-
铁电负电容场效应晶体管可以突破传统金属氧化物半导体场效应晶体管中的玻尔兹曼限制, 将亚阈值摆幅降低到60 mV/dec以下, 极大地改善了晶体管的开关电流比和短沟道效应, 有效地降低了器件的功耗, 为实现晶体管特征尺寸的减小和摩尔定律的延续提供了选择. 本文分析总结了国内外近年来关于铁电负电容场效应晶体管代表性的研究进展, 为进一步研究提供参考. 首先介绍了铁电负电容场效应晶体管的研究背景及其意义; 然后总结了铁电材料的基本性质和种类, 并对铁电材料负电容的物理机制和铁电负电容场效应晶体管的工作原理进行了讨论; 接下来从器件沟道材料维度的角度, 分别总结了最近几年基于三维沟道材料和二维沟道材料且与氧化铪基铁电体结合的铁电负电容场效应晶体管的研究成果, 并对器件的亚阈值摆幅、开关电流比、回滞电压和漏电流等性能的改善进行了分析概述; 最后对铁电负电容场效应晶体管目前存在的问题和未来的发展方向作了总结与展望.
-
关键词:
- 铁电负电容场效应晶体管 /
- 氧化铪基铁电体 /
- 三维沟道材料 /
- 二维沟道材料
Ferroelectric negative capacitance field effect transistors(Fe-NCFETs) can break through the so-called “Boltzmann Tyranny” of traditional metal oxide semiconductor field effect transistors and reduce the subthreshold swing below 60 mV/dec, which could greatly improve the on/off current ratio and short-channel effect. Consequently, the power dissipation of the device is effectively lowered. The Fe-NCFET provides a choice for the downscaling of the transistor and the continuation of Moore’s Law. In this review, the representative research progress of Fe-NCFETs in recent years is comprehensively reviewed to conduce to further study. In the first chapter, the background and significance of Fe-NCFETs are introduced. In the second chapter, the basic properties of ferroelectric materials are introduced, and then the types of ferroelectric materials are summarized. Among them, the invention of hafnium oxide-based ferroelectric materials solves the problem of compatibility between traditional ferroelectric materials and CMOS processes, making the performance of NCFETs further improved. In the third chapter, the advantages and disadvantages of Fe-NCFETs with MFS, MFIS and MFMIS structures are first summarized, then from the perspective of atomic microscopic forces the “S” relationship curve of ferroelectric materials is derived and combined with Gibbs free energy formula and L-K equation, and the intrinsic negative capacitance region in the free energy curve of the ferroelectric material is obtained. Next, the steady-state negative capacitance and transient negative capacitance in the ferroelectric capacitor are discussed from the aspects of concept and circuit characteristics; after that the working area of negative capacitance Fe-NCFET is discussed. In the fourth chapter, the significant research results of Fe-NCFETs combined with hafnium-based ferroelectrics in recent years are summarized from the perspective of two-dimensional channel materials and three-dimensional channel materials respectively. Among them, the Fe-NCFETs based on three-dimensional channel materials such as silicon, germanium-based materials, III-V compounds, and carbon nanotubes are more compatible with traditional CMOS processes. The interface between the channel and the ferroelectric layer is better, and the electrical performance is more stable. However, thereremain some problems to be solved in three-dimensional channel materials such as the limited on-state current resulting from the low effective carrier mobility of the silicon, the small on/off current ratio due to the leakage caused by the small bandgap of the germanium-based material, the poor interfacial properties between the III-V compound materials and the dielectric layer, and the ambiguous working mechanism of Fe-NCFETs based on carbon nanotube. Compared with Fe-NCFETs based on three-dimensional channel materials, the Fe-NCFETs based on two-dimensional channel materials such as transition metal chalcogenide, graphene, and black phosphorus provide the possibility for the characteristic size of the transistor to be reduced to 3 nm. However, the interface performance between the two-dimensional channel material and the gate dielectric layer is poor, since there are numerous defect states at the interface. Furthermore, the two-dimensional channel materials have poor compatibility with traditional CMOS process. Hence, it is imperative to search for new approaches to finding a balance between device characteristics. Finally, the presently existing problems and future development directions of Fe-NCFETs are summarized and prospected.-
Keywords:
- ferroelectric negative capacitance field effect transistors /
- hafnia-based ferroelectrics /
- three-dimensional channel materials /
- two-dimensional channel materials
[1] Moore G E 1965 Electronics 38 114
[2] Mori K, Duong A, Richardson W F J 2002 IEEE T. Electron Dev. 49 61Google Scholar
[3] Fitzgerald E 2006 US Patent 11 412 262
[4] Chaudhry A, Kumar M J 2004 IEEE T. Device Ma. Re. 4 99Google Scholar
[5] Tsutsui G, Saitoh M, Hiramoto T 2005 IEEE Electr. Device L. 26 836Google Scholar
[6] Auth C, Allen C, Blattner A, Bergstrom D, Brazier M, Bost M, Buehler M, Chikarmane V, Ghani T, Glassman T 2012 Symposium on VLSI Technology Honolulu, HI, USA, June 12–14, 2012 p131
[7] Bae G, Bae D-I, Kang M, Hwang S, Kim S, Seo B, Kwon T, Lee T, Moon C, Choi Y 2019 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 1–5, 2018 p28.7.1
[8] International Roadmap for Devices and Systems 2017 Edition Reports. https://irds.ieee.org/roadmap-2017 [2020-1-11].
[9] Zhirnov V V, Cavin R K 2008 Nat. Nanotechnol. 3 77Google Scholar
[10] Woo Young C, Byung-Gook P, Jong Duk L, Tsu-Jae King L 2007 IEEE Electr. Device L. 28 743Google Scholar
[11] Seabaugh A C, Zhang Q 2010 Proc. IEEE 98 2095Google Scholar
[12] Ionescu A M, Riel H 2011 Nature 479 329Google Scholar
[13] Mori T, Morita Y, Miyata N, Migita S, Fukuda K, Mizubayashi W, Masahara M, Yasuda T, Ota H 2015 Appl. Phys. Lett. 106 083501Google Scholar
[14] Gopalakrishnan K, Griffin P B, Plummer J D 2003 Digest. International Electron Devices Meeting San Francisco, CA, USA, December 8–11, 2002 p289
[15] Kam H, Lee D T, Howe R T, King T J 2006 IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest. Washington, DC, USA, December 5–5, 2005 p463
[16] Lefter M, Enachescu M, Voicu G R, Cotofana S D 2014 Proceedings of the 2014 IEEE/ACM International Symposium on Nanoscale Architectures Paris, France, July 15–17, 2014 p151
[17] Enachescu M, Lefter M, Voicu G R, Cotofana S D 2018 IEEE Trans. Emerg. Top. Comput. 6 184Google Scholar
[18] Luong G V, Narimani K, Tiedemann A T, Bernardy P, Trellenkamp S, Zhao Q T, Mantl S 2016 IEEE Electr. Device L. 37 950Google Scholar
[19] Kumar M J, Maheedhar M, Varma P P 2015 IEEE T. Electron Dev. 62 4345Google Scholar
[20] Enachescu M, Voicu G R, Cotofana S D 2012 IEEE International Symposium on Circuits and Systems Seoul, South Korea, May 23–25, 2012 p2561
[21] Wei S, Zhang G, Liu J, Huang H, Geng L, Shao Z, Yang C F 2017 International Conference on Applied System Innovation (ICASI) Sapporo, Japan, May 13–17, 2017 p1293
[22] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B, Murphy R 2010 Nat. Nanotechnol. 5 225Google Scholar
[23] Wang H, Han W, Li X, Zhang Y, Yang F 2014 J. Appl. Phys. 116 124505Google Scholar
[24] Salahuddin S, Datta S J 2008 Nano Lett. 8 405Google Scholar
[25] Zhou H, Kwon D, Sachid A B, Liao Y, Chatterjee K, Tan A J, Yadav A K, Hu C, Salahuddin S 2018 IEEE Symposium on VLSI Technology Honolulu, HI, USA, June 18–22, 2018 p53
[26] Kobayashi M 2018 Appl. Phys. Express 11 110101Google Scholar
[27] Tan A J, Zhu Z, Choe H S, Hu C, Salahuddin S, Yoon A 2019 International Symposium on VLSI Technology, Systems and Application Hsinchu, Taiwan, China, April 22–25, 2019 p1
[28] Das S, Appenzeller J 2011 Nano Lett. 11 4003Google Scholar
[29] Wang X, Yu P, Lei Z, Zhu C, Cao X, Liu F, You L, Zeng Q, Deng Y, Zhu C, Zhou J, Fu Q, Wang J, Huang Y, Liu Z 2019 Nat. Commun. 10 3037Google Scholar
[30] Xu J, Jiang S Y, Zhang M, Zhu H, Chen L, Sun Q Q, Zhang D W 2018 Appl. Phys. Lett. 112 103104Google Scholar
[31] Rusu A, Salvatore G A, Jiménez D, Ionescu A M 2010 International Electron Devices Meeting San Francisco, CA, USA, December 6–8, 2010 p16.3.1
[32] Hu C, Salahuddin S, Lin C I, Khan A 2015 73rd Annual Device Research Conference Columbus, OH, USA, June 21–24, 2015 p39
[33] McGuire F A, Lin Y C, Price K, Rayner G B, Khandelwal S, Salahuddin S, Franklin A D 2017 Nano Lett. 17 4801Google Scholar
[34] Pahwa G, Agarwal A, Chauhan Y S 2018 IEEE T. Electron Dev. 65 5130Google Scholar
[35] Mehta H, Kaur H 2019 4th International Conference on Devices, Circuits and Systems Coimbatore, India, March 16–17, 2018 p164
[36] Mehta H, Kaur H 2018 IEEE T. Electron Dev. 65 2699Google Scholar
[37] Shao Q, Wang X, Jiang W, Chen Y, Zhang X, Tu L, Lin T, Shen H, Meng X, Liu A, Wang J 2019 Appl. Phys. Lett. 115 162902Google Scholar
[38] Fan C C, Tu C Y, Lin M H, Chang C Y, Cheng C H, Chen Y L, Liou G L, Liu C, Chou W C, Hsu H H 2018 IEEE International Reliability Physics Symposium Burlingame, CA, USA, March 11–15, 2018 pP-TX.8-1
[39] 钟维烈 1996 铁电体物理学 (北京: 科学出版社) 第1页
Zhong W L 1996 Ferroelectric Physics (Beijing: Science Press) p1 (in Chinese)
[40] Kholkin A L, Pertsev N A, Goltsev A V 2008 Piezoelectricity and Crystal Symmetry (Boston: Springer US) pp28–29
[41] Koh J H 2002 Ph. D. Dissertation (Stockholm: Royal Institute of Technology)
[42] Wersing W, Bruchhaus R 2000 Pyroelectric Devices and Applications (Cambridge: Academic Press) p143
[43] Sawaguchi E, Akishige Y, Kobayashi M 1985 J. Phys. Soc. Jpn. 54 480Google Scholar
[44] Lu S W, Lee B I, Wang Z L, Samuels W D 2000 J. Cryst. Growth 219 269Google Scholar
[45] Smith M B, Page K, Siegrist T, Redmond P L, Walter E C, Seshadri R, Brus L E, Steigerwald M L 2008 J. Am. Chem. Soc. 130 6955Google Scholar
[46] Valasek J 1921 Phys. Rev. 17 475Google Scholar
[47] Ploss B, Ploss B, Shin F G, Chan H L, Choy C L 2000 IEEE Trns. Dielectr. Electr. Insul. 7 517Google Scholar
[48] Nguyen C A, Mhaisalkar S G, Ma J, Lee P S 2008 Org. Electron. 9 1087Google Scholar
[49] Kang S J, Park Y J, Bae I, Kim K J, Kim H C, Bauer S, Thomas E L, Park C 2009 Adv. Funct. Mater. 19 2812Google Scholar
[50] Jo J, Choi W Y, Park J D, Shim J W, Yu H Y, Shin C 2015 Nano Lett. 15 4553Google Scholar
[51] Zhang W, Xiong R G 2012 Chem. Rev. 112 1163Google Scholar
[52] Liu Y L, Ge J Z, Wang Z X, Xiong R G 2019 Inorg. Chem. Front. 7 128Google Scholar
[53] Ikeda T, Sasaki T, Ichimura K 1993 Nature 361 428Google Scholar
[54] Zhang H, Chen Y, Ding S, Wang J, Bao W, Zhang D W, Zhou P 2018 Nanotechnology 29 244004Google Scholar
[55] Beresnev L A, Chigrinov V G, Dergachev D I, Poshidaev E P, Fünfschilling J, Schadt M 1989 Liq. Cryst. 5 1171Google Scholar
[56] Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G J S 2018 Science 361 151Google Scholar
[57] Li P F, Liao W Q, Tang Y Y, Qiao W, Zhao D, Ai Y, Yao Y F, Xiong R G 2019 Proc. Natl. Acad. Sci. U S.A 116 5878Google Scholar
[58] Li L, Wu M 2017 ACS Nano 11 6382Google Scholar
[59] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar
[60] Li Y, Gong M, Zeng H 2019 J. Semicond. 40 061002sGoogle Scholar
[61] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar
[62] Wu M, Jena P 2018 Wiley Interdiscip. Rev.-Comput. Mol. Sci. 8 1365Google Scholar
[63] Böscke T S, Müller J, Bräuhaus D, Schröder U, Böttger U 2011 Appl. Phys. Lett. 99 102903Google Scholar
[64] Mueller S, Mueller J, Singh A, Riedel S, Sundqvist J, Schroeder U, Mikolajick T 2012 Adv. Funct. Mater. 22 2412Google Scholar
[65] Müller J, Schröder U, Böscke T S, Müller I, Böttger U, Wilde L, Sundqvist J, Lemberger M, Kücher P, Mikolajick T, Frey L 2011 J. Appl. Phys. 110 114113Google Scholar
[66] Starschich S, Boettger U 2017 J. Mater. Chem. C 5 333Google Scholar
[67] Schroeder U, Mueller S, Mueller J, Yurchuk E, Martin D, Adelmann C, Schloesser T, van Bentum R, Mikolajick T 2013 ECS J. Solid State Sci. Technol. 2 N69Google Scholar
[68] Schroeder U, Yurchuk E, Müller J, Martin D, Schenk T, Polakowski P, Adelmann C, Popovici M I, Kalinin S V, Mikolajick T 2014 Jpn. J. Appl. Phys. 53 08LE02Google Scholar
[69] Müller J, Böscke T S, Bräuhaus D, Schröder U, Böttger U, Sundqvist J, Kücher P, Mikolajick T, Frey L 2011 Appl. Phys. Lett. 99 112901Google Scholar
[70] Müller J, Boscke T S, Schroder U, Mueller S, Brauhaus D, Bottger U, Frey L, Mikolajick T 2012 Nano Lett. 12 4318Google Scholar
[71] Terki R, Bertrand G, Aourag H, Coddet C 2008 Mater. Lett. 62 1484Google Scholar
[72] Íñiguez J, Zubko P, Luk’yanchuk I, Cano A 2019 Nat. Rev. Mater. 4 243Google Scholar
[73] Sayeef S, Supriyo D 2008 Nano Letter 8 405
[74] Lu P S, Lin C C, Su P 2019 International Symposium on VLSI Technology, Systems and Application Hsinchu, Taiwan, China, April 22–25, 2019 p1
[75] Muller J, Boscke T S, Schroder U, Hoffmann R, Mikolajick T, Frey L 2012 IEEE Electr. Device L. 33 185Google Scholar
[76] Pahwa G, Dutta T, Agarwal A, Chauhan Y S 2017 IEEE T. Electron Dev. 64 1366Google Scholar
[77] Park B E, Lee G G 2010 J. Korean Phys. Soc. 56 1484Google Scholar
[78] Sun J, Zheng X 2011 IEEE T. Electron Dev. 58 3559Google Scholar
[79] Sun J, Zheng X J, Li W 2012 Curr. Appl. Phys. 12 760Google Scholar
[80] Jang K, Kobayashi M, Hiramoto T 2018 Jpn. J. Appl. Phys. 57 114202Google Scholar
[81] Li Y, Lian Y, Samudra G S 2015 Semicond. Sci. Technol. 30 045011Google Scholar
[82] Sun J, Li Y, Cao L 2019 J. Comput. Electron. 18 527Google Scholar
[83] Hoffmann M, Pesic M, Slesazeck S, Schroeder U, Mikolajick T 2018 Nanoscale 10 10891Google Scholar
[84] Cheng C H, Fan C C, Tu C Y, Hsu H H, Chang C Y 2019 IEEE T. Electron Dev. 66 825Google Scholar
[85] Wong J C, Salahuddin S 2019 Proc. IEEE 107 49Google Scholar
[86] Luttinger J M, Tisza L 1946 Phys. Rev. 70 954Google Scholar
[87] Slater J C 1950 Phys. Rev. 78 748Google Scholar
[88] Islam Khan A, Bhowmik D, Yu P, Joo Kim S, Pan X, Ramesh R, Salahuddin S 2011 Appl. Phys. Lett. 99 113501Google Scholar
[89] Rabe K M, Dawber M, Lichtensteiger C, Ahn C H, Triscone J-M 2007 Physics of Ferroelectrics: A Modern Perspective (Berlin, Heidelberg: Springer Berlin Heidelberg) pp1–30
[90] Gao W, Khan A, Marti X, Nelson C, Serrao C, Ravichandran J, Ramesh R, Salahuddin S 2014 Nano Lett. 14 5814Google Scholar
[91] Alam M A, Si M, Ye P D 2019 Appl. Phys. Lett. 114 090401Google Scholar
[92] Liu Z, Bhuiyan M, Ma T 2019 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 1–5, 2018 p31.2.1
[93] Hoffmann M, Slesazeck S, Mikolajick T, Hwang C S 2019 Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices (Cambridge: Woodhead Publishing) p473
[94] Khan A I, Chatterjee K, Wang B, Drapcho S, You L, Serrao C, Bakaul S R, Ramesh R, Salahuddin S 2015 Nat. Mater. 14 182Google Scholar
[95] Jang K, Ueyama N, Kobayashi M, Hiramoto T 2018 IEEE J. Electron Devices Soc. 6 346Google Scholar
[96] Kim K D, Kim Y J, Park M H, Park H W, Kwon Y J, Lee Y B, Kim H J, Moon T, Lee Y H, Hyun S D, Kim B S, Hwang C S 2019 Adv. Funct. Mater. 29 1808228Google Scholar
[97] Han Q, Aleksa P, Tromm T C U, Schubert J, Mantl S, Zhao Q T 2019 Solid-State Electron. 159 71Google Scholar
[98] Catalan G, Jiménez D, Gruverman A 2015 Nat. Mater. 14 137Google Scholar
[99] Chang S C, Avci U E, Nikonov D E, Manipatruni S, Young I A 2018 Phys. Rev. Appl. 9 014010Google Scholar
[100] Landau L, Khalatnikov I 1954 Dokl. Akad. Nauk SSSR. 96 469Google Scholar
[101] Hoffmann M, Khan A I, Serrao C, Lu Z, Salahuddin S, Pešić M, Slesazeck S, Schroeder U, Mikolajick T 2018 J. Appl. Phys. 123 184101Google Scholar
[102] Merz W J 1954 Phys. Rev. 95 690Google Scholar
[103] Chang S-C, Avci U E, Nikonov D E, Young I A 2017 IEEE J. Explor. Solid-State Comput. Devices Circuits 3 56Google Scholar
[104] Jin C, Saraya T, Hiramoto T, Kobayashi M 2019 IEEE J. Electron Devices Soc. 7 368Google Scholar
[105] Wang H, Yang M, Huang Q, Zhu K, Zhao Y, Liang Z, Chen C, Wang Z, Zhong Y, Zhang X 2019 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 1–5, 2018 p31.1.1
[106] Orihara H, Hashimoto S, Ishibashi Y 1994 J. Phys. Soc. Jpn. 63 1031Google Scholar
[107] Jo J, Shin C 2016 IEEE Electr. Device L. 37 245Google Scholar
[108] Nourbakhsh A, Zubair A, Joglekar S, Dresselhaus M, Palacios T 2017 Nanoscale 9 6122Google Scholar
[109] Saeidi A, Jazaeri F, Bellando F, Stolichnov I, Enz C C, Ionescu A M 2017 47th European Solid-State Device Research Conference Leuven, Belgium, September 11–14, 2017 p78
[110] Galatage R, Bentley S, Suvarna P H, Krivokapic Z 2018 US Patent 10 141 414 B1
[111] Khan A I, Yeung C W, Hu C, Salahuddin S 2012 International Electron Devices Meeting Washington, DC, USA, December 5–7, 2011 p11.3.1
[112] Agarwal H, Kushwaha P, Lin Y K, Kao M Y, Liao Y H, Dasgupta A, Salahuddin S, Hu C 2019 IEEE Electr. Device L. 40 463Google Scholar
[113] Si M, Su C J, Jiang C, Conrad N J, Zhou H, Maize K D, Qiu G, Wu C T, Shakouri A, Alam M A, Ye P D 2018 Nat. Nanotechnol. 13 24Google Scholar
[114] Bohr M T, Young I A 2017 IEEE Micro 37 20
[115] Cheng C H, Chin A 2014 IEEE Electr.Device L. 35 274Google Scholar
[116] Fan CC, Cheng CH, Chen YR, Liu C, Chang CY 2018 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 2–6, 2017 p23.2.1
[117] Chiu YC, Cheng CH, Chang C-, Tang YT, Chen MC 2016 IEEE Symposium on VLSI Technology Honolulu, HI, USA, June 14–16, 2016 p1
[118] Cheng CH, Fan CC, Hsu HH, Wang SA, Chang CY 2019 Phys. Status Solidi-Rapid Res. Lett. 13 1800493Google Scholar
[119] Cheng C H, Lin M H, Chen H Y, Fan C C, Liu C, Hsu H H, Chang C Y 2018 Phys. Status Solidi-Rapid Res. Lett. 13 1800573Google Scholar
[120] Zeng B, Xiao W, Liao J, Liu H, Liao M, Peng Q, Zheng S, Zhou Y 2018 IEEE Electr. Device L. 39 1508Google Scholar
[121] Chen K T, Liao C Y, Chen H Y, Lo C, Siang G Y, Lin Y Y, Tseng Y J, Chang C, Chueh C Y, Yang Y J, Liao M H, Li K S, Chang S T, Lee M H 2019 Microelectron. Eng. 215 110991Google Scholar
[122] Xiao W, Liu C, Peng Y, Zheng S, Feng Q, Zhang C, Zhang J, Hao Y, Liao M, Zhou Y 2019 IEEE Electr. Device L. 40 714Google Scholar
[123] Li K S, Chen P G, Lai T Y, Lin C H, Cheng C C, Chen C C, Wei Y J, Hou Y F, Liao M H, Lee M H 2016 IEEE International Electron Devices Meeting Washington, DC, USA, December 7–9, 2015 p22.6.1
[124] Zhang Z, Xu G, Zhang Q, Hou Z, Li J, Kong Z, Zhang Y, Xiang J, Xu Q, Wu Z, Zhu H, Yin H, Wang W, Ye T 2019 IEEE Electr. Device L. 40 367Google Scholar
[125] Chen P J, Tsai M J, Hou F J, Wu Y C 2019 Silicon Nanoelectronics Workshop Kyoto, Japan, June 9–10, 2019 p1
[126] Lee S Y, Chen H W, Shen C H, Kuo P Y, Chung C C, Huang Y E, Chen H Y, Chao T S 2019 IEEE Electr. Device L. 40 1708Google Scholar
[127] Bansal A K, Kumar M, Gupta C, Hook T B, Dixit A 2018 IEEE T. Electron Dev. 65 3548Google Scholar
[128] Song Y, Zhou H, Xu Q, Luo J, Yin H, Yan J, Zhong H 2011 J. Electron. Mater. 40 1584Google Scholar
[129] Zhou J, Han G, Li Q, Peng Y, Lu X, Zhang C, Zhang J, Sun QQ, Zhang D W, Hao Y 2017 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 3–7, 2016 p12.2.1
[130] Zhou J, Han G, Peng Y, Liu Y, Zhang J, Sun Q Q, Zhang D W, Hao Y 2017 IEEE Electr. Device L. 38 1157Google Scholar
[131] Li J, Zhou J, Han G, Liu Y, Peng Y, Zhang J, Sun Q Q, Zhang D W, Hao Y 2017 IEEE Electr. Device L. 38 1500Google Scholar
[132] Zhou J, Han G, Li J, Liu Y, Peng Y, Zhang J, Sun Q Q, Zhang D W, Hao Y 2018 IEEE Electr.Device L. 39 622Google Scholar
[133] Zhou J, Han G, Li J, Liu Y, Peng Y, Zhang J, Sun Q Q, Zhang D W, Hao Y 2018 IEEE Electr. Device L. 39 618Google Scholar
[134] Peng Y, Liu Y, Han G, Zhang J, Hao Y 2019 Nanoscale Res. Lett. 14 125Google Scholar
[135] Alghamdi S, Chung W, Si M, Peide D Y 2018 76th Device Research Conference Santa Barbara, CA, USA, June 24–27, 2018 p1
[136] Luc Q, Fan-Chiang C, Huynh S, Huang P, Do H, Ha M, Jin Y, Nguyen T, Zhang K, Wang H 2018 IEEE Symposium on VLSI Technology Honolulu, HI, USA, June 18–22, 2018 p47
[137] Chang E Y, Luc Q H, Tran N A, Lin Y C 2019 ECS Trans. 92 3Google Scholar
[138] Srimani T, Hills G, Bishop M D, Radhakrishna U, Zubair A, Park R S, Stein Y, Palacios T, Antoniadis D, Shulaker M M 2018 IEEE Electr. Device L. 39 304Google Scholar
[139] Tu L, Wang X, Wang J, Meng X, Chu J 2018 Adv. Electron. Mater. 4 1800231Google Scholar
[140] Si M, Jiang C, Chung W, Du Y, Alam M A, Ye P D 2018 Nano Lett. 18 3682Google Scholar
[141] Lee Y T, Kwon H, Kim J S, Kim H H, Lee Y J, Lim J A, Song YW, Yi Y, Choi WK, Hwang D K 2015 ACS Nano 9 10394Google Scholar
[142] Heidler J, Yang S, Feng X, Müllen K, Asadi K 2018 Solid-State Electron. 144 90Google Scholar
[143] Choi H, Shin C 2019 Phys. Status Solidi A 216 1900177Google Scholar
[144] Yu Z, Wang H, Li W, Xu S, Song X, Wang S, Wang P, Zhou P, Shi Y, Chai Y 2018 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 2-6, 2017 p23.6.1
[145] Yap W C, Jiang H, Liu J, Xia Q, Zhu W 2017 Appl. Phys. Lett. 111 013103Google Scholar
[146] McGuire F A, Lin Y C, Rayner B, Franklin A D 2017 75th Annual Device Research Conference South Bend, IN, USA, June 25–28, 2017 p1
[147] Alghamdi S, Si M, Yang L, Peide D Y 2018 IEEE International Reliability Physics Symposium Burlingame, CA, USA, March 11–15, 2018 pP-TX.1-1
[148] Wang J, Guo X, Yu Z, Ma Z, Liu Y, Chan M, Zhu Y, Wang X, Chai Y 2019 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 1–5, 2018 p22.3.1
[149] Si M, Peide D Y 2018 International Symposium on VLSI Technology, Systems and Application Hsinchu, Taiwan, April 16–19, 2018 p1
[150] Liu F, Zhou Y, Wang Y, Liu X, Wang J, Guo H 2016 NPJ Quantum Mater. 1 16004Google Scholar
[151] Park N, Kang H, Park J, Lee Y, Yun Y, Lee J H, Lee S G, Lee Y H, Suh D 2015 ACS Nano 9 10729Google Scholar
[152] Jie W, Hao J 2017 Nanoscale 10 328
[153] Lipatov A, Fursina A, Vo T H, Sharma P, Gruverman A, Sinitskii A 2017 Adv. Electron. Mater. 3 1700020Google Scholar
[154] Lee Y, Jeon W, Cho Y, Lee M H, Jeong S J, Park J, Park S 2016 ACS Nano 10 6659Google Scholar
[155] Tian H, Li Y-x, Li L, Wang X, Liang R, Yang Y, Ren T L 2019 IEEE T. Electron Dev. 66 1579Google Scholar
[156] Li J, Liu Y, Han G, Zhou J, Hao Y 2019 Nanoscale Res. Lett. 14 171Google Scholar
[157] Peng Y, Han G, Xiao W, Wu J, Liu Y, Zhang J, Hao Y 2019 Nanoscale Res. Lett. 14 115Google Scholar
[158] Tokumitsu E 2020 Jpn. J. Appl. Phys. 59 SCCB06Google Scholar
[159] Park J H, Jang G S, Kim H Y, Seok K H, Chae H J, Lee S K, Joo S K 2016 Sci. Rep. 6 24734Google Scholar
[160] Lee M H, Fan S T, Tang C H, Chen P G, Chou Y C, Chen H H, Kuo J Y, Xie M J, Liu S N, Liao M H 2017 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 3–7, 2016 p12.1.1
[161] Zhang X D, Han W H, Liu W, Zhao X S, Guo Y Y, Yang C, Chen J D, Yang F H 2019 Chin. Phys. B 28 127302Google Scholar
[162] Guo Y Y, Han W H, Zhao X S, Dou Y M, Zhang X D, Wu X Y, Yang F H 2019 Chin. Phys. B 28 107303Google Scholar
[163] Zhao X S, Han W H, Guo Y Y, Dou Y M, Yang F H 2018 Chin. Phys. B 27 097310Google Scholar
-
图 4 有机钙钛矿A(NH4)X3家族化学和晶格结构[56] (a) 有机钙钛矿铁电体的三维化学结构组成图; (b) 铁电相MDABCO-NH4I3在293 K时的晶胞结构图, 右侧椭圆中为有机正离子的空间结构示意图, 其对称性接近于球体; (c) 铁电相MDABCO-NH4I3在463 K时的晶胞结构图
Fig. 4. Chemical and crystal structures of the metal-free A(NH4) X3 family[56]: (a) Chemical structures of constituents of the metal-free 3D perovskite ferroelectrics; (b) the packing diagram of MDABCO–NH4I3 in the ferroelectric phase at 293 K. The oval to the right contains the space-fill diagram of the organic cation, showing the cationic geometry to be close to a ball; (c) the packing diagram of MDABCO–NH4I3 in the paraelectric phase at 463 K.
图 14 瞬态NC模拟结果[99] (a) 输入电压, 输出电压和铁电电容上自由电荷与时间的关系图; (b) 极化强度和自由电荷与时间的关系图; (c) 极化强度和自由电荷对时间的微分结果及其差值随时间的变化曲线; (d) 铁电电容电压的变化速度随时间的变化曲线
Fig. 14. The simulation results of transient NC[99]: (a) Input voltage, output voltage, and free charge on a ferroelectric capacitor as functions of time; (b) polarization and free charge as functions of time; (c) charge density per unit time for free charge and polarization and the difference between them; (d) change in the voltage across a ferroelectric capacitor per unit time as a function of time.
图 16 器件电容电荷量与电压的关系 (a) 电容模型; (b)
${C_{\rm{S}}} < \left| {{C_{{\rm{FE}}}}} \right|$ ; (c)${C_{\rm{S}}} < \left| {{C_{{\rm{FE}}}}} \right|$ ; (d) Fe-NCFETs[91]; (e) Fe-FET[91]Fig. 16. The relationship between capacitive charge and voltage of the device: (a) Capacitance model; (b)
${C_{\rm{S}}} < \left| {{C_{{\rm{FE}}}}} \right|$ ; (c)${C_{\rm{S}}} < \left| {{C_{{\rm{FE}}}}} \right|$ (d) Fe-NCFETs[91]; (e) Fe-FETs[91].图 17 平面型硅基- HfAlO Fe-NCFETs[116] (a) 器件截面透射电子显微镜(transmission electron microscope, TEM)图; (b) 剩余极化强度与TaN中N含量的关系曲线; (c) F离子钝化作用对铁电层能带影响的示意图; (d) 不同处理作用后器件的SS与源漏电压的关系
Fig. 17. Planar Silicon based HfAlO Fe-NCFETs[116]: (a) HR TEM cross-section image; (b) polarization as a function of nitrogen content of TaN; (c) schematic band diagram of HfAlO before and after F-passivation; (d) SS as a function of VDS after different treatments.
图 18 硅基NCFinFET[123] (a) 器件截面TEM图; (b) 铁电NCFinFET的栅压放大系数与栅压的关系曲线; (c) 常规FinFET和铁电NCFinFET的SS与栅压的关系曲线
Fig. 18. Silicon based NC-FinFET[123]: (a) TEM cross-sectional image of NC-FinFET with TiN internal gate, HfZrO FE film and TiN gate; (b) the gate amplification coefficient as a function of VG for NC-FinFET; (c) SS as a function of VG for conventional FinFET and NC-FinFET.
图 21 Ge基- HZO NCP型晶体管[129] (a) Ge沟道器件结构示意图; (b) Ge-Sn沟道器件结构示意图; (c) Ge沟道器件转移特性曲线; (d) Ge-Sn沟道器件转移特性曲线
Fig. 21. Germanium based HZO NC-pFET[129]: (a) Schematic diagram of the device with Ge channel; (b) schematic diagram of the device with Ge-Sn channel; (c) transfer characteristic curve of the device with Ge channel; (d) transfer characteristic curve of the device with Ge-Sn channel.
图 22 锗纳米线Fe-NCFETs[135] (a) 栅压扫描范围为 ±5 V时在不同扫描时间下的转移特性曲线; (b) 栅压扫描范围为 ±5 V时的回滞电压与扫描时间关系曲线; (c) 不同栅压扫描范围下的ID, Max与扫描时间关系曲线
Fig. 22. Germanium nanowire NC-pFET[135]: (a) The transfer characteristic curve at different sweep times for ±5 V sweep range; (b) hysteresis versus sweep time for ±5 V sweep range; (c) maximum drain current versus sweep time for different sweep ranges.
图 23 In0.53Ga0.47As沟道Fe-NCFETs (a) 平面型器件的结构示意图[136]; (b) Fin结构器件的结构示意图平[137]; (c) 平面型器件的转移特性曲线[136]; (d) Fin结构器件的转移特性曲线[137]
Fig. 23. In0.53Ga0.47As channel Fe-NCFETs: (a) Schematic diagram[136] and (c) transfer characteristic curve of planar device[136]; (b) schematic diagram[137] and (d) transfer characteristic curve of Fin device[137].
图 27 石墨烯- HfxAlyO2晶体管[154] (a) 在石墨烯/二氧化硅衬底上沉积的HfxAlyO2薄膜; (b) HfxAlyO2的相对介电常数; (c) 不同Al组分下HfxAlyO2三个相的能量差; (d) 转移特性曲线(9.5% Al)
Fig. 27. Graphene-HfxAlyO2 transistor[154]: (a) HfxAlyo2 films deposited on graphene/SiO2 substrates; (b) relative dielectric constant of HfxAlyO2; (c) energy difference among three phases in HfxAlyO2 with different Al concentrations; (d) transfer characteristic curve.
图 29 实验报道的Fe-NCFETs的SS与Hysteresis关系图 (2D[30,33,108,140,144,146-148,155], Si[25,116,118,119,121,123-126], GeSn[129,130,134,156], InGaAs[136,137])
Fig. 29. SS versus Hysteresis of the reported Fe-NCFETs (2D[30,33,108,140,144,146-148,155], Si[25,116,118,119,121,123-126], GeSn[129,130,134,156], InGaAs[136,137]).
表 1 实验报道的Fe-NCFETs的性能参数对比
Table 1. Performance comparison of the reported Fe-NCFETs.
MOS structure Channel materials Gate structure Ferroelectric materials tFE/nm SSmin/
(mV·dec–1)Hysteresis/V Orders
of IDSVD/V ION/IOFF Year Ref. Planar p-Si MFIS Hf0.65Zr0.35O2 30 5 — — –0.5 104 2014 [115] Planar n-Si MFIS HfAlO (Al: 6%) 10 Sub-25 0.02 4 0.2 108 2017 [116] Planar n-Si MFIS Hf0.75Zr0.25O2 10 40 Free 1 0.2 107 2018 [119] Planar n-Si MFIS Hf0.53Zr0.47O2 5 ~40 ~0.1 2 0.2 107 2019 [121] Planar n-Si MFIS HfAlO (Al: 4%) 10 Sub-30 0.02 4 0.2 108 2019 [118] FinFET n-Si MFIS Hf0.5Zr0.5O2 4 Sub-30 0.003 2 0.05 107 2018 [25] FinFET n-Si MFMIS Hf0.42Zr0.58O2 5 58 0.003 1 0.1 105 2015 [123] FinFET n-Si MFIS Hf0.5Zr0.5O2 5 Sub-60 Free — 0.1 107 2019 [125] FinFET p-Si MFMIS Hf0.42Zr0.58O2 3 34.5 0.009 2 –0.05 104 2019 [124] FinFET n-Si MFIS Hf0.5Zr0.5O2 5 Sub-60 Free — 0.1 107 2019 [125] GAA poly n-Si MFIS Hf0.5Zr0.5O2 10 26.84 0.003 4 0.1 108 2019 [126] Planar p-Ge MFMIS Hf0.5Zr0.5O2 6.5 43 2.34 1 –0.05 103 2016 [129] Planar p-GeSn MFMIS Hf0.5Zr0.5O2 6.5 40 0.41 2 –0.05 103 2016 [129] Planar p-GeSn MFMIS Hf0.5Zr0.5O2 6 Sub-20 < 0.01 2 –0.05 104 2017 [130] Planar p-Ge MFMIS Hf0.5Zr0.5O2 4.5 ~87.5 Free — –0.05 103 2019 [156] Planar p-Ge MFIS Hf0.67Zr0.33O2 7 ~125 ~0.105 — –0.5 104 2019 [134] Planar n-InGaAs MFIS Hf0.5Zr0.5O2 8 23 ~0.2 3 0.05 105 2018 [136] FinFET n-InGaAs MFIS Hf0.5Zr0.5O2 5 23 0.2 1 0.05 103 2019 [137] GAA nanotube MFMIS HfAlO(Al: 7%) 10 ~45 — — 0.05 104 2018 [138] 2D-FET MoS2 MFMIS Hf1-xZrxO2 15 Sub-60 1.2 3 0.5 105 2017 [146] 2D-FET MoS2 MFMIS Hf0.5Zr0.5O2 15 6.07 0.5 4 0.5 105 2017 [33] 2D-FET MoS2 MFMIS HfAlO(Al:7.3%) 10 57 0.5 4 0.5 105 2017 [108] 2D-FET MoS2 MFMIS HfZrOx 15 47 2.5 1 0.1 106 2018 [30] 2D-FET MoS2 MFIS Hf0.5Zr0.5O2 20 Sub-60 < 0.005 4 0.5 106 2018 [147] 2D-FET MoS2 MFIS Hf0.5Zr0.5O2 20 23 0.077 6 0.1 109 2017 [144] 2D-FET WSe2 MFMIS Hf0.5Zr0.5O2 20 14.4 0.12 2 –0.1 105 2018 [140] 2D-FET WSe2 MFIS Hf0.5Zr0.5O2 10 18.2 0.02 4 –0.1 104 2018 [148] 2D-FET Graphene MFS HfAlO(Al:9.5%) 5 — — — 0.1 2.75 2016 [154] 2D-FET BP MFMIS Hf0.5Zr0.5O2 20 104 0.5 — 0.1 102 2019 [155] -
[1] Moore G E 1965 Electronics 38 114
[2] Mori K, Duong A, Richardson W F J 2002 IEEE T. Electron Dev. 49 61Google Scholar
[3] Fitzgerald E 2006 US Patent 11 412 262
[4] Chaudhry A, Kumar M J 2004 IEEE T. Device Ma. Re. 4 99Google Scholar
[5] Tsutsui G, Saitoh M, Hiramoto T 2005 IEEE Electr. Device L. 26 836Google Scholar
[6] Auth C, Allen C, Blattner A, Bergstrom D, Brazier M, Bost M, Buehler M, Chikarmane V, Ghani T, Glassman T 2012 Symposium on VLSI Technology Honolulu, HI, USA, June 12–14, 2012 p131
[7] Bae G, Bae D-I, Kang M, Hwang S, Kim S, Seo B, Kwon T, Lee T, Moon C, Choi Y 2019 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 1–5, 2018 p28.7.1
[8] International Roadmap for Devices and Systems 2017 Edition Reports. https://irds.ieee.org/roadmap-2017 [2020-1-11].
[9] Zhirnov V V, Cavin R K 2008 Nat. Nanotechnol. 3 77Google Scholar
[10] Woo Young C, Byung-Gook P, Jong Duk L, Tsu-Jae King L 2007 IEEE Electr. Device L. 28 743Google Scholar
[11] Seabaugh A C, Zhang Q 2010 Proc. IEEE 98 2095Google Scholar
[12] Ionescu A M, Riel H 2011 Nature 479 329Google Scholar
[13] Mori T, Morita Y, Miyata N, Migita S, Fukuda K, Mizubayashi W, Masahara M, Yasuda T, Ota H 2015 Appl. Phys. Lett. 106 083501Google Scholar
[14] Gopalakrishnan K, Griffin P B, Plummer J D 2003 Digest. International Electron Devices Meeting San Francisco, CA, USA, December 8–11, 2002 p289
[15] Kam H, Lee D T, Howe R T, King T J 2006 IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest. Washington, DC, USA, December 5–5, 2005 p463
[16] Lefter M, Enachescu M, Voicu G R, Cotofana S D 2014 Proceedings of the 2014 IEEE/ACM International Symposium on Nanoscale Architectures Paris, France, July 15–17, 2014 p151
[17] Enachescu M, Lefter M, Voicu G R, Cotofana S D 2018 IEEE Trans. Emerg. Top. Comput. 6 184Google Scholar
[18] Luong G V, Narimani K, Tiedemann A T, Bernardy P, Trellenkamp S, Zhao Q T, Mantl S 2016 IEEE Electr. Device L. 37 950Google Scholar
[19] Kumar M J, Maheedhar M, Varma P P 2015 IEEE T. Electron Dev. 62 4345Google Scholar
[20] Enachescu M, Voicu G R, Cotofana S D 2012 IEEE International Symposium on Circuits and Systems Seoul, South Korea, May 23–25, 2012 p2561
[21] Wei S, Zhang G, Liu J, Huang H, Geng L, Shao Z, Yang C F 2017 International Conference on Applied System Innovation (ICASI) Sapporo, Japan, May 13–17, 2017 p1293
[22] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B, Murphy R 2010 Nat. Nanotechnol. 5 225Google Scholar
[23] Wang H, Han W, Li X, Zhang Y, Yang F 2014 J. Appl. Phys. 116 124505Google Scholar
[24] Salahuddin S, Datta S J 2008 Nano Lett. 8 405Google Scholar
[25] Zhou H, Kwon D, Sachid A B, Liao Y, Chatterjee K, Tan A J, Yadav A K, Hu C, Salahuddin S 2018 IEEE Symposium on VLSI Technology Honolulu, HI, USA, June 18–22, 2018 p53
[26] Kobayashi M 2018 Appl. Phys. Express 11 110101Google Scholar
[27] Tan A J, Zhu Z, Choe H S, Hu C, Salahuddin S, Yoon A 2019 International Symposium on VLSI Technology, Systems and Application Hsinchu, Taiwan, China, April 22–25, 2019 p1
[28] Das S, Appenzeller J 2011 Nano Lett. 11 4003Google Scholar
[29] Wang X, Yu P, Lei Z, Zhu C, Cao X, Liu F, You L, Zeng Q, Deng Y, Zhu C, Zhou J, Fu Q, Wang J, Huang Y, Liu Z 2019 Nat. Commun. 10 3037Google Scholar
[30] Xu J, Jiang S Y, Zhang M, Zhu H, Chen L, Sun Q Q, Zhang D W 2018 Appl. Phys. Lett. 112 103104Google Scholar
[31] Rusu A, Salvatore G A, Jiménez D, Ionescu A M 2010 International Electron Devices Meeting San Francisco, CA, USA, December 6–8, 2010 p16.3.1
[32] Hu C, Salahuddin S, Lin C I, Khan A 2015 73rd Annual Device Research Conference Columbus, OH, USA, June 21–24, 2015 p39
[33] McGuire F A, Lin Y C, Price K, Rayner G B, Khandelwal S, Salahuddin S, Franklin A D 2017 Nano Lett. 17 4801Google Scholar
[34] Pahwa G, Agarwal A, Chauhan Y S 2018 IEEE T. Electron Dev. 65 5130Google Scholar
[35] Mehta H, Kaur H 2019 4th International Conference on Devices, Circuits and Systems Coimbatore, India, March 16–17, 2018 p164
[36] Mehta H, Kaur H 2018 IEEE T. Electron Dev. 65 2699Google Scholar
[37] Shao Q, Wang X, Jiang W, Chen Y, Zhang X, Tu L, Lin T, Shen H, Meng X, Liu A, Wang J 2019 Appl. Phys. Lett. 115 162902Google Scholar
[38] Fan C C, Tu C Y, Lin M H, Chang C Y, Cheng C H, Chen Y L, Liou G L, Liu C, Chou W C, Hsu H H 2018 IEEE International Reliability Physics Symposium Burlingame, CA, USA, March 11–15, 2018 pP-TX.8-1
[39] 钟维烈 1996 铁电体物理学 (北京: 科学出版社) 第1页
Zhong W L 1996 Ferroelectric Physics (Beijing: Science Press) p1 (in Chinese)
[40] Kholkin A L, Pertsev N A, Goltsev A V 2008 Piezoelectricity and Crystal Symmetry (Boston: Springer US) pp28–29
[41] Koh J H 2002 Ph. D. Dissertation (Stockholm: Royal Institute of Technology)
[42] Wersing W, Bruchhaus R 2000 Pyroelectric Devices and Applications (Cambridge: Academic Press) p143
[43] Sawaguchi E, Akishige Y, Kobayashi M 1985 J. Phys. Soc. Jpn. 54 480Google Scholar
[44] Lu S W, Lee B I, Wang Z L, Samuels W D 2000 J. Cryst. Growth 219 269Google Scholar
[45] Smith M B, Page K, Siegrist T, Redmond P L, Walter E C, Seshadri R, Brus L E, Steigerwald M L 2008 J. Am. Chem. Soc. 130 6955Google Scholar
[46] Valasek J 1921 Phys. Rev. 17 475Google Scholar
[47] Ploss B, Ploss B, Shin F G, Chan H L, Choy C L 2000 IEEE Trns. Dielectr. Electr. Insul. 7 517Google Scholar
[48] Nguyen C A, Mhaisalkar S G, Ma J, Lee P S 2008 Org. Electron. 9 1087Google Scholar
[49] Kang S J, Park Y J, Bae I, Kim K J, Kim H C, Bauer S, Thomas E L, Park C 2009 Adv. Funct. Mater. 19 2812Google Scholar
[50] Jo J, Choi W Y, Park J D, Shim J W, Yu H Y, Shin C 2015 Nano Lett. 15 4553Google Scholar
[51] Zhang W, Xiong R G 2012 Chem. Rev. 112 1163Google Scholar
[52] Liu Y L, Ge J Z, Wang Z X, Xiong R G 2019 Inorg. Chem. Front. 7 128Google Scholar
[53] Ikeda T, Sasaki T, Ichimura K 1993 Nature 361 428Google Scholar
[54] Zhang H, Chen Y, Ding S, Wang J, Bao W, Zhang D W, Zhou P 2018 Nanotechnology 29 244004Google Scholar
[55] Beresnev L A, Chigrinov V G, Dergachev D I, Poshidaev E P, Fünfschilling J, Schadt M 1989 Liq. Cryst. 5 1171Google Scholar
[56] Ye H Y, Tang Y Y, Li P F, Liao W Q, Gao J X, Hua X N, Cai H, Shi P P, You Y M, Xiong R G J S 2018 Science 361 151Google Scholar
[57] Li P F, Liao W Q, Tang Y Y, Qiao W, Zhao D, Ai Y, Yao Y F, Xiong R G 2019 Proc. Natl. Acad. Sci. U S.A 116 5878Google Scholar
[58] Li L, Wu M 2017 ACS Nano 11 6382Google Scholar
[59] Ding W, Zhu J, Wang Z, Gao Y, Xiao D, Gu Y, Zhang Z, Zhu W 2017 Nat. Commun. 8 14956Google Scholar
[60] Li Y, Gong M, Zeng H 2019 J. Semicond. 40 061002sGoogle Scholar
[61] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J, Liu Z 2016 Nat. Commun. 7 12357Google Scholar
[62] Wu M, Jena P 2018 Wiley Interdiscip. Rev.-Comput. Mol. Sci. 8 1365Google Scholar
[63] Böscke T S, Müller J, Bräuhaus D, Schröder U, Böttger U 2011 Appl. Phys. Lett. 99 102903Google Scholar
[64] Mueller S, Mueller J, Singh A, Riedel S, Sundqvist J, Schroeder U, Mikolajick T 2012 Adv. Funct. Mater. 22 2412Google Scholar
[65] Müller J, Schröder U, Böscke T S, Müller I, Böttger U, Wilde L, Sundqvist J, Lemberger M, Kücher P, Mikolajick T, Frey L 2011 J. Appl. Phys. 110 114113Google Scholar
[66] Starschich S, Boettger U 2017 J. Mater. Chem. C 5 333Google Scholar
[67] Schroeder U, Mueller S, Mueller J, Yurchuk E, Martin D, Adelmann C, Schloesser T, van Bentum R, Mikolajick T 2013 ECS J. Solid State Sci. Technol. 2 N69Google Scholar
[68] Schroeder U, Yurchuk E, Müller J, Martin D, Schenk T, Polakowski P, Adelmann C, Popovici M I, Kalinin S V, Mikolajick T 2014 Jpn. J. Appl. Phys. 53 08LE02Google Scholar
[69] Müller J, Böscke T S, Bräuhaus D, Schröder U, Böttger U, Sundqvist J, Kücher P, Mikolajick T, Frey L 2011 Appl. Phys. Lett. 99 112901Google Scholar
[70] Müller J, Boscke T S, Schroder U, Mueller S, Brauhaus D, Bottger U, Frey L, Mikolajick T 2012 Nano Lett. 12 4318Google Scholar
[71] Terki R, Bertrand G, Aourag H, Coddet C 2008 Mater. Lett. 62 1484Google Scholar
[72] Íñiguez J, Zubko P, Luk’yanchuk I, Cano A 2019 Nat. Rev. Mater. 4 243Google Scholar
[73] Sayeef S, Supriyo D 2008 Nano Letter 8 405
[74] Lu P S, Lin C C, Su P 2019 International Symposium on VLSI Technology, Systems and Application Hsinchu, Taiwan, China, April 22–25, 2019 p1
[75] Muller J, Boscke T S, Schroder U, Hoffmann R, Mikolajick T, Frey L 2012 IEEE Electr. Device L. 33 185Google Scholar
[76] Pahwa G, Dutta T, Agarwal A, Chauhan Y S 2017 IEEE T. Electron Dev. 64 1366Google Scholar
[77] Park B E, Lee G G 2010 J. Korean Phys. Soc. 56 1484Google Scholar
[78] Sun J, Zheng X 2011 IEEE T. Electron Dev. 58 3559Google Scholar
[79] Sun J, Zheng X J, Li W 2012 Curr. Appl. Phys. 12 760Google Scholar
[80] Jang K, Kobayashi M, Hiramoto T 2018 Jpn. J. Appl. Phys. 57 114202Google Scholar
[81] Li Y, Lian Y, Samudra G S 2015 Semicond. Sci. Technol. 30 045011Google Scholar
[82] Sun J, Li Y, Cao L 2019 J. Comput. Electron. 18 527Google Scholar
[83] Hoffmann M, Pesic M, Slesazeck S, Schroeder U, Mikolajick T 2018 Nanoscale 10 10891Google Scholar
[84] Cheng C H, Fan C C, Tu C Y, Hsu H H, Chang C Y 2019 IEEE T. Electron Dev. 66 825Google Scholar
[85] Wong J C, Salahuddin S 2019 Proc. IEEE 107 49Google Scholar
[86] Luttinger J M, Tisza L 1946 Phys. Rev. 70 954Google Scholar
[87] Slater J C 1950 Phys. Rev. 78 748Google Scholar
[88] Islam Khan A, Bhowmik D, Yu P, Joo Kim S, Pan X, Ramesh R, Salahuddin S 2011 Appl. Phys. Lett. 99 113501Google Scholar
[89] Rabe K M, Dawber M, Lichtensteiger C, Ahn C H, Triscone J-M 2007 Physics of Ferroelectrics: A Modern Perspective (Berlin, Heidelberg: Springer Berlin Heidelberg) pp1–30
[90] Gao W, Khan A, Marti X, Nelson C, Serrao C, Ravichandran J, Ramesh R, Salahuddin S 2014 Nano Lett. 14 5814Google Scholar
[91] Alam M A, Si M, Ye P D 2019 Appl. Phys. Lett. 114 090401Google Scholar
[92] Liu Z, Bhuiyan M, Ma T 2019 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 1–5, 2018 p31.2.1
[93] Hoffmann M, Slesazeck S, Mikolajick T, Hwang C S 2019 Ferroelectricity in Doped Hafnium Oxide: Materials, Properties and Devices (Cambridge: Woodhead Publishing) p473
[94] Khan A I, Chatterjee K, Wang B, Drapcho S, You L, Serrao C, Bakaul S R, Ramesh R, Salahuddin S 2015 Nat. Mater. 14 182Google Scholar
[95] Jang K, Ueyama N, Kobayashi M, Hiramoto T 2018 IEEE J. Electron Devices Soc. 6 346Google Scholar
[96] Kim K D, Kim Y J, Park M H, Park H W, Kwon Y J, Lee Y B, Kim H J, Moon T, Lee Y H, Hyun S D, Kim B S, Hwang C S 2019 Adv. Funct. Mater. 29 1808228Google Scholar
[97] Han Q, Aleksa P, Tromm T C U, Schubert J, Mantl S, Zhao Q T 2019 Solid-State Electron. 159 71Google Scholar
[98] Catalan G, Jiménez D, Gruverman A 2015 Nat. Mater. 14 137Google Scholar
[99] Chang S C, Avci U E, Nikonov D E, Manipatruni S, Young I A 2018 Phys. Rev. Appl. 9 014010Google Scholar
[100] Landau L, Khalatnikov I 1954 Dokl. Akad. Nauk SSSR. 96 469Google Scholar
[101] Hoffmann M, Khan A I, Serrao C, Lu Z, Salahuddin S, Pešić M, Slesazeck S, Schroeder U, Mikolajick T 2018 J. Appl. Phys. 123 184101Google Scholar
[102] Merz W J 1954 Phys. Rev. 95 690Google Scholar
[103] Chang S-C, Avci U E, Nikonov D E, Young I A 2017 IEEE J. Explor. Solid-State Comput. Devices Circuits 3 56Google Scholar
[104] Jin C, Saraya T, Hiramoto T, Kobayashi M 2019 IEEE J. Electron Devices Soc. 7 368Google Scholar
[105] Wang H, Yang M, Huang Q, Zhu K, Zhao Y, Liang Z, Chen C, Wang Z, Zhong Y, Zhang X 2019 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 1–5, 2018 p31.1.1
[106] Orihara H, Hashimoto S, Ishibashi Y 1994 J. Phys. Soc. Jpn. 63 1031Google Scholar
[107] Jo J, Shin C 2016 IEEE Electr. Device L. 37 245Google Scholar
[108] Nourbakhsh A, Zubair A, Joglekar S, Dresselhaus M, Palacios T 2017 Nanoscale 9 6122Google Scholar
[109] Saeidi A, Jazaeri F, Bellando F, Stolichnov I, Enz C C, Ionescu A M 2017 47th European Solid-State Device Research Conference Leuven, Belgium, September 11–14, 2017 p78
[110] Galatage R, Bentley S, Suvarna P H, Krivokapic Z 2018 US Patent 10 141 414 B1
[111] Khan A I, Yeung C W, Hu C, Salahuddin S 2012 International Electron Devices Meeting Washington, DC, USA, December 5–7, 2011 p11.3.1
[112] Agarwal H, Kushwaha P, Lin Y K, Kao M Y, Liao Y H, Dasgupta A, Salahuddin S, Hu C 2019 IEEE Electr. Device L. 40 463Google Scholar
[113] Si M, Su C J, Jiang C, Conrad N J, Zhou H, Maize K D, Qiu G, Wu C T, Shakouri A, Alam M A, Ye P D 2018 Nat. Nanotechnol. 13 24Google Scholar
[114] Bohr M T, Young I A 2017 IEEE Micro 37 20
[115] Cheng C H, Chin A 2014 IEEE Electr.Device L. 35 274Google Scholar
[116] Fan CC, Cheng CH, Chen YR, Liu C, Chang CY 2018 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 2–6, 2017 p23.2.1
[117] Chiu YC, Cheng CH, Chang C-, Tang YT, Chen MC 2016 IEEE Symposium on VLSI Technology Honolulu, HI, USA, June 14–16, 2016 p1
[118] Cheng CH, Fan CC, Hsu HH, Wang SA, Chang CY 2019 Phys. Status Solidi-Rapid Res. Lett. 13 1800493Google Scholar
[119] Cheng C H, Lin M H, Chen H Y, Fan C C, Liu C, Hsu H H, Chang C Y 2018 Phys. Status Solidi-Rapid Res. Lett. 13 1800573Google Scholar
[120] Zeng B, Xiao W, Liao J, Liu H, Liao M, Peng Q, Zheng S, Zhou Y 2018 IEEE Electr. Device L. 39 1508Google Scholar
[121] Chen K T, Liao C Y, Chen H Y, Lo C, Siang G Y, Lin Y Y, Tseng Y J, Chang C, Chueh C Y, Yang Y J, Liao M H, Li K S, Chang S T, Lee M H 2019 Microelectron. Eng. 215 110991Google Scholar
[122] Xiao W, Liu C, Peng Y, Zheng S, Feng Q, Zhang C, Zhang J, Hao Y, Liao M, Zhou Y 2019 IEEE Electr. Device L. 40 714Google Scholar
[123] Li K S, Chen P G, Lai T Y, Lin C H, Cheng C C, Chen C C, Wei Y J, Hou Y F, Liao M H, Lee M H 2016 IEEE International Electron Devices Meeting Washington, DC, USA, December 7–9, 2015 p22.6.1
[124] Zhang Z, Xu G, Zhang Q, Hou Z, Li J, Kong Z, Zhang Y, Xiang J, Xu Q, Wu Z, Zhu H, Yin H, Wang W, Ye T 2019 IEEE Electr. Device L. 40 367Google Scholar
[125] Chen P J, Tsai M J, Hou F J, Wu Y C 2019 Silicon Nanoelectronics Workshop Kyoto, Japan, June 9–10, 2019 p1
[126] Lee S Y, Chen H W, Shen C H, Kuo P Y, Chung C C, Huang Y E, Chen H Y, Chao T S 2019 IEEE Electr. Device L. 40 1708Google Scholar
[127] Bansal A K, Kumar M, Gupta C, Hook T B, Dixit A 2018 IEEE T. Electron Dev. 65 3548Google Scholar
[128] Song Y, Zhou H, Xu Q, Luo J, Yin H, Yan J, Zhong H 2011 J. Electron. Mater. 40 1584Google Scholar
[129] Zhou J, Han G, Li Q, Peng Y, Lu X, Zhang C, Zhang J, Sun QQ, Zhang D W, Hao Y 2017 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 3–7, 2016 p12.2.1
[130] Zhou J, Han G, Peng Y, Liu Y, Zhang J, Sun Q Q, Zhang D W, Hao Y 2017 IEEE Electr. Device L. 38 1157Google Scholar
[131] Li J, Zhou J, Han G, Liu Y, Peng Y, Zhang J, Sun Q Q, Zhang D W, Hao Y 2017 IEEE Electr. Device L. 38 1500Google Scholar
[132] Zhou J, Han G, Li J, Liu Y, Peng Y, Zhang J, Sun Q Q, Zhang D W, Hao Y 2018 IEEE Electr.Device L. 39 622Google Scholar
[133] Zhou J, Han G, Li J, Liu Y, Peng Y, Zhang J, Sun Q Q, Zhang D W, Hao Y 2018 IEEE Electr. Device L. 39 618Google Scholar
[134] Peng Y, Liu Y, Han G, Zhang J, Hao Y 2019 Nanoscale Res. Lett. 14 125Google Scholar
[135] Alghamdi S, Chung W, Si M, Peide D Y 2018 76th Device Research Conference Santa Barbara, CA, USA, June 24–27, 2018 p1
[136] Luc Q, Fan-Chiang C, Huynh S, Huang P, Do H, Ha M, Jin Y, Nguyen T, Zhang K, Wang H 2018 IEEE Symposium on VLSI Technology Honolulu, HI, USA, June 18–22, 2018 p47
[137] Chang E Y, Luc Q H, Tran N A, Lin Y C 2019 ECS Trans. 92 3Google Scholar
[138] Srimani T, Hills G, Bishop M D, Radhakrishna U, Zubair A, Park R S, Stein Y, Palacios T, Antoniadis D, Shulaker M M 2018 IEEE Electr. Device L. 39 304Google Scholar
[139] Tu L, Wang X, Wang J, Meng X, Chu J 2018 Adv. Electron. Mater. 4 1800231Google Scholar
[140] Si M, Jiang C, Chung W, Du Y, Alam M A, Ye P D 2018 Nano Lett. 18 3682Google Scholar
[141] Lee Y T, Kwon H, Kim J S, Kim H H, Lee Y J, Lim J A, Song YW, Yi Y, Choi WK, Hwang D K 2015 ACS Nano 9 10394Google Scholar
[142] Heidler J, Yang S, Feng X, Müllen K, Asadi K 2018 Solid-State Electron. 144 90Google Scholar
[143] Choi H, Shin C 2019 Phys. Status Solidi A 216 1900177Google Scholar
[144] Yu Z, Wang H, Li W, Xu S, Song X, Wang S, Wang P, Zhou P, Shi Y, Chai Y 2018 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 2-6, 2017 p23.6.1
[145] Yap W C, Jiang H, Liu J, Xia Q, Zhu W 2017 Appl. Phys. Lett. 111 013103Google Scholar
[146] McGuire F A, Lin Y C, Rayner B, Franklin A D 2017 75th Annual Device Research Conference South Bend, IN, USA, June 25–28, 2017 p1
[147] Alghamdi S, Si M, Yang L, Peide D Y 2018 IEEE International Reliability Physics Symposium Burlingame, CA, USA, March 11–15, 2018 pP-TX.1-1
[148] Wang J, Guo X, Yu Z, Ma Z, Liu Y, Chan M, Zhu Y, Wang X, Chai Y 2019 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 1–5, 2018 p22.3.1
[149] Si M, Peide D Y 2018 International Symposium on VLSI Technology, Systems and Application Hsinchu, Taiwan, April 16–19, 2018 p1
[150] Liu F, Zhou Y, Wang Y, Liu X, Wang J, Guo H 2016 NPJ Quantum Mater. 1 16004Google Scholar
[151] Park N, Kang H, Park J, Lee Y, Yun Y, Lee J H, Lee S G, Lee Y H, Suh D 2015 ACS Nano 9 10729Google Scholar
[152] Jie W, Hao J 2017 Nanoscale 10 328
[153] Lipatov A, Fursina A, Vo T H, Sharma P, Gruverman A, Sinitskii A 2017 Adv. Electron. Mater. 3 1700020Google Scholar
[154] Lee Y, Jeon W, Cho Y, Lee M H, Jeong S J, Park J, Park S 2016 ACS Nano 10 6659Google Scholar
[155] Tian H, Li Y-x, Li L, Wang X, Liang R, Yang Y, Ren T L 2019 IEEE T. Electron Dev. 66 1579Google Scholar
[156] Li J, Liu Y, Han G, Zhou J, Hao Y 2019 Nanoscale Res. Lett. 14 171Google Scholar
[157] Peng Y, Han G, Xiao W, Wu J, Liu Y, Zhang J, Hao Y 2019 Nanoscale Res. Lett. 14 115Google Scholar
[158] Tokumitsu E 2020 Jpn. J. Appl. Phys. 59 SCCB06Google Scholar
[159] Park J H, Jang G S, Kim H Y, Seok K H, Chae H J, Lee S K, Joo S K 2016 Sci. Rep. 6 24734Google Scholar
[160] Lee M H, Fan S T, Tang C H, Chen P G, Chou Y C, Chen H H, Kuo J Y, Xie M J, Liu S N, Liao M H 2017 IEEE International Electron Devices Meeting San Francisco, CA, USA, December 3–7, 2016 p12.1.1
[161] Zhang X D, Han W H, Liu W, Zhao X S, Guo Y Y, Yang C, Chen J D, Yang F H 2019 Chin. Phys. B 28 127302Google Scholar
[162] Guo Y Y, Han W H, Zhao X S, Dou Y M, Zhang X D, Wu X Y, Yang F H 2019 Chin. Phys. B 28 107303Google Scholar
[163] Zhao X S, Han W H, Guo Y Y, Dou Y M, Yang F H 2018 Chin. Phys. B 27 097310Google Scholar
计量
- 文章访问数: 27872
- PDF下载量: 1611
- 被引次数: 0