搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于工艺偏差的电压调控磁各向异性磁隧道结电学模型及其在读写电路中的应用

金冬月 陈虎 王佑 张万荣 那伟聪 郭斌 吴玲 杨绍萌 孙晟

引用本文:
Citation:

基于工艺偏差的电压调控磁各向异性磁隧道结电学模型及其在读写电路中的应用

金冬月, 陈虎, 王佑, 张万荣, 那伟聪, 郭斌, 吴玲, 杨绍萌, 孙晟

Process deviation based electrical model of voltage controlled magnetic anisotropy magnetic tunnel junction and its application in read/write circuits

Jin Dong-Yue, Chen Hu, Wang You, Zhang Wan-Rong, Na Wei-Cong, Guo Bin, Wu Ling, Yang Shao-Meng, Sun Sheng
PDF
HTML
导出引用
  • 电压调控磁各向异性磁隧道结(voltage controlled magnetic anisotropy magnetic tunnel junction, VCMA-MTJ)作为磁随机存储器(magnetic random access memory, MRAM)的核心器件, 具有读写速度快、功耗低、与CMOS工艺相兼容等优点, 现已得到国内外学者的广泛关注. 然而随着VCMA-MTJ尺寸不断缩小、MRAM存储容量不断增大, 工艺偏差对MTJ性能的影响变得越来越显著, 甚至会引起VCMA-MTJ电路的读写错误. 本文在充分考虑磁控溅射薄膜生长工艺中自由层厚度偏差(γtf)、氧化势垒层厚度偏差(γtox)以及离子束刻蚀工艺中由侧壁再沉积层引入的刻蚀工艺稳定因子(α)偏差影响的情况下, 给出了基于工艺偏差的VCMA-MTJ电学模型, 并将该模型应用到VCMA-MTJ读写电路中, 研究了工艺偏差对上述电路读写错误率的影响. 结果表明: 当γtf ≥ 13%, γtox ≥ 11%时, VCMA-MTJ将无法实现磁化状态的有效切换; 当α ≤ 0.7时, VCMA-MTJ磁化方向的进动过程变得不稳定. 进一步地, VCMA-MTJ电路的读错误率和写错误率也将随着工艺偏差的增大而增大. 研究表明, 通过增大外加电压(Vb)和减小外加电压脉冲宽度(tpw)可有效降低VCMA-MTJ电路的写错误率, 增大电路的读驱动电压(Vdd)可有效降低VCMA-MTJ电路的读错误率.
    As one of the primary elements in magnetoresistive random access memory (MRAM), voltage controlled magnetic anisotropy magnetic tunnel junction (VCMA-MTJ) has received wide attention due to its fast read and write speed, low power dissipation, and compatibility with standard CMOS technology. However, with the downscaling of VCMA-MTJ and the increasing of storage density of MRAM, the effect of process deviation on the characteristics of MTJ becomes more and more obvious, which even leads to Read/Write (R/W) error in VCMA-MTJ circuits. Taking into account the depth deviation of the free layer (γtf) and the depth deviation of the oxide barrier layer (γtox) in magnetron sputtering technique as well as the etching process stability factor (α) caused by the sidewall re-deposition layer in the ion beam etching process, the electrical model of VCMA-MTJ with process deviation is presented in the paper. It is shown that the VCMA-MTJ cannot achieve the effective reversal of the magnetization direction when γtf ≥ 13% and γtox ≥ 11%. The precession of magnetization direction in VCMA-MTJ also becomes instable when α ≤ 0.7. Furthermore, the electrical model of VCMA-MTJ with process deviation is also applied to the R/W circuit to study the effect of process deviation on the R/W error in the circuit. Considering the fact that all of γtf, γtox, and α follow Gauss distribution, The 3σ/μ is adopted to represent the process deviation, with using Monte Carlo simulation, where σ is the standard deviation, and μ is the average value. It is shown that the write error of the circuit goes up to 30 % with 3σ/μ of 0.05 and the voltage (Vb) of 1.15 V. At the same time, the read error of the circuit is 20% with 3σ/μ of 0.05 and driving voltage (Vdd) of 0.6 V. Both the read error rate and the write error rate of the VCMA-MTJ circuit increase as process deviation increases. It is found that the write error rate can be effectively reduced by increasing Vb and reducing the voltage pulse width (tpw). The increasing of Vdd is helpful in reducing the read error rate effectively. Our research presents a useful guideline for designing and analyzing the VCMA-MTJ and VCMA-MTJ read/write circuits.
      通信作者: 金冬月, dyjin@bjut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61006059, 61774012, 61901010)、北京市自然科学基金(批准号: 4143059, 4192014, 4204092)、北京市教委科技发展计划项目(批准号: KM201710005027)、北京市博士后科学基金(批准号: 2015ZZ-11)、中国博士后科学基金(批准号: 2015M580951、2019M650404)和北京市未来芯片技术高精尖创新中心科研基金(批准号: KYJJ2016008)资助的课题
      Corresponding author: Jin Dong-Yue, dyjin@bjut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61006059, 6177402, 61901010), Beijing Natural Science Foundation, China (Grant Nos. 4143059, 4192014, 4204092), Beijing Municipal Education Committee Project, China (Grant No. KM201710005027), Postdoctoral Science Foundation of Beijing, China (Grant No. 2015ZZ-11), China Postdoctoral Science Foundation (Grant Nos. 2015M580951, 2019M650404), and Beijing Future Chip Technology High-tech Innovation Center Scientific Research Fund, China (Grant No. KYJJ2016008)
    [1]

    Ikegawa S, Mancoff F B, Janesky J, Aggarwal S 2020 IEEE Trans. Electron Devices 67 1407Google Scholar

    [2]

    Nehra V, Prajapati S, Tankwal P, Zilic Z, Kumar T N, Kaushik B K 2020 IEEE Trans. Magn. 56 1Google Scholar

    [3]

    Sun Y, Gu J, He W, Wang Q, Jing N, Mao Z, Qian W, Jiang L 2019 IEEE Trans. Circuits Syst. II-Express Briefs 66 753Google Scholar

    [4]

    Burr G W, Brightsky M J, Sebastian A, Cheng H, Wu J, Kim S, Sosa N E, Papandreou N, Lung H, Pozidis H, Eleftheriou E, Lam C H 2016 IEEE J. Emerg. Sel. Topics Circuits Syst. 6 146Google Scholar

    [5]

    Wang C Z, Zhang D M, Zhang K L, Zeng L, Wang Y, Hou Z Y, Zhang Y G, Zhao W S 2020 IEEE Trans. Magn. 67 1965Google Scholar

    [6]

    Ryu J W, Kwon K W 2016 IEEE Trans. Magn. 52 1Google Scholar

    [7]

    Prajapati S, Kaushik B K 2018 IEEE Trans. Magn. 55 1Google Scholar

    [8]

    Lee D G, Park S G 2017 IEEE Trans. Magn. 53 1Google Scholar

    [9]

    Khalili A P, Alzate J G, Cai X Q, Ebrahimi F, Hu Q, Wong K, Wang K L 2015 IEEE Trans. Magn. 51 1Google Scholar

    [10]

    Zhang X L, Wang C J, Liu Y W, Zhang Z Z, Jin Q Y, Duan C G 2016 Sci. Rep. 6 18719Google Scholar

    [11]

    Miriyala V P K, Fong X, Liang G 2019 IEEE Trans. Electron Devices. 66 944Google Scholar

    [12]

    Long M, Zeng L, Gao T, Zhang D, Qin X, Zhang Y, Zhao W 2018 IEEE Trans. Nanotechnol. 17 492Google Scholar

    [13]

    Song J, Ahmed I, Zhao Z, Zhang D, Sapatnekar S S, Wang J P, Kim C H 2018 IEEE J. Explor. Solid-State Computat. Dev. Circ. 4 76Google Scholar

    [14]

    Cao K, Li H, Cai W, Wei J, Wang L, Hu Y, Jiang Q, Cui H, Zhao C, Zhao W 2019 IEEE Trans. Magn. 55 1Google Scholar

    [15]

    Jaiswal A, Agrawal A, Roy K 2018 Sci. Rep. 8 1Google Scholar

    [16]

    张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友 2017 物理学报 66 5Google Scholar

    Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C, Wang K Y 2017 Acta Phys. Sin. 66 5Google Scholar

    [17]

    Kang W, Ran Y, Zhang Y, Lü W, Zhao W 2017 IEEE Trans. Nanotechnol. 16 387Google Scholar

    [18]

    Lee H, Lee A, Wang S, Ebrahimi F, Gupta P, Amiri P K, Wang K L 2018 IEEE Trans. Magn. 54 1Google Scholar

    [19]

    Alzate J G, Amiri P K, Upadhyaya P, Cherepov S S, Zhu J, Lewis M, Dorrance R, Katine J A, Langer J, Galatsis K 2012 2012 International Electron Devices Meeting San Francisco, US, December 10–13, 2012 p51

    [20]

    Niranjan M K, Duan C G, Jaswal S S, Tsymbal E Y 2010 Appl. Phys. Lett. 96 222504Google Scholar

    [21]

    Gilbert T L 2004 IEEE Trans. Magn. 40 3443Google Scholar

    [22]

    Ahmed R, Victora R H 2018 Appl. Phys. Lett. 112 182401Google Scholar

    [23]

    Alzate Vinasco J G 2014 Ph. D. Dissertation (California: University of California, Los Angeles

    [24]

    Tsunekawa K, Nagamine Y, Maehara H, Djayaprawira D D, Watanabe N 2007 2006 IEEE International Magnetics Conference San Diego, US, May 8–12, 2006 p855

    [25]

    Rata A D, Braak H, Bürgler D E, Schneider C M 2007 Appl. Phys. Lett. 90 162512Google Scholar

    [26]

    Zhao W, Zhao X, Zhang B, Cao K, Wang L, Kang W, Shi Q, Wang M, Zhang Y, Wang Y 2016 Materials 9 41Google Scholar

    [27]

    Wang Y, Cai H, Naviner L A B, Zhao X X, Zhang Y, Slimani M, Klein J O, Zhao W S 2016 Microelectron. Reliab. 64 26Google Scholar

    [28]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721Google Scholar

    [29]

    Chen E, Schwarz B, Choi C J, Kula W, Wolfman J, Ounadjela K, Geha S 2003 J. Appl. Phys. 93 8379Google Scholar

    [30]

    Ohsawa Y, Shimomura N, Daibou T, Kamiguchi Y, Shirotori S, Inokuchi T, Saida D, Altansargai B, Kato Y, Yoda H 2016 IEEE Trans. Magn. 52 1Google Scholar

    [31]

    Ip V, Huang S, Carnevale S D, Berry I L, Rook K, Lill T B, Paranjpe A P, Cerio F 2017 IEEE Trans. Magn. 53 1Google Scholar

    [32]

    Sugiura K, Takahashi S, Amano M, Kajiyama T, Iwayama M, Asao Y, Shimomura N, Kishi T, Ikegawa S, Yoda H 2009 Jpn. J. Appl. Phys. 48 08HD02Google Scholar

    [33]

    Takahashi S, Kai T, Shimomura N, Ueda T, Amano M, Yoshikawa M, Kitagawa E, Asao Y, Ikegawa S, Kishi T 2006 IEEE Trans. Magn. 42 2745Google Scholar

    [34]

    Xue L, Nistor L, Ahn J, Germain J, Ching C, Balseanu M, Trinh C, Chen H, Hassan S, Pakala M 2014 IEEE Trans. Magn. 50 1Google Scholar

    [35]

    Wang Y, Zhang Y, Deng E Y, Klein J O, Naviner L A B, Zhao W S 2014 Microelectron. Reliab. 54 1774Google Scholar

    [36]

    Aggarwal S, Almasi H, DeHerrera M, Hughes B, Ikegawa S, Janesky J, Lee H K, Lu H, Mancoff F B, Nagel K, Shimon G, Sun J J, Andre T, Alam S M 2019 2019 IEEE International Electron Devices Meeting (IEDM) San Francisco, USA, December 7–11, 2019 p18

    [37]

    Li J, Augustine C, Salahuddin S, Roy K 2008 Proceedings of the 45th annual Design Automation Conference New York, USA, June, 2008 p278

  • 图 1  VCMA-MTJ结构示意图

    Fig. 1.  Schematic structure of the VCMA-MTJ device.

    图 2  VCMA-MTJ的磁化动力学示意图 (a)不同电压对MTJ磁化状态能量势垒的影响; (b)Vb < VC的情况; (c)Vb > VC的情况

    Fig. 2.  Illustration of magnetization dynamics for the VCMA-MTJ device: (a) The impacts of different voltages on the energy barrier of MTJ; (b) at a relatively low voltage (Vb < VC); (c) at a high positive voltage (Vb > VC).

    图 3  VCMA-MTJ磁化状态随时间的变化曲线, 其中插图是切换速度的定义

    Fig. 3.  Magnetization state versus time of VCMA-MTJ, the inset represents the definition of the switching speed.

    图 4  不同Vb对VCMA-MTJ磁化状态切换速度的影响, 其中tpw = 0.4 ns

    Fig. 4.  Effect of Vb on the magnetization direction switching speed of VCMA-MTJ at tpw = 0.4 ns.

    图 5  不同tpw对VCMA-MTJ磁化状态切换的影响, 插图为与图2(c)相对应的mz变化情况

    Fig. 5.  Effect of tpw on the magnetization direction switching of VCMA-MTJ, the inset shows the precession of mz corresponding to Fig. 2(c).

    图 6  薄膜生长工艺产生的厚度偏差示意图

    Fig. 6.  Schematic illustration of thickness deviation caused by the thin film growth process.

    图 7  γtf对VCMA-MTJ磁化方向切换的影响, 其中Vb = 1.2 V, tpw = 0.4 ns

    Fig. 7.  Effect of γtf on the magnetization direction switchingof VCMA-MTJ at Vb = 1.2 V, tpw = 0.4 ns.

    图 8  不同γtox对VCMA-MTJ磁化状态切换的影响, 其中Vb = 1.1 V, tpw = 0.4 ns

    Fig. 8.  Effect of γtox on magnetization direction switching of VCMA-MTJ at Vb = 1.1 V and tpw = 0.4 ns.

    图 9  离子束刻蚀产生侧壁再沉积层示意图 (a)刻蚀产生磁性粒子; (b)粒子聚集形成再沉积层

    Fig. 9.  Illustration of the formation of the sidewall re-deposited layer with ion beam etching: (a) Producing of magnetic particleses with etching process; (b) formation of the re-deposition layer with magnetic particleses.

    图 10  不同α对VCMA-MTJ磁化方向切换的影响

    Fig. 10.  Effect of α on magnetization direction switching of VCMA-MTJ.

    图 11  VCMA-MTJ读写电路

    Fig. 11.  Reading and writing circuit of VCMA-MTJ.

    图 12  VCMA-MTJ读写电路的仿真波形

    Fig. 12.  Simulation waveform of the reading and writing circuit of VCMA-MTJ.

    图 13  VCMA-MTJ写电路的蒙特卡洛仿真波形, 其中N = 100, 3σ/μ = 0.03, Vb = 1.2 V, tpw = 0.4 ns

    Fig. 13.  Monte Carlo simulation waveform of the writing circuit of VCMA-MTJ at N = 100, 3σ/μ = 0.03, Vb = 1.2 V, tpw = 0.4 ns.

    图 14  不同Vb下写错误率随3σ/μ的变化关系

    Fig. 14.  Writing error rate versus 3σ/μ at different Vb

    图 15  不同tpw下写错误率随3σ/μ的变化关系

    Fig. 15.  Writing error rate versus 3σ/μ at different tpw.

    图 16  VCMA-MTJ读电路的蒙特卡洛仿真波形, 其中N = 100, 3σ/μ = 0.07, Vdd = 0.8 V

    Fig. 16.  Monte Carlo simulation waveform of the reading circuit of VCMA-MTJ at N = 100, 3σ/μ = 0.07, Vdd = 0.8 V

    图 17  不同Vdd下读错误率随3σ/μ的变化关系

    Fig. 17.  Reading error rate versus 3σ/μ at different Vdd.

    表 1  VCMA-MTJ模型参数列表

    Table 1.  Parameters of the VCMA-MTJ model.

    参数符号数值单位
    氧化势垒层厚度标准值tox1.4nm
    垂直磁各向异性系数Ki0.32mJ/m2
    电压调控磁各项异性系数ξ60fJ/(V·m)
    自由层厚度标准值tf1.1nm
    简化的旋磁比γ2.21 × 105m/(A·s)
    磁导率μ01.256 × 10–6H/m
    吉尔伯特阻尼因子αd0.05
    饱和磁化强度Ms0.625 × 106A/m
    x, y 轴退磁因子Nx, y0.0168
    z 轴退磁因子Nz0.966
    外加磁场在 x 轴分量Hx31830A/m
    下载: 导出CSV
  • [1]

    Ikegawa S, Mancoff F B, Janesky J, Aggarwal S 2020 IEEE Trans. Electron Devices 67 1407Google Scholar

    [2]

    Nehra V, Prajapati S, Tankwal P, Zilic Z, Kumar T N, Kaushik B K 2020 IEEE Trans. Magn. 56 1Google Scholar

    [3]

    Sun Y, Gu J, He W, Wang Q, Jing N, Mao Z, Qian W, Jiang L 2019 IEEE Trans. Circuits Syst. II-Express Briefs 66 753Google Scholar

    [4]

    Burr G W, Brightsky M J, Sebastian A, Cheng H, Wu J, Kim S, Sosa N E, Papandreou N, Lung H, Pozidis H, Eleftheriou E, Lam C H 2016 IEEE J. Emerg. Sel. Topics Circuits Syst. 6 146Google Scholar

    [5]

    Wang C Z, Zhang D M, Zhang K L, Zeng L, Wang Y, Hou Z Y, Zhang Y G, Zhao W S 2020 IEEE Trans. Magn. 67 1965Google Scholar

    [6]

    Ryu J W, Kwon K W 2016 IEEE Trans. Magn. 52 1Google Scholar

    [7]

    Prajapati S, Kaushik B K 2018 IEEE Trans. Magn. 55 1Google Scholar

    [8]

    Lee D G, Park S G 2017 IEEE Trans. Magn. 53 1Google Scholar

    [9]

    Khalili A P, Alzate J G, Cai X Q, Ebrahimi F, Hu Q, Wong K, Wang K L 2015 IEEE Trans. Magn. 51 1Google Scholar

    [10]

    Zhang X L, Wang C J, Liu Y W, Zhang Z Z, Jin Q Y, Duan C G 2016 Sci. Rep. 6 18719Google Scholar

    [11]

    Miriyala V P K, Fong X, Liang G 2019 IEEE Trans. Electron Devices. 66 944Google Scholar

    [12]

    Long M, Zeng L, Gao T, Zhang D, Qin X, Zhang Y, Zhao W 2018 IEEE Trans. Nanotechnol. 17 492Google Scholar

    [13]

    Song J, Ahmed I, Zhao Z, Zhang D, Sapatnekar S S, Wang J P, Kim C H 2018 IEEE J. Explor. Solid-State Computat. Dev. Circ. 4 76Google Scholar

    [14]

    Cao K, Li H, Cai W, Wei J, Wang L, Hu Y, Jiang Q, Cui H, Zhao C, Zhao W 2019 IEEE Trans. Magn. 55 1Google Scholar

    [15]

    Jaiswal A, Agrawal A, Roy K 2018 Sci. Rep. 8 1Google Scholar

    [16]

    张楠, 张保, 杨美音, 蔡凯明, 盛宇, 李予才, 邓永城, 王开友 2017 物理学报 66 5Google Scholar

    Zhang N, Zhang B, Yang M Y, Cai K M, Sheng Y, Li Y C, Deng Y C, Wang K Y 2017 Acta Phys. Sin. 66 5Google Scholar

    [17]

    Kang W, Ran Y, Zhang Y, Lü W, Zhao W 2017 IEEE Trans. Nanotechnol. 16 387Google Scholar

    [18]

    Lee H, Lee A, Wang S, Ebrahimi F, Gupta P, Amiri P K, Wang K L 2018 IEEE Trans. Magn. 54 1Google Scholar

    [19]

    Alzate J G, Amiri P K, Upadhyaya P, Cherepov S S, Zhu J, Lewis M, Dorrance R, Katine J A, Langer J, Galatsis K 2012 2012 International Electron Devices Meeting San Francisco, US, December 10–13, 2012 p51

    [20]

    Niranjan M K, Duan C G, Jaswal S S, Tsymbal E Y 2010 Appl. Phys. Lett. 96 222504Google Scholar

    [21]

    Gilbert T L 2004 IEEE Trans. Magn. 40 3443Google Scholar

    [22]

    Ahmed R, Victora R H 2018 Appl. Phys. Lett. 112 182401Google Scholar

    [23]

    Alzate Vinasco J G 2014 Ph. D. Dissertation (California: University of California, Los Angeles

    [24]

    Tsunekawa K, Nagamine Y, Maehara H, Djayaprawira D D, Watanabe N 2007 2006 IEEE International Magnetics Conference San Diego, US, May 8–12, 2006 p855

    [25]

    Rata A D, Braak H, Bürgler D E, Schneider C M 2007 Appl. Phys. Lett. 90 162512Google Scholar

    [26]

    Zhao W, Zhao X, Zhang B, Cao K, Wang L, Kang W, Shi Q, Wang M, Zhang Y, Wang Y 2016 Materials 9 41Google Scholar

    [27]

    Wang Y, Cai H, Naviner L A B, Zhao X X, Zhang Y, Slimani M, Klein J O, Zhao W S 2016 Microelectron. Reliab. 64 26Google Scholar

    [28]

    Ikeda S, Miura K, Yamamoto H, Mizunuma K, Gan H D, Endo M, Kanai S, Hayakawa J, Matsukura F, Ohno H 2010 Nat. Mater. 9 721Google Scholar

    [29]

    Chen E, Schwarz B, Choi C J, Kula W, Wolfman J, Ounadjela K, Geha S 2003 J. Appl. Phys. 93 8379Google Scholar

    [30]

    Ohsawa Y, Shimomura N, Daibou T, Kamiguchi Y, Shirotori S, Inokuchi T, Saida D, Altansargai B, Kato Y, Yoda H 2016 IEEE Trans. Magn. 52 1Google Scholar

    [31]

    Ip V, Huang S, Carnevale S D, Berry I L, Rook K, Lill T B, Paranjpe A P, Cerio F 2017 IEEE Trans. Magn. 53 1Google Scholar

    [32]

    Sugiura K, Takahashi S, Amano M, Kajiyama T, Iwayama M, Asao Y, Shimomura N, Kishi T, Ikegawa S, Yoda H 2009 Jpn. J. Appl. Phys. 48 08HD02Google Scholar

    [33]

    Takahashi S, Kai T, Shimomura N, Ueda T, Amano M, Yoshikawa M, Kitagawa E, Asao Y, Ikegawa S, Kishi T 2006 IEEE Trans. Magn. 42 2745Google Scholar

    [34]

    Xue L, Nistor L, Ahn J, Germain J, Ching C, Balseanu M, Trinh C, Chen H, Hassan S, Pakala M 2014 IEEE Trans. Magn. 50 1Google Scholar

    [35]

    Wang Y, Zhang Y, Deng E Y, Klein J O, Naviner L A B, Zhao W S 2014 Microelectron. Reliab. 54 1774Google Scholar

    [36]

    Aggarwal S, Almasi H, DeHerrera M, Hughes B, Ikegawa S, Janesky J, Lee H K, Lu H, Mancoff F B, Nagel K, Shimon G, Sun J J, Andre T, Alam S M 2019 2019 IEEE International Electron Devices Meeting (IEDM) San Francisco, USA, December 7–11, 2019 p18

    [37]

    Li J, Augustine C, Salahuddin S, Roy K 2008 Proceedings of the 45th annual Design Automation Conference New York, USA, June, 2008 p278

  • [1] 任延英, 李雅宁, 柳洪盛, 徐楠, 郭坤, 徐朝辉, 陈鑫, 高峻峰. 过渡金属元素掺杂对磁铁矿磁矩及磁各向异性的调控. 物理学报, 2024, 73(6): 066104. doi: 10.7498/aps.73.20231744
    [2] 樊译颉, 张阮, 陈宇, 蔡星汉. CrCl3隧穿磁阻的界面效应与多场效应调控. 物理学报, 2024, 73(13): 137302. doi: 10.7498/aps.73.20240431
    [3] 王可欣, 粟傈, 童良乐. 基于反铁磁的无外场辅助自旋轨道矩磁隧道结模型分析. 物理学报, 2023, 72(19): 198504. doi: 10.7498/aps.72.20230901
    [4] 刘南舒, 王聪, 季威. 磁性二维材料的近期研究进展. 物理学报, 2022, 71(12): 127504. doi: 10.7498/aps.71.20220301
    [5] 金冬月, 曹路明, 王佑, 贾晓雪, 潘永安, 周钰鑫, 雷鑫, 刘圆圆, 杨滢齐, 张万荣. 基于工艺偏差的自旋转移矩辅助压控磁各向异性磁隧道结电学模型及其应用研究. 物理学报, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [6] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析. 物理学报, 2019, 68(20): 207201. doi: 10.7498/aps.68.20190927
    [7] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构. 物理学报, 2018, 67(11): 117501. doi: 10.7498/aps.67.20180216
    [8] 汤华莲, 许蓓蕾, 庄奕琪, 张丽, 李聪. 工艺偏差下PMOS器件的负偏置温度不稳定效应分布特性. 物理学报, 2016, 65(16): 168502. doi: 10.7498/aps.65.168502
    [9] 陈希, 刘厚方, 韩秀峰, 姬扬. CoFeB/AlOx/Ta及AlOx/CoFeB/Ta结构中垂直易磁化效应的研究. 物理学报, 2013, 62(13): 137501. doi: 10.7498/aps.62.137501
    [10] 刘娜, 王海, 朱涛. CoFeB/Pt多层膜的垂直磁各向异性研究. 物理学报, 2012, 61(16): 167504. doi: 10.7498/aps.61.167504
    [11] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性. 物理学报, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [12] 闫静, 祁先进, 王寅岗. 退火对IrMn基磁隧道结多层膜热稳定性的影响. 物理学报, 2011, 60(8): 088106. doi: 10.7498/aps.60.088106
    [13] 王 勇, 张 泽, 曾中明, 韩秀峰. 电子全息对磁隧道结势垒层的研究. 物理学报, 2006, 55(3): 1148-1152. doi: 10.7498/aps.55.1148
    [14] 董正超, 邢定钰, 董锦明. 铁磁-超导隧道结中的散粒噪声. 物理学报, 2001, 50(3): 556-560. doi: 10.7498/aps.50.556
    [15] 关鹏, 刘宜华. 磁感生各向异性的一个新模型. 物理学报, 1989, 38(7): 1182-1186. doi: 10.7498/aps.38.1182
    [16] 曾训一, 陆晓佳, 王亚旗. YIG中生长感生磁各向异性的来源. 物理学报, 1989, 38(11): 1891-1895. doi: 10.7498/aps.38.1891
    [17] 李义兵, 李少平. 各向异性磁介质中的静磁交换模. 物理学报, 1989, 38(7): 1177-1181. doi: 10.7498/aps.38.1177
    [18] 崔广霁, 孟小凡, 邵凯. 谐振型Josephson隧道结与外加微波的磁耦合(Ⅰ). 物理学报, 1982, 31(12): 1-7. doi: 10.7498/aps.31.1-2
    [19] 崔广霁, 孟小凡, 邵凯. 谐振型Josephson隧道结与外加微波的磁耦合(Ⅱ). 物理学报, 1982, 31(12): 8-12. doi: 10.7498/aps.31.8
    [20] 向仁生. 关於铬矾单晶的顺磁各向异性. 物理学报, 1957, 13(3): 177-180. doi: 10.7498/aps.13.177
计量
  • 文章访问数:  8337
  • PDF下载量:  141
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-15
  • 修回日期:  2020-05-09
  • 上网日期:  2020-06-13
  • 刊出日期:  2020-10-05

/

返回文章
返回