): 2153-2157. doi: 10.7498/aps.54.2153
    [16] 黄 松, 宁兆元, 辛 煜, 甘肇强. CF4气体ICP等离子体中的双温电子特性. 物理学报, 2004, 53(10): 3394-3397. doi: 10.7498/aps.53.3394
    [17] 杨家敏, 丁耀南, 陈 波, 郑志坚, 杨国洪, 张保汉, 王耀梅, 张文海. 等电子法测量小能量激光打靶等离子体电子温度. 物理学报, 2003, 52(2): 411-414. doi: 10.7498/aps.52.411
    [18] 陈波, 郑志坚, 丁永坤, 李三伟, 王耀梅. 双示踪元素X射线能谱诊断激光等离子体电子温度. 物理学报, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
    [19] 朱文浩, 朱南强, 陈跃山. 射频低压等离子体电子能量分布函数的探针诊断. 物理学报, 1989, 38(2): 236-246. doi: 10.7498/aps.38.236
    [20] 程成, 孙威, 唐传舜. 脉冲激光等离子体中时间分辨的电子温度和电子密度. 物理学报, 1988, 37(7): 1150-1156. doi: 10.7498/aps.37.1150
计量
  • 文章访问数:  7645
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-09
  • 修回日期:  2020-01-30
  • 刊出日期:  2020-04-20

/

返回文章
返回