搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光等离子体去除微纳颗粒的热力学研究

罗菊 冯国英 韩敬华 沈雄 张丽君 丁坤艳

引用本文:
Citation:

激光等离子体去除微纳颗粒的热力学研究

罗菊, 冯国英, 韩敬华, 沈雄, 张丽君, 丁坤艳

Thermodynamics of laser plasma removal of micro and nano-particles

Luo Ju, Feng Guo-Ying, Han Jing-Hua, Shen Xiong, Zhang Li-Jun, Ding Kun-Yan
PDF
HTML
导出引用
  • 微杂质污染一直是影响精密器件制造质量和使用寿命的关键因素之一. 对于微纳米杂质颗粒用传统的清洗方式(超声清洗等)难以去除, 而激光等离子体冲击波具有高压特性, 可以实现纳米量级杂质颗粒的去除, 具有很大的应用潜力. 本文主要研究了激光等离子体去除微纳米颗粒过程中的热力学效应: 实验研究了激光等离子体在不同脉冲数下对Si基底上Al颗粒去除后的颗粒形貌变化, 发现大颗粒会发生破碎而转变成小颗粒, 一些颗粒达到熔点后发生相变形成光滑球体, 这源于等离子体的热力学效应共同作用的结果. 为了研究微粒物态转化过程, 基于冲击波传播理论研究, 得到冲击波压强与温度特性的演化规律; 同时, 利用有限元模拟方式研究激光等离子冲击波压强和温度对微粒作用规律, 得到了颗粒内随时间变化的应力分布和温度分布, 并在此基础上得到等离子体对颗粒的热力学作用机制.
    Micro-impurity pollution is always one of the key factors affecting the quality and service life of precision devices. Micro-nano impurity particles are difficult to remove by traditional cleaning methods (ultrasonic cleaning, etc.) and low removal efficiency by laser cleaning methods (dry laser cleaning, etc.). The laser plasma shock wave has high pressure and high temperature characteristics, which can remove nano-scaled impurity particles, and has great potential applications. In this work, we mainly study the thermodynamic effect of the laser plasma in the process of removing micro- and nano-particles. In this work, the Al particles on the Si substrate are removed by laser plasma shock wave, and the transformation of the particle state is discussed through the changes of the experimental sample morphology after different pulse effects. The experimental results show as follows With the increase of the pulse number, the micro- and nano-particle residues gradually decrease. At the same time, on the surface of the sample after these particles are removed, it can be found that large particles break up into small particles, and some of the particles will change into smooth spheres when their temperatures reach the melting point. These phenomena are the result of the interaction of the thermodynamic effect of the plasma. In order to study the transformation process of particle state, based on the plasma shock wave propagation theory, the evolution law of pressure characteristic and temperature characteristic of shock wave are obtained. From the evolution law, it can be seen that with the increase of shock wave radius, the pressure and temperature gradually decrease. When the shock wave propagates to the surface of a sample, it can reach the compression threshold and correspondingly the surface temperature arrives at melting temperature of particles, which are consistent with the experimental results. By using the finite element simulation method, the pressure and temperature of laser plasma shock wave acting on particles are studied. The stress distribution and temperature distribution in particles varying with time are obtained. The analysis results are consistent with the experimental results, and therefore the thermodynamic mechanism of plasma on particles is obtained.
      通信作者: 韩敬华, hjh_scu@163.com
    • 基金项目: 国家级-国家自然科学基金面上项目(11574221)
      Corresponding author: Han Jing-Hua, hjh_scu@163.com
    [1]

    Varghese I, Peri M D M, Dunbar T, Maynard B, Thomas D A, Cetinkaya C 2008 J. Adhes. Sci. Technol. 22 651Google Scholar

    [2]

    Zhang P, Bian B M, Li Z H 2007 Appl. Surf. Sci. 254 1444Google Scholar

    [3]

    Cetinkaya C, Vanderwood R, Rowell M 2002 J. Adhes. Sci. Technol. 16 1201Google Scholar

    [4]

    Han J H, Luo L, Zhang Y B, Hu R F, Feng G Y 2016 Chin. Phys. B 25 095204Google Scholar

    [5]

    Lee J M, Watkins K G 2001 J. Appl. Phys. 89 6496Google Scholar

    [6]

    Lim H, Jang D, Kim D, Lee J W, Lee J M 2005 J. Appl. Phys. 97 054903Google Scholar

    [7]

    Vanderwood R, Cetinkaya C 2003 J. Adhes. Sci. Technol. 17 129Google Scholar

    [8]

    李晓溪, 贾天卿, 冯东海, 徐至展 2004 物理学报 53 2154Google Scholar

    Li X X, Jia T Q, Feng D H, Xu Z Z 2004 Acta Phys. Sin. 53 2154Google Scholar

    [9]

    Hooper T, Cetinkaya C 2003 J. Adhes. Sci. Technol. 17 763Google Scholar

    [10]

    Lee S H, Kang Y J, Park J G, Busnaina A A, Lee J M, Kim T H, Zhang G, Eschbach F, Ramamoorthy A 2005 Jpn. J. Appl. Phys. 44 5560Google Scholar

    [11]

    余本海, 戴能利, 王英, 李玉华, 季玲玲, 郑启光, 陆培祥 2007 物理学报 56 5821Google Scholar

    Yu B H, Dai N L, Wang Y, Li Y H, Ji L L, Zheng Q G, Lu P X 2007 Acta Phys. Sin. 56 5821Google Scholar

    [12]

    Kim T H, Cho H, Busnaina A, Park J G, Kim D 2013 J. Appl. Phys. 114 063104Google Scholar

    [13]

    Jang D, Oh J H, Lee J M, Kim D 2009 J. Appl. Phys. 106 014913Google Scholar

    [14]

    Oh B, Lee J W, Lee J M, Kim D 2008 J. Adhes. Sci. Technol. 22 635Google Scholar

    [15]

    de Giacomo A, Hermann J 2017 J. Phys. D: Appl. Phys. 50 183002Google Scholar

    [16]

    Su M G, Cao S Q, Sun D X, Min Q, Dong C Z 2016 Phys. Plasmas 23 033302Google Scholar

    [17]

    Gu Q Q, Feng G Y, Zhou G R, Han J H, Luo J, Men J L, Jiang Y 2018 Appl. Surf. Sci. 457 604Google Scholar

    [18]

    Thompson P A, Carofano G C, Kim Y G 1986 J. Fluid Mech. 166 57Google Scholar

    [19]

    Chen X, Bian B M, Shen Z H, Lu J, Ni X W 2003 Microwave Opt. Technol. Lett. 38 75Google Scholar

    [20]

    Harith M A, Palleschi V, Salvetti A, Singh D P, Tropiano G, Vaselli M 1989 Opt. Commun. 71 76Google Scholar

    [21]

    Kumar S S S, Raghu T 2014 Mater. Des. 57 114Google Scholar

    [22]

    Liu Z F, Zhang Z H, Lu J F, Korznikov A V, Korznikova E, Wang F C 2014 Mater. Des. 64 625Google Scholar

    [23]

    Akbarpour M R, Torknik F S, Manafi S A 2017 J. Mater. Eng. Perform. 26 4902Google Scholar

    [24]

    Pleasants S, Kane D M 2003 J. Appl. Phys. 93 8862Google Scholar

    [25]

    Zheng Y W, Luk’yanchuk B S, Lu Y F, Song W D, Mai Z H 2001 J. Appl. Phys. 90 2135Google Scholar

    [26]

    Levitas V I, Pantoya M L, Chauhan G, Rivero I 2009 J. Phys. Chem. C 113 14088Google Scholar

    [27]

    Sun J, Simon S L 2007 Thermochim. Acta 463 32Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Schematic diagram of experimental setup.

    图 2  原始样品的SEM图 (a)整体图; (b), (c)局部放大图

    Fig. 2.  SEM images of original samples: (a) Overall picture; (b), (c) partial enlarged pictures in (a).

    图 3  光学显微镜2000倍下不同脉冲数的实验图 (a) 1; (b) 2; (c) 5; (d) 10; (e) 15; (f) 20; (g) 30; (h) 50; (i) 涂有Al颗粒的原始样品

    Fig. 3.  Experimental pictures of different pulse numbers at 2000 x optical microscope: (a) 1; (b) 2; (c) 5; (d) 10; (e) 15; (f) 20; (g) 30; (h) 50; (i) original sample coated with Al particles.

    图 4  不同脉冲下颗粒去除情况的SEM图 (a) 1; (b) 2; (c) 5; (d) 10; (e) 15; (f) 20; (g) 30; (h) 50

    Fig. 4.  SEM images of particle removal under different pulses: (a) 1; (b) 2; (c) 5; (d) 10; (e) 15; (f) 20; (g) 30; (h) 50.

    图 5  颗粒破碎和相变现象的SEM图 (a) 破碎; (b) 破碎的放大图; (c)相变1; (d)相变2

    Fig. 5.  SEM images of particle fragmentation and melting phenomenon: (a) Fragmentation; (b) the enlargement of fragmentation in (a); (c) phase transition 1; (d) phase transition 2

    图 6  冲击波的传播 (a)冲击波波前压强随传播半径的变化; (b) P1为法向压强, P2为切向压强

    Fig. 6.  Propagation of shock wave: (a) Changes in shock wavefront pressure with transmission radius; (b) P1 is the normal pressure, P2 is the tangential pressure.

    图 7  有限元分析-不同时间颗粒内应力分布图 (a) 103 MPa; (b) 743 MPa; (c) 348 MPa; (d) 165 MPa

    Fig. 7.  Finite element analysis-stress distribution in the particles at different times: (a) 103 MPa; (b) 743 MPa; (c) 348 MPa; (d) 165 MPa.

    图 8  冲击波温度随波前传播半径的变化

    Fig. 8.  Changes in shock wave temperature with wavefront propagation radius.

    图 9  有限元分析-颗粒相变图

    Fig. 9.  Finite element analysis-particle melting diagram.

    表 1  Al颗粒和Si基底的相关参数

    Table 1.  Related parameters of Al particles and silicon substrate.

    参数导热系数/pW·μm–1·K–1密度/kg·μm–3比热容/pJ·kg–1·K–1泊松比弹性模量/MPa热膨胀系数
    237 × 1062700 × 10–18880 × 10120.33070 × 10323.21 × 10–6
    Si150 × 1062328 × 10–18618 × 10120.278190 × 1030.50 × 10–6
    下载: 导出CSV
  • [1]

    Varghese I, Peri M D M, Dunbar T, Maynard B, Thomas D A, Cetinkaya C 2008 J. Adhes. Sci. Technol. 22 651Google Scholar

    [2]

    Zhang P, Bian B M, Li Z H 2007 Appl. Surf. Sci. 254 1444Google Scholar

    [3]

    Cetinkaya C, Vanderwood R, Rowell M 2002 J. Adhes. Sci. Technol. 16 1201Google Scholar

    [4]

    Han J H, Luo L, Zhang Y B, Hu R F, Feng G Y 2016 Chin. Phys. B 25 095204Google Scholar

    [5]

    Lee J M, Watkins K G 2001 J. Appl. Phys. 89 6496Google Scholar

    [6]

    Lim H, Jang D, Kim D, Lee J W, Lee J M 2005 J. Appl. Phys. 97 054903Google Scholar

    [7]

    Vanderwood R, Cetinkaya C 2003 J. Adhes. Sci. Technol. 17 129Google Scholar

    [8]

    李晓溪, 贾天卿, 冯东海, 徐至展 2004 物理学报 53 2154Google Scholar

    Li X X, Jia T Q, Feng D H, Xu Z Z 2004 Acta Phys. Sin. 53 2154Google Scholar

    [9]

    Hooper T, Cetinkaya C 2003 J. Adhes. Sci. Technol. 17 763Google Scholar

    [10]

    Lee S H, Kang Y J, Park J G, Busnaina A A, Lee J M, Kim T H, Zhang G, Eschbach F, Ramamoorthy A 2005 Jpn. J. Appl. Phys. 44 5560Google Scholar

    [11]

    余本海, 戴能利, 王英, 李玉华, 季玲玲, 郑启光, 陆培祥 2007 物理学报 56 5821Google Scholar

    Yu B H, Dai N L, Wang Y, Li Y H, Ji L L, Zheng Q G, Lu P X 2007 Acta Phys. Sin. 56 5821Google Scholar

    [12]

    Kim T H, Cho H, Busnaina A, Park J G, Kim D 2013 J. Appl. Phys. 114 063104Google Scholar

    [13]

    Jang D, Oh J H, Lee J M, Kim D 2009 J. Appl. Phys. 106 014913Google Scholar

    [14]

    Oh B, Lee J W, Lee J M, Kim D 2008 J. Adhes. Sci. Technol. 22 635Google Scholar

    [15]

    de Giacomo A, Hermann J 2017 J. Phys. D: Appl. Phys. 50 183002Google Scholar

    [16]

    Su M G, Cao S Q, Sun D X, Min Q, Dong C Z 2016 Phys. Plasmas 23 033302Google Scholar

    [17]

    Gu Q Q, Feng G Y, Zhou G R, Han J H, Luo J, Men J L, Jiang Y 2018 Appl. Surf. Sci. 457 604Google Scholar

    [18]

    Thompson P A, Carofano G C, Kim Y G 1986 J. Fluid Mech. 166 57Google Scholar

    [19]

    Chen X, Bian B M, Shen Z H, Lu J, Ni X W 2003 Microwave Opt. Technol. Lett. 38 75Google Scholar

    [20]

    Harith M A, Palleschi V, Salvetti A, Singh D P, Tropiano G, Vaselli M 1989 Opt. Commun. 71 76Google Scholar

    [21]

    Kumar S S S, Raghu T 2014 Mater. Des. 57 114Google Scholar

    [22]

    Liu Z F, Zhang Z H, Lu J F, Korznikov A V, Korznikova E, Wang F C 2014 Mater. Des. 64 625Google Scholar

    [23]

    Akbarpour M R, Torknik F S, Manafi S A 2017 J. Mater. Eng. Perform. 26 4902Google Scholar

    [24]

    Pleasants S, Kane D M 2003 J. Appl. Phys. 93 8862Google Scholar

    [25]

    Zheng Y W, Luk’yanchuk B S, Lu Y F, Song W D, Mai Z H 2001 J. Appl. Phys. 90 2135Google Scholar

    [26]

    Levitas V I, Pantoya M L, Chauhan G, Rivero I 2009 J. Phys. Chem. C 113 14088Google Scholar

    [27]

    Sun J, Simon S L 2007 Thermochim. Acta 463 32Google Scholar

  • [1] 田淼, 姚廷昱, 才志民, 刘富成, 贺亚峰. 尘埃等离子体棘轮中颗粒分离的三维模拟. 物理学报, 2024, 73(11): 115201. doi: 10.7498/aps.73.20240319
    [2] 王小峰, 陶钢, 徐宁, 王鹏, 李召, 闻鹏. 冲击波诱导水中纳米气泡塌陷的分子动力学分析. 物理学报, 2021, 70(13): 134702. doi: 10.7498/aps.70.20210058
    [3] 成应晋, 杨超飞, 薛钢, 王涛, 张磊, 李梅娥. 基于第一性原理的含空位α-Fe和H原子相互作用研究. 物理学报, 2020, 69(5): 053101. doi: 10.7498/aps.69.20191775
    [4] 蒋亦民, 刘佑. 颗粒-颗粒接触力的热力学模型. 物理学报, 2018, 67(4): 044502. doi: 10.7498/aps.67.20171441
    [5] 汤文辉, 徐彬彬, 冉宪文, 徐志宏. 高温等离子体的状态方程及其热力学性质. 物理学报, 2017, 66(3): 030505. doi: 10.7498/aps.66.030505
    [6] 赵信文, 李欣竹, 张航, 王学军, 宋萍, 张汉钊, 康强, 黄金, 吴强. 冲击波作用下微米尺度金属颗粒群的动力学行为. 物理学报, 2017, 66(10): 104701. doi: 10.7498/aps.66.104701
    [7] 宫卫华, 张永亮, 冯帆, 刘富成, 贺亚峰. 非均匀磁场尘埃等离子体中颗粒的复杂运动. 物理学报, 2015, 64(19): 195202. doi: 10.7498/aps.64.195202
    [8] 林长鹏, 刘新健, 饶中浩. 铝纳米颗粒的热物性及相变行为的分子动力学模拟. 物理学报, 2015, 64(8): 083601. doi: 10.7498/aps.64.083601
    [9] 孙其诚. 颗粒介质的结构及热力学. 物理学报, 2015, 64(7): 076101. doi: 10.7498/aps.64.076101
    [10] 刘中淼, 孙其诚, 宋世雄, 史庆藩. 准静态颗粒流流动规律的热力学分析. 物理学报, 2014, 63(3): 034702. doi: 10.7498/aps.63.034702
    [11] 赵晓云, 张丙开, 张开银. 两种带电尘埃颗粒的等离子体鞘层玻姆判据. 物理学报, 2013, 62(17): 175201. doi: 10.7498/aps.62.175201
    [12] 吴静, 刘国, 姚列明, 段旭如. 等离子体鞘层附近尘埃颗粒特性的数值模拟. 物理学报, 2012, 61(7): 075205. doi: 10.7498/aps.61.075205
    [13] 王平建, 夏继宏, 刘长松, 刘会, 闫龙. 一维复合颗粒链中能量衰减的动力学分析. 物理学报, 2011, 60(1): 014501. doi: 10.7498/aps.60.014501
    [14] 刘永生, 谷民安, 杨晶晶, 石奇光, 高湉, 杨金焕, 杨正龙. 太阳能光伏-温差发电驱动的新型冰箱模型设计与热力学分析. 物理学报, 2010, 59(10): 7368-7373. doi: 10.7498/aps.59.7368
    [15] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究. 物理学报, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [16] 奚衍斌, 张 宇, 王晓钢, 刘 悦, 余 虹, 姜东光. 调制磁场清除柱形等离子体发生器中的尘埃颗粒. 物理学报, 2005, 54(1): 164-172. doi: 10.7498/aps.54.164
    [17] 王洪波, 张景文, 杨晓东, 刘振玲, 徐庆安, 侯 洵. 氧化锌导电类型转化的热力学分析. 物理学报, 2005, 54(6): 2893-2898. doi: 10.7498/aps.54.2893
    [18] 卞保民, 陈 笑, 夏 铭, 杨 玲, 沈中华. 液体中激光等离子体冲击波波前传播特性研究及测试. 物理学报, 2004, 53(2): 508-513. doi: 10.7498/aps.53.508
    [19] 王 龙. 等离子体中的颗粒成长模型. 物理学报, 1999, 48(6): 1072-1077. doi: 10.7498/aps.48.1072
    [20] 乔登江. 等离子体的热力学研究. 物理学报, 1960, 16(7): 369-378. doi: 10.7498/aps.16.369
计量
  • 文章访问数:  6472
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-20
  • 修回日期:  2020-02-01
  • 刊出日期:  2020-04-20

/

返回文章
返回