-
铁电薄膜异质结的光伏效应因具有重要的应用前景而备受关注, 而且其中多种光伏效应机制的共存带来了丰富而复杂的物理内涵. 为了研究界面对光伏效应的重要作用, 制备了基于BiFeO3铁电薄膜的具有“金属/铁电体/半导体”非对称电极结构的Pt/BiFeO3/Nb:SrTiO3异质结, 并系统研究了其在不同波长(365和445 nm)激光照射下的光伏效应. 在365 nm, 74 mW/cm2光照下, 异质结的光伏开路电压高达0.55 V. 而且, 由于光激发和光吸收过程的不同, 365 nm激光照射下该异质结的开路电压和短路电流比445 nm激光照射下的结果显著提高. 随着温度降低, 开路电压单调上升, 而不同波长下的短路电流则表现出不同的变化规律. 另外, 随着光强的提高, 异质结整流效应获得增强, 通过分析, 空间电荷限制电流传导机制对异质结输运有重要贡献, 而光生载流子将通过填充缺陷影响输运特性.The photovoltaic effect of ferroelectric BiFeO3 (BFO)-based heterojunction has been one of hot subjects of theoretical and experimental studies due to its important application prospects, and the coexistence of varieties of photovoltaic effect mechanisms (bulk photovoltaic effect, domain wall effect, interfacial barrier effect, etc.) can bright rich and complicated physics nature. In order to investigate the important role that the interface plays in the photovoltaic effect, we prepare the Pt/BFO(60 nm)/Nb:SrTiO3 (NSTO) heterojunction with an asymmetric metal/ferroelectric/semiconductor structure, and systematically investigate the photovoltaic effect under laser irradiation with different wavelengths (365 nm and 445 nm). The heterojunction exhibits much stronger open-circuit voltage (Voc, ~0.55 V at 74 mW/cm2) and short-circuit current density (Jsc, ~ 208 μA/cm2 at 74 mW/cm2) for the laser irradiation with 365 nm wavelength than those for the laser irradiation with 445 nm wavelength, and the Voc and Jsc are both strengthened with the increase of light intensity. This is because the 365 nm light with the photon energy ~3.4 eV can stimulate photon-induced carriers in both BFO (band gap ~2.7 eV) and NSTO (band gap ~3.2 eV) at both the Pt/BFO interface and the BFO/NSTO interface, while the 445 nm light with the photon energy ~2.8 eV can only generate carriers in BFO. Thus the photovoltaic voltage is much bigger for the 365 nm light. Furthermore, the laser absorption process is much more efficient for the 365 nm light (79% absorbed in BFO and 21% absorbed in NSTO) than for the 445 nm light (21% absorbed in BFO). In addition, the temperature dependent Voc and Jsc are also investigated. It is found that for the 365 nm and 445 nm laser irradiation, the Voc increases with temperature decreasing, which is possibly due to the variations of the built-in potential, concentration of thermal charge carriers, and/or electron-phonon scatterings. The sharper variation of Voc above ~ 200 K may suggest the more significant role of thermal charge carriers at high temperatures. Interestingly, the temperature dependent Jsc behaves differently for the 365 nm and 445 nm light. Under the 365 nm laser irradiation, the Jsc remains almost unchanged below 170 K and increases sharply with temperature increasing above 170 K, which may be related to the dominant role of thermal excitation for the 365 nm light. While for the 445 nm light, the Jsc decreases with temperature increasing, which follows the variation trend of its Voc. What is more, the conduction mechanism of Pt/BFO/NSTO heterojunction under laser irradiation is also studied. It is found that the conduction for the 445 nm light can be nicely described by the space-charge-limited bulk conduction (SCLC) model and the photon-generated carriers may fill the traps and thus leading the transition voltage to decrease. While for the 365 nm light, the conduction is more complicated and cannot be described by the SCLC model. Our findings may be helpful in understanding the photovoltaic effect in transition-metal oxide based heterojunctions and designing photovoltaic devices.
-
Keywords:
- photovoltaic effect /
- heterojunction /
- rectification characteristics
[1] Tan Z W, Hong L Q, Fan Z, Tian J J, Zhang L Y, Jiang Y, Hou Z P, Chen D Y, Qin M H, Zeng M, Gao J W, Lu X B, Zhou G F, Gao X S, Liu J M 2019 NPG Asia Mater. 11 20Google Scholar
[2] Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2014 Nat. Photonics 9 61Google Scholar
[3] Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509Google Scholar
[4] Chakrabartty J, Harnagea C, Celikin M, Rosei F, Nechache R 2018 Nat. Photonics 12 271Google Scholar
[5] Wang J, Ma J, Yang Y B, Chen M F, Zhang J X, Ma J, Nan C W 2019 ACS Appl. Electron. Mater. 1 862Google Scholar
[6] Li J K, Ge C, Jin K J, Du J Y, Yang J T, Lu H B, Yang G Z 2017 Appl. Phys. Lett. 110 142901Google Scholar
[7] Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575Google Scholar
[8] Wang P, Wang Y, Ye L, Wu M Z, Xie R Z, Wang X D, Chen X S, Fan Z Y, Wang J L, Hu W D 2018 Small 14 e1800492Google Scholar
[9] Guo R, You L, Zhou Y, Shiuh L Z, Zou X, Chen L, Ramesh R, Wang J L 2013 Nat. Commun. 4 1990Google Scholar
[10] Wei M C, Liu M F, Yang L, Xie B, Li X, Wang X Z, Cheng X Y, Zhu Y D, Li Z J, Su Y L, Li M Y, Hu Z Q, Liu J M 2020 Ceram. Int. 46 5126Google Scholar
[11] Thakoor S 1992 Appl. Phys. Lett. 60 3319Google Scholar
[12] Liu C C, Sun H Y, Ma C, Chen Z W, Luo Z, Su T S, Yin Y W, Li X G 2020 IEEE Electron Device Lett. 41 42Google Scholar
[13] Liu Y K, Yao Y P, Dong S N, Yang S W, Li X G 2012 Phys. Rev. B 86 075113Google Scholar
[14] Fan Z, Yao K, Wang J 2014 Appl. Phys. Lett. 105 162903Google Scholar
[15] Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905Google Scholar
[16] Chen B, Zheng X J, Yang M J, Zhou Y, Kundu S, Shi J, Zhu K, Priya S 2015 Nano Energy 13 582Google Scholar
[17] Zhao R D, Ma N, Qi J, Mishra Y K, Adelung R, Yang Y 2019 Adv. Electron. Mater. 5 1800791Google Scholar
[18] Yang T, Wei J, Guo Y, Lü Z, Xu Z, Cheng Z 2019 ACS Appl. Mater. Interfaces 11 23372Google Scholar
[19] You L, Zheng F, Fang L, Zhou Y, Tan L Z, Zhang Z Y, Ma G H, Schmidt D, Rusydi A, Wang L, Chang L, Rappe A M, Wang J L 2018 Sci. Adv. 4 eaat3438Google Scholar
[20] Yuan Y B, Xiao Z G, Yang B, Huang J S 2014 J. Mater. Chem. A 2 6027Google Scholar
[21] 蔡田怡, 雎胜 2018 物理学报 67 157801Google Scholar
Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar
[22] Zhang J J, Su X D, Shen M R, Dai Z H, Zhang L J, He X Y, Cheng W X, Cao M Y, Zou G F 2013 Sci. Rep. 3 2109Google Scholar
[23] Hu W J, Wang Z H, Yu W L, Wu T 2016 Nat. Commun. 7 10808Google Scholar
[24] Quattropani A, Makhort A S, Rastei M V, Versini G, Schmerber G, Barre S, Dinia A, Slaoui A, Rehspringer J L, Fix T, Colis S, Kundys B 2018 Nanoscale 10 13761Google Scholar
[25] Jin K X, Zhai Y X, Li H, Tian Y F, Luo B C, Wu T 2014 Solid State Commun. 199 39Google Scholar
[26] Qu T L, Zhao Y G, Xie D, Shi J P, Chen Q P, Ren T L 2011 Appl. Phys. Lett. 98 173507Google Scholar
[27] Feng L, Yang S W, Lin Y, Zhang D L, Huang W C, Zhao W B, Yin Y W, Dong S N, Li X G 2015 ACS Appl. Mater. Interfaces 7 26036Google Scholar
[28] Huang W C, Liu Y K, Luo Z, Hou C M, Zhao W B, Yin Y W, Li X G 2018 J. Phys. D: Appl. Phys. 51 234005Google Scholar
[29] Wang X J, Zhou Q, Li H, Hu C, Zhang L L, Zhang Y, Zhang Y H, Sui Y, Song B 2018 Appl. Phys. Lett. 112 122103Google Scholar
[30] Yang M M, Zhao X Q, Wang J, Zhu Q X, Zhang J X, Li X M, Luo H S, Li X G, Zheng R K 2014 Appl. Phys. Lett. 104 052902Google Scholar
[31] Biegalski M D, Dörr K, Kim D H, Christen H M 2010 Appl. Phys. Lett. 96 151905Google Scholar
[32] Lord K, Hunter D, Williams T M, Pradhan A K 2006 Appl. Phys. Lett. 89 052116Google Scholar
[33] Dong H F, Wu Z G, Wang S Y, Duan W H, Li J B 2013 Appl. Phys. Lett. 102 072905Google Scholar
[34] Sze S M, Ng K K 2006 Physics of Semiconductor Devices (3rd Ed.) (Hoboken: John Wiley & Sons Inc) p53
[35] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏 2016 物理学报 65 188801Google Scholar
Cao R N, Xu F, Zhu J B, Ge S, Wang W Z, Xu H T, Xu R, Wu Y L, Ma Z Q, Hong F, Jiang Z M 2016 Acta Phys. Sin. 65 188801Google Scholar
[36] Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J C 2004 Adv. Funct. Mater. 14 38Google Scholar
[37] Kemerink M, Kramer J M, Gommans H H P, Janssen R A J 2006 Appl. Phys. Lett. 88 192108Google Scholar
[38] Snaith H J, Mende S L, Grätzel M, Chiesa M 2006 Phys. Rev. B 74 045306Google Scholar
[39] Elumalai N K, Uddin A 2016 Energy Environ. Sci. 9 391Google Scholar
[40] Katz E A, Faiman D, Tuladhar S M, Kroon J M, Wienk M M, Fromherz T, Padinger F, Brabec C J, Sariciftci N S 2001 J. Appl. Phys. 90 5343Google Scholar
[41] Sun J R, Shen B G, Sheng Z G, Sun Y P 2004 Appl. Phys. Lett. 85 3375Google Scholar
[42] Hao F X, Zhang C, Liu X, Yin Y W, Sun Y Z, Li X G 2016 Appl. Phys. Lett. 109 131104Google Scholar
[43] 刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(第7版) (北京: 电子工业出版社) 第183页
Liu E K, Zhu B S, Luo J S 2008 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) p183 (in Chinese)
[44] Shen J X, Qian H Q, Wang G F, An Y H, Li P G, Zhang Y, Wang S L, Chen B Y, Tang W H 2013 Appl. Phys. A 111 303Google Scholar
[45] Menzinger M, Wolfgang R 1969 Angew. Chem., Int. Ed. Engl. 8 438Google Scholar
[46] Schuller S, Schilinsky P, Hauch J, Brabec C J 2004 Appl. Phys. A 79 37Google Scholar
[47] Zhang L M, Ye X F, Boloor M, Poletayev A, Melosh N A, Chueh W C 2016 Energy Environ. Sci. 9 2044Google Scholar
[48] Steiner M A, Geisz J F, Friedman D J, Olavarria W J, Duda A, Moriarty T E 2011 37th IEEE Photovoltaic Specialists Conference (PVSC) Seattle, WA, USA, June 19–24, 2011 p002527
[49] Krawczyk S K, Jakubowski A, Żurawska M 1981 Sol. Cells 4 187Google Scholar
[50] Kabulov R R, Matchanov N A, Umarov B R 2018 Appl. Sol. Energy 53 297Google Scholar
[51] Wu C Y, Chen J F 1982 J. Appl. Phys. 53 3852Google Scholar
[52] Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601Google Scholar
[53] Lee D, Baek S H, Kim T H, Yoon J G, Folkman C M, Eom C B, Noh T W 2011 Phys. Rev. B 84 125305Google Scholar
[54] Janardhanam V, Lee H K, Shim K H, Hong H B, Lee S H, Ahn K S, Choi C J 2010 J. Alloys Compd. 504 146Google Scholar
[55] Chang S T, Lee J Y M 2002 Appl. Phys. Lett. 80 655Google Scholar
[56] Nana R, Gnanachchelvi P, Awaah M A, Gowda M H, Kamto A M, Wang Y, Park M, Das K 2010 Phys. Status Solidi A 207 1489Google Scholar
[57] Guo Y P, Guo B, Dong W, Li H, Liu H Z 2013 Nanotechnology 24 275201Google Scholar
[58] Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63Google Scholar
-
图 3 室温下, 黑暗及不同光强的光照射下Pt/BFO(60 nm)/NSTO异质结的J-V曲线 (a)波长365 nm光照下的结果; (b)波长445 nm光照下的结果, 插图为低电压区域的放大图像
Fig. 3. J-V curves of Pt/BFO(60 nm)/NSTO heterojunction in the dark and under the laser irradiation with various irradiation intensities at room temperature: (a) λ ~ 365 nm; (b) λ ~ 445 nm. The inset of panel (b) shows the magnified image at low voltages.
图 5 (a), (c)不同温度下Pt/BFO/NSTO异质结的J-V曲线; (b), (d)开路电压和短路电流密度随温度的变化; (a), (b) λ ~ 365 nm, 74 mW/cm2; (c), (d) λ ~ 445 nm, 1.56 W/cm2
Fig. 5. (a), (c) Temperature dependent J-V curves of Pt/BFO/NSTO heterojunction under laser irradiation; (b), (d) corresponding temperature dependent open-circuit voltage and short-circuit current density. In (a) and (b), λ ~ 365 nm, 74 mW/cm2; in (c) and (d), λ ~ 445 nm, 1.56 W/cm2.
图 8 (a)在445 nm光照和不加光时Pt/BFO/NSTO异质结的J-V曲线, 黑色实线是根据SCLC模型拟合的结果; (b) Vtran和
${V'_{{\rm{tran}}}}$ 随光强的变化关系Fig. 8. (a) J-V curves of Pt/BFO/NSTO heterojunction in the dark and under the laser irradiation with different irradiation intensities for 445 nm wavelength. The black solid lines are fitting results by SCLC model. (b) Light intensity dependent Vtran and
${V'_{{\rm{tran}}}}$ . -
[1] Tan Z W, Hong L Q, Fan Z, Tian J J, Zhang L Y, Jiang Y, Hou Z P, Chen D Y, Qin M H, Zeng M, Gao J W, Lu X B, Zhou G F, Gao X S, Liu J M 2019 NPG Asia Mater. 11 20Google Scholar
[2] Nechache R, Harnagea C, Li S, Cardenas L, Huang W, Chakrabartty J, Rosei F 2014 Nat. Photonics 9 61Google Scholar
[3] Grinberg I, West D V, Torres M, Gou G Y, Stein D M, Wu L Y, Chen G N, Gallo E M, Akbashev A R, Davies P K, Spanier J E, Rappe A M 2013 Nature 503 509Google Scholar
[4] Chakrabartty J, Harnagea C, Celikin M, Rosei F, Nechache R 2018 Nat. Photonics 12 271Google Scholar
[5] Wang J, Ma J, Yang Y B, Chen M F, Zhang J X, Ma J, Nan C W 2019 ACS Appl. Electron. Mater. 1 862Google Scholar
[6] Li J K, Ge C, Jin K J, Du J Y, Yang J T, Lu H B, Yang G Z 2017 Appl. Phys. Lett. 110 142901Google Scholar
[7] Wang X D, Wang P, Wang J L, Hu W D, Zhou X H, Guo N, Huang H, Sun S, Shen H, Lin T, Tang M H, Liao L, Jiang A Q, Sun J L, Meng X J, Chen X S, Lu W, Chu J H 2015 Adv. Mater. 27 6575Google Scholar
[8] Wang P, Wang Y, Ye L, Wu M Z, Xie R Z, Wang X D, Chen X S, Fan Z Y, Wang J L, Hu W D 2018 Small 14 e1800492Google Scholar
[9] Guo R, You L, Zhou Y, Shiuh L Z, Zou X, Chen L, Ramesh R, Wang J L 2013 Nat. Commun. 4 1990Google Scholar
[10] Wei M C, Liu M F, Yang L, Xie B, Li X, Wang X Z, Cheng X Y, Zhu Y D, Li Z J, Su Y L, Li M Y, Hu Z Q, Liu J M 2020 Ceram. Int. 46 5126Google Scholar
[11] Thakoor S 1992 Appl. Phys. Lett. 60 3319Google Scholar
[12] Liu C C, Sun H Y, Ma C, Chen Z W, Luo Z, Su T S, Yin Y W, Li X G 2020 IEEE Electron Device Lett. 41 42Google Scholar
[13] Liu Y K, Yao Y P, Dong S N, Yang S W, Li X G 2012 Phys. Rev. B 86 075113Google Scholar
[14] Fan Z, Yao K, Wang J 2014 Appl. Phys. Lett. 105 162903Google Scholar
[15] Basu S R, Martin L W, Chu Y H, Gajek M, Ramesh R, Rai R C, Xu X, Musfeldt J L 2008 Appl. Phys. Lett. 92 091905Google Scholar
[16] Chen B, Zheng X J, Yang M J, Zhou Y, Kundu S, Shi J, Zhu K, Priya S 2015 Nano Energy 13 582Google Scholar
[17] Zhao R D, Ma N, Qi J, Mishra Y K, Adelung R, Yang Y 2019 Adv. Electron. Mater. 5 1800791Google Scholar
[18] Yang T, Wei J, Guo Y, Lü Z, Xu Z, Cheng Z 2019 ACS Appl. Mater. Interfaces 11 23372Google Scholar
[19] You L, Zheng F, Fang L, Zhou Y, Tan L Z, Zhang Z Y, Ma G H, Schmidt D, Rusydi A, Wang L, Chang L, Rappe A M, Wang J L 2018 Sci. Adv. 4 eaat3438Google Scholar
[20] Yuan Y B, Xiao Z G, Yang B, Huang J S 2014 J. Mater. Chem. A 2 6027Google Scholar
[21] 蔡田怡, 雎胜 2018 物理学报 67 157801Google Scholar
Cai T Y, Ju S 2018 Acta Phys. Sin. 67 157801Google Scholar
[22] Zhang J J, Su X D, Shen M R, Dai Z H, Zhang L J, He X Y, Cheng W X, Cao M Y, Zou G F 2013 Sci. Rep. 3 2109Google Scholar
[23] Hu W J, Wang Z H, Yu W L, Wu T 2016 Nat. Commun. 7 10808Google Scholar
[24] Quattropani A, Makhort A S, Rastei M V, Versini G, Schmerber G, Barre S, Dinia A, Slaoui A, Rehspringer J L, Fix T, Colis S, Kundys B 2018 Nanoscale 10 13761Google Scholar
[25] Jin K X, Zhai Y X, Li H, Tian Y F, Luo B C, Wu T 2014 Solid State Commun. 199 39Google Scholar
[26] Qu T L, Zhao Y G, Xie D, Shi J P, Chen Q P, Ren T L 2011 Appl. Phys. Lett. 98 173507Google Scholar
[27] Feng L, Yang S W, Lin Y, Zhang D L, Huang W C, Zhao W B, Yin Y W, Dong S N, Li X G 2015 ACS Appl. Mater. Interfaces 7 26036Google Scholar
[28] Huang W C, Liu Y K, Luo Z, Hou C M, Zhao W B, Yin Y W, Li X G 2018 J. Phys. D: Appl. Phys. 51 234005Google Scholar
[29] Wang X J, Zhou Q, Li H, Hu C, Zhang L L, Zhang Y, Zhang Y H, Sui Y, Song B 2018 Appl. Phys. Lett. 112 122103Google Scholar
[30] Yang M M, Zhao X Q, Wang J, Zhu Q X, Zhang J X, Li X M, Luo H S, Li X G, Zheng R K 2014 Appl. Phys. Lett. 104 052902Google Scholar
[31] Biegalski M D, Dörr K, Kim D H, Christen H M 2010 Appl. Phys. Lett. 96 151905Google Scholar
[32] Lord K, Hunter D, Williams T M, Pradhan A K 2006 Appl. Phys. Lett. 89 052116Google Scholar
[33] Dong H F, Wu Z G, Wang S Y, Duan W H, Li J B 2013 Appl. Phys. Lett. 102 072905Google Scholar
[34] Sze S M, Ng K K 2006 Physics of Semiconductor Devices (3rd Ed.) (Hoboken: John Wiley & Sons Inc) p53
[35] 曹汝楠, 徐飞, 朱佳斌, 葛升, 王文贞, 徐海涛, 徐闰, 吴杨琳, 马忠权, 洪峰, 蒋最敏 2016 物理学报 65 188801Google Scholar
Cao R N, Xu F, Zhu J B, Ge S, Wang W Z, Xu H T, Xu R, Wu Y L, Ma Z Q, Hong F, Jiang Z M 2016 Acta Phys. Sin. 65 188801Google Scholar
[36] Riedel I, Parisi J, Dyakonov V, Lutsen L, Vanderzande D, Hummelen J C 2004 Adv. Funct. Mater. 14 38Google Scholar
[37] Kemerink M, Kramer J M, Gommans H H P, Janssen R A J 2006 Appl. Phys. Lett. 88 192108Google Scholar
[38] Snaith H J, Mende S L, Grätzel M, Chiesa M 2006 Phys. Rev. B 74 045306Google Scholar
[39] Elumalai N K, Uddin A 2016 Energy Environ. Sci. 9 391Google Scholar
[40] Katz E A, Faiman D, Tuladhar S M, Kroon J M, Wienk M M, Fromherz T, Padinger F, Brabec C J, Sariciftci N S 2001 J. Appl. Phys. 90 5343Google Scholar
[41] Sun J R, Shen B G, Sheng Z G, Sun Y P 2004 Appl. Phys. Lett. 85 3375Google Scholar
[42] Hao F X, Zhang C, Liu X, Yin Y W, Sun Y Z, Li X G 2016 Appl. Phys. Lett. 109 131104Google Scholar
[43] 刘恩科, 朱秉升, 罗晋生 2008 半导体物理学(第7版) (北京: 电子工业出版社) 第183页
Liu E K, Zhu B S, Luo J S 2008 The Physics of Semiconductors (7th Ed.) (Beijing: Publishing House of Electronics Industry) p183 (in Chinese)
[44] Shen J X, Qian H Q, Wang G F, An Y H, Li P G, Zhang Y, Wang S L, Chen B Y, Tang W H 2013 Appl. Phys. A 111 303Google Scholar
[45] Menzinger M, Wolfgang R 1969 Angew. Chem., Int. Ed. Engl. 8 438Google Scholar
[46] Schuller S, Schilinsky P, Hauch J, Brabec C J 2004 Appl. Phys. A 79 37Google Scholar
[47] Zhang L M, Ye X F, Boloor M, Poletayev A, Melosh N A, Chueh W C 2016 Energy Environ. Sci. 9 2044Google Scholar
[48] Steiner M A, Geisz J F, Friedman D J, Olavarria W J, Duda A, Moriarty T E 2011 37th IEEE Photovoltaic Specialists Conference (PVSC) Seattle, WA, USA, June 19–24, 2011 p002527
[49] Krawczyk S K, Jakubowski A, Żurawska M 1981 Sol. Cells 4 187Google Scholar
[50] Kabulov R R, Matchanov N A, Umarov B R 2018 Appl. Sol. Energy 53 297Google Scholar
[51] Wu C Y, Chen J F 1982 J. Appl. Phys. 53 3852Google Scholar
[52] Mihailetchi V D, Koster L J A, Hummelen J C, Blom P W M 2004 Phys. Rev. Lett. 93 216601Google Scholar
[53] Lee D, Baek S H, Kim T H, Yoon J G, Folkman C M, Eom C B, Noh T W 2011 Phys. Rev. B 84 125305Google Scholar
[54] Janardhanam V, Lee H K, Shim K H, Hong H B, Lee S H, Ahn K S, Choi C J 2010 J. Alloys Compd. 504 146Google Scholar
[55] Chang S T, Lee J Y M 2002 Appl. Phys. Lett. 80 655Google Scholar
[56] Nana R, Gnanachchelvi P, Awaah M A, Gowda M H, Kamto A M, Wang Y, Park M, Das K 2010 Phys. Status Solidi A 207 1489Google Scholar
[57] Guo Y P, Guo B, Dong W, Li H, Liu H Z 2013 Nanotechnology 24 275201Google Scholar
[58] Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S W 2009 Science 324 63Google Scholar
计量
- 文章访问数: 11054
- PDF下载量: 376
- 被引次数: 0