搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于二维材料二硒化锡场效应晶体管的光电探测器

孟宪成 田贺 安侠 袁硕 范超 王蒙军 郑宏兴

引用本文:
Citation:

基于二维材料二硒化锡场效应晶体管的光电探测器

孟宪成, 田贺, 安侠, 袁硕, 范超, 王蒙军, 郑宏兴

Field effect transistor photodetector based on two dimensional SnSe2

Meng Xian-Cheng, Tian He, An Xia, Yuan Shuo, Fan Chao, Wang Meng-Jun, Zheng Hong-Xing
PDF
HTML
导出引用
  • 以二硒化锡作为沟道材料, 设计并制备基于二硒化锡场效应晶体管的光电探测器. 以化学气相输运法制备的二硒化锡纯度高且结晶度良好, 对二硒化锡使用机械剥离法制备出层状二硒化锡, 薄膜的横向尺寸最大可达25—35 μm, 最薄厚度仅为1.4 nm, 使用图形转移法制备基于二硒化锡的场效应晶体管, 表面光滑无褶皱, 且表现出良好的电学性质, 呈现出n型半导体的特征, 作为光电探测器对波长分别为405, 532, 650 nm的三基色光表现出明显的光响应. 尤其是对405 nm的蓝紫光响应度最高, 在光强为5.40 mW/cm2时, 响应度达到19.83 AW–1, 外量子效率达到6.07 × 103 %, 探测率达到4.23 × 1010 Jones, 并且具有快速的响应速度, 响应反应时间为23.8 ms. 结果表明二硒化锡在可见光光探测器和新一代光电子器件中具有潜在的应用前景.
    Two dimensional materials have been attracting intensive interest due to their unique physical and optoelectronic properties. As an emerging two dimensional materials, SnSe2 have shown a considerable potential for next-generation electronic and optoelectronic. Herein, SnSe2 bulk crystals have been prepared by a chemical vapour transport method with high purity tin and selenium powder as precursors. Then SnSe2 multilayers has been successfully prepared by a micromechanical exfoliation method from the SnSe2 bulk crystals. The phase structures and elemental composition of the bulk crystal are investigated using an X-Ray diffractometer, an X-ray photoelectrons spectrometer and a Raman spectrometer. And the morphologies are observed using an optical microscope, an atomic force microscope and a transmission electron microscope. The measurement results show that the SnSe2 bulks are single crystals with a high crystallization and purity. The SnSe2 multilayers have a size of 25–35 μm and a thickness of 1.4 nm. To detect the electronic and photoresponse characteristics of the SnSe2 multilayers, a field effect transistor based on such SnSe2 are fabricated via a photolithographic-pattern-transfer method. The transistor has a smooth surface without wrinkles and bubbles, and also has a good contact with Au electrodes. The transistor shows a linear output characteristic and an obvious rectification. The on/off ratio of the device is 47.9 and the electron mobility is 0.25 cm2·V–1·s–1. As a photodetector, the field effect transistor exhibits obvious photoresponse to three visible lights with the wavelengths of 405, 532, and 650 nm. As the lasers are turned on and the device is under illuminations of three visible lights, the current increase rapidly to a saturation state. Then as the lasers are switched off, the current decrease and recover to the original state. The drain-source current can alternate between high and low states rapidly and reversibly, which demonstrates photoresponse characteristics of the devices are stable and sensible. Notably, it shows a strongest response to the 405 nm light at an intensity of 5.4 mW/cm2 with a high responsivity of 19.83 A/W, a good external quantum efficiency of 6.07 × 103%, a normalized detectivity of 4.23 × 1010 Jones, and a fast response time of 23.8 ms. The results of this work demonstrate that layered SnSe2 can be a suitable and excellent candidate for visible light photodetector and has a huge potential for high-performance optoelectronic devices.
      通信作者: 范超, fanch@hebut.edu.cn
    • 基金项目: 国家级-国家自然科学基金(61804043)
      Corresponding author: Fan Chao, fanch@hebut.edu.cn
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J W, Chim C Y, Galli G L, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [3]

    Zhou X, Zhang Q, Gan L, Li H Q, Xiong J, Zhai T Y 2016 Adv. Sci. 3 1600177Google Scholar

    [4]

    Huang Y, Xu K, Shifa A T, Wang Q S, Wang F, Jiang C, He J 2015 Nanoscale 7 17375Google Scholar

    [5]

    Rai R K, Islam S, Roy A, Agrawal G, Singh A K, Ghosh A, Ravishankar N 2019 Nanoscale 11 870Google Scholar

    [6]

    Martínez-Escobar D, Ramachandran M, Sánchez-Juárez A, Rios N J S 2013 Thin Solid Films 535 390Google Scholar

    [7]

    Mukhokosi P E, Krupanidhi S B, Nanda K K 2018 Phys. Status Solidi A 215 1800470Google Scholar

    [8]

    Moonshik K, Rathi S, Lee I, Li L, Khan M A, Lim D, Lee D, Lee Y, Park J, Pham A T, Duong A T, Cho S, Yun J L, Kim G H 2018 J. Nanosci. Nanotechnol. 18 4243Google Scholar

    [9]

    Zhou X, Gan L, Tian W M, Zhang Q, Jin S Y, Li H Q, Bando Y, Golberg D, Zhai T Y 2015 Adv. Mater. 27 8035Google Scholar

    [10]

    Krishna M, Kallatt S 2017 Nanotechnology 29 03250

    [11]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [12]

    Tian H, Fan C, Liu G Z, Zhang Y H, Wang M J, Li E P 2018 J. Mater. Sci. 54 2059

    [13]

    郑朝, 孙明轩, 张强, 吴淞要 2018 现代化工 38 122

    Zheng Z, Sun M X, Zhang Q, Wu H Y 2018 Mod. Chem. Ind. 38 122

    [14]

    Liu Y, Guo J, Zhu E B, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y, Duan X F 2018 Nature 557 696Google Scholar

    [15]

    傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培 2015 物理学报 64 016102Google Scholar

    Fu Z Y, Xing S, Shen T, Tai B, Dong Q M, Shu H B, Liang P 2015 Acta Phys. Sin. 64 016102Google Scholar

    [16]

    孙兰, 张龙, 马飞 2017 中国材料进展 36 40

    Sun L, Zhang L, Ma F 2017 Mat-China 36 40

    [17]

    郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮 2018 物理学报 67 118502Google Scholar

    Zheng J J, Wang Y R, Yu K H, Xv X X, Sheng X X, Hu E T, Wei W 2018 Acta Phys. Sin. 67 118502Google Scholar

    [18]

    Tan P F, Chen X, Wu L D, Shang Y Y, Liu W W, Pan J, Xiong X 2017 Appl. Catal., B 202 326Google Scholar

    [19]

    Joensen P, Frindt R F, Morrison S R 1986 Mater. Res. Bull. 21 457Google Scholar

    [20]

    Feldman Y, Wasserman E, Srolovitz D J, Tenne R 1995 Science 267 222Google Scholar

    [21]

    Zhou X, Zhang Q, Gan L, Li H Q, Zhai T Y 2016 Adv. Sci. 26 4405

    [22]

    许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元 2018 物理学报 67 218201Google Scholar

    Xv H, Meng L, Li Y, Yang T Z, Bao L H, Liu G D, Zhao L, Liu T S, Xing J, Gao H J, Zhou X J, Huang Y 2018 Acta Phys. Sin. 67 218201Google Scholar

  • 图 1  (a)化学气相输运示意图; (b) SnSe2单晶; (c)图形转移法流程图

    Fig. 1.  (a) Diagram of CVT; (b) SnSe2 single crystal; (c) Diagram of graph transfer method.

    图 2  SnSe2的(a) XRD衍射图谱和(b)TEM图象

    Fig. 2.  (a) XRD spectrum and (b) TEM image of SnSe2.

    图 3  SnSe2的XPS图谱

    Fig. 3.  XPS spectrum of SnSe2.

    图 4  样品的(a)AFM扫描图象和(b)光学显微图象

    Fig. 4.  (a) AFM of sample; (b) Optical micro-image of sample.

    图 5  样品的拉曼光谱图

    Fig. 5.  Raman spectrum of sample.

    图 6  (a)二维SnSe2场效应晶体管输出特性曲线; (b)器件的转移特性曲线

    Fig. 6.  (a) Output characteristic of the field effect transistor based on two-dimensional SnSe2; (b) Transfer characteristic of the field effect transistor.

    图 7  I-V特性曲线 (a) 405 nm; (b) 532 nm; (c) 650 nm. 光电流曲线 (d) 405 nm; (e) 532 nm; (f) 650 nm. 光响应的上升沿和下降沿 (g) 405 nm; (h) 532 nm; (i) 650 nm

    Fig. 7.  I-V curve: (a) 405 nm; (b) 532 nm; (c) 650 nm. Photocurrent curve: (d) 405 nm; (e) 532 nm; (f) 650 nm. Rising edge and falling edge: (g) 405 nm; (h) 532 nm; (i) 650 nm.

    图 8  光响应曲线 (a) 405 nm; (b) 532 nm; (c) 650 nm. 器件的探测度和响应度散点图: (d) 405 nm; (e) 532 nm; (f) 650 nm

    Fig. 8.  Light response curve: (a) 405 nm; (b) 532 nm; (c) 650 nm. Responsivity and detectivity scatter plot of device: (d) 405 nm; (e) 532 nm; (f)650 nm.

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Splendiani A, Sun L, Zhang Y B, Li T S, Kim J W, Chim C Y, Galli G L, Wang F 2010 Nano Lett. 10 1271Google Scholar

    [3]

    Zhou X, Zhang Q, Gan L, Li H Q, Xiong J, Zhai T Y 2016 Adv. Sci. 3 1600177Google Scholar

    [4]

    Huang Y, Xu K, Shifa A T, Wang Q S, Wang F, Jiang C, He J 2015 Nanoscale 7 17375Google Scholar

    [5]

    Rai R K, Islam S, Roy A, Agrawal G, Singh A K, Ghosh A, Ravishankar N 2019 Nanoscale 11 870Google Scholar

    [6]

    Martínez-Escobar D, Ramachandran M, Sánchez-Juárez A, Rios N J S 2013 Thin Solid Films 535 390Google Scholar

    [7]

    Mukhokosi P E, Krupanidhi S B, Nanda K K 2018 Phys. Status Solidi A 215 1800470Google Scholar

    [8]

    Moonshik K, Rathi S, Lee I, Li L, Khan M A, Lim D, Lee D, Lee Y, Park J, Pham A T, Duong A T, Cho S, Yun J L, Kim G H 2018 J. Nanosci. Nanotechnol. 18 4243Google Scholar

    [9]

    Zhou X, Gan L, Tian W M, Zhang Q, Jin S Y, Li H Q, Bando Y, Golberg D, Zhai T Y 2015 Adv. Mater. 27 8035Google Scholar

    [10]

    Krishna M, Kallatt S 2017 Nanotechnology 29 03250

    [11]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [12]

    Tian H, Fan C, Liu G Z, Zhang Y H, Wang M J, Li E P 2018 J. Mater. Sci. 54 2059

    [13]

    郑朝, 孙明轩, 张强, 吴淞要 2018 现代化工 38 122

    Zheng Z, Sun M X, Zhang Q, Wu H Y 2018 Mod. Chem. Ind. 38 122

    [14]

    Liu Y, Guo J, Zhu E B, Lee S J, Ding M N, Shakir I, Gambin V, Huang Y, Duan X F 2018 Nature 557 696Google Scholar

    [15]

    傅重源, 邢淞, 沈涛, 邰博, 董前民, 舒海波, 梁培 2015 物理学报 64 016102Google Scholar

    Fu Z Y, Xing S, Shen T, Tai B, Dong Q M, Shu H B, Liang P 2015 Acta Phys. Sin. 64 016102Google Scholar

    [16]

    孙兰, 张龙, 马飞 2017 中国材料进展 36 40

    Sun L, Zhang L, Ma F 2017 Mat-China 36 40

    [17]

    郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮 2018 物理学报 67 118502Google Scholar

    Zheng J J, Wang Y R, Yu K H, Xv X X, Sheng X X, Hu E T, Wei W 2018 Acta Phys. Sin. 67 118502Google Scholar

    [18]

    Tan P F, Chen X, Wu L D, Shang Y Y, Liu W W, Pan J, Xiong X 2017 Appl. Catal., B 202 326Google Scholar

    [19]

    Joensen P, Frindt R F, Morrison S R 1986 Mater. Res. Bull. 21 457Google Scholar

    [20]

    Feldman Y, Wasserman E, Srolovitz D J, Tenne R 1995 Science 267 222Google Scholar

    [21]

    Zhou X, Zhang Q, Gan L, Li H Q, Zhai T Y 2016 Adv. Sci. 26 4405

    [22]

    许宏, 孟蕾, 李杨, 杨天中, 鲍丽宏, 刘国东, 赵林, 刘天生, 邢杰, 高鸿钧, 周兴江, 黄元 2018 物理学报 67 218201Google Scholar

    Xv H, Meng L, Li Y, Yang T Z, Bao L H, Liu G D, Zhao L, Liu T S, Xing J, Gao H J, Zhou X J, Huang Y 2018 Acta Phys. Sin. 67 218201Google Scholar

  • [1] 赵吉玉, 谭秋红, 刘磊, 杨伟业, 王前进, 刘应开. 基于Au纳米岛修饰的CdSSe纳米带光电探测器. 物理学报, 2023, 72(9): 098103. doi: 10.7498/aps.72.20222021
    [2] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [3] 武鹏, 谈论, 李炜, 曹立伟, 赵俊博, 曲尧, 李昂. 大面积单层二硫化钼的制备及其光电性能. 物理学报, 2023, 72(11): 118101. doi: 10.7498/aps.72.20230273
    [4] 李璐, 张养坤, 时东霞, 张广宇. 单层二硫化钼的制备及在器件应用方面的研究. 物理学报, 2022, 71(10): 108102. doi: 10.7498/aps.71.20212447
    [5] 傅群东, 王小伟, 周修贤, 朱超, 刘政. 硅基底上二维硒氧化铋的化学气相沉积法合成及其光电探测应用. 物理学报, 2022, 71(16): 166101. doi: 10.7498/aps.71.20220388
    [6] 田金朋, 王硕培, 时东霞, 张广宇. 垂直短沟道二硫化钼场效应晶体管. 物理学报, 2022, 71(21): 218502. doi: 10.7498/aps.71.20220738
    [7] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [8] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [9] 张金风, 徐佳敏, 任泽阳, 何琦, 许晟瑞, 张春福, 张进成, 郝跃. 不同晶面的氢终端单晶金刚石场效应晶体管特性. 物理学报, 2020, 69(2): 028101. doi: 10.7498/aps.69.20191013
    [10] 张梦, 姚若河, 刘玉荣, 耿魁伟. 短沟道金属-氧化物半导体场效应晶体管的散粒噪声模型. 物理学报, 2020, 69(17): 177102. doi: 10.7498/aps.69.20200497
    [11] 魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇. 高质量单层二硫化钼薄膜的研究进展. 物理学报, 2018, 67(12): 128103. doi: 10.7498/aps.67.20180732
    [12] 张金风, 杨鹏志, 任泽阳, 张进成, 许晟瑞, 张春福, 徐雷, 郝跃. 高跨导氢终端多晶金刚石长沟道场效应晶体管特性研究. 物理学报, 2018, 67(6): 068101. doi: 10.7498/aps.67.20171965
    [13] 郑加金, 王雅如, 余柯涵, 徐翔星, 盛雪曦, 胡二涛, 韦玮. 基于石墨烯-钙钛矿量子点场效应晶体管的光电探测器. 物理学报, 2018, 67(11): 118502. doi: 10.7498/aps.67.20180129
    [14] 王尘, 许怡红, 李成, 林海军. 高性能SOI基GePIN波导光电探测器的制备及特性研究. 物理学报, 2017, 66(19): 198502. doi: 10.7498/aps.66.198502
    [15] 任泽阳, 张金风, 张进成, 许晟瑞, 张春福, 全汝岱, 郝跃. 单晶金刚石氢终端场效应晶体管特性. 物理学报, 2017, 66(20): 208101. doi: 10.7498/aps.66.208101
    [16] 刘畅, 卢继武, 吴汪然, 唐晓雨, 张睿, 俞文杰, 王曦, 赵毅. 超短沟道绝缘层上硅平面场效应晶体管中热载流子注入应力导致的退化对沟道长度的依赖性. 物理学报, 2015, 64(16): 167305. doi: 10.7498/aps.64.167305
    [17] 马丽, 谭振兵, 谭长玲, 刘广同, 杨昌黎, 吕力. 机械剥离法制备石墨烯纳米带及其低温电输运性质研究. 物理学报, 2011, 60(10): 107302. doi: 10.7498/aps.60.107302
    [18] 郭剑川, 左玉华, 张云, 张岭梓, 成步文, 王启明. 单行载流子光电探测器中空间电荷屏蔽效应理论分析和实验研究. 物理学报, 2010, 59(7): 4524-4529. doi: 10.7498/aps.59.4524
    [19] 张俊艳, 邓天松, 沈昕, 朱孔涛, 张琦锋, 吴锦雷. 单根砷掺杂氧化锌纳米线场效应晶体管的电学及光学特性. 物理学报, 2009, 58(6): 4156-4161. doi: 10.7498/aps.58.4156
    [20] 陈长虹, 黄德修, 朱 鹏. α-SiN:H薄膜的光学声子与VO2基Mott相变场效应晶体管的红外吸收特性. 物理学报, 2007, 56(9): 5221-5226. doi: 10.7498/aps.56.5221
计量
  • 文章访问数:  10592
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-24
  • 修回日期:  2020-04-21
  • 上网日期:  2020-05-09
  • 刊出日期:  2020-07-05

/

返回文章
返回