搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

开口狭缝调制的耦合微腔中表面等离激元诱导透明特性

褚培新 张玉斌 陈俊学

引用本文:
Citation:

开口狭缝调制的耦合微腔中表面等离激元诱导透明特性

褚培新, 张玉斌, 陈俊学

Surface plasmon induced transparency in coupled microcavities assisted by slits

Chu Pei-Xin, Zhang Yu-Bin, Chen Jun-Xue
PDF
HTML
导出引用
  • 耦合的波导-微腔结构在光滤波器、光调制器中有着广泛的应用. 结构的光传输性质主要由模式的耦合强度来决定, 而耦合强度通常通过控制结构间的几何间距来实现. 由于电磁波在金属中急剧衰减, 这为控制金属微腔中模式的耦合带来了巨大的挑战. 本文利用金属微腔中法布里-珀罗模式的共振特性, 在微腔中引入开口狭缝, 通过调节狭缝的缝宽以及偏移位置, 来控制模式的泄漏率以及耦合强度, 实现了可调控的表面等离激元诱导透明效应. 当狭缝的开口宽度或者偏移量增加时, 结构透射谱的透射峰值和半高全宽也会相应地增加. 狭缝的几何参数变化会对结构共振特性产生调制, 文中通过时域耦合模理论对相应的物理机进行了解释. 本文的结果为实现利于加工的紧凑表面等离激元器件提供了思路.
    The coupled waveguide-microcavity structure has a wide range of applications in optical filters and optical modulators. The optical transmission properties of structure are mostly determined by the coupling strength of the modes. In the conventional waveguide-microcavity structure, the mode coupling is finished by the form of evanescent field, which is usually achieved by controlling the geometric spacing between waveguide and microcavity. Surface plasmon polaritons are the excitations of the electromagnetic waves coupled to collective oscillations of free electrons in metal. Since the electromagnetic waves are attenuated sharply in the metal, this requires precise control of the spacing between the waveguide and the metal microcavity, and poses a great challenge for controlling the coupling of modes in the metal waveguide-cavity structure. In this paper, we proposed a scheme of using a metal-dielectric-metal waveguide side coupling metal microcavities to overcome this limit. Based on the resonant characteristics of the Fabry–Pérot mode in the metal microcavity, a slit is introduced to connect the waveguide and microcavities. By adjusting the width and the offset location of slits, the leakage rate and coupling strength of the mode in metal microcavity can be controlled. The finite difference frequency domain (FDFD) method was used to numerically simulate the electromagnetic properties of structure. First, we have studied the transmission behaviors of surface plasmon polaritons in the system consisted by metal waveguide and single microcavity. As other microcavity is introduced to the structure and connected the original microcavity by slit, the electromagnetically induced transparency phenomena based on surface plasmon polaritons are demonstrated in the coupled metal waveguide and double microcavities structure. As the width of slit connected the microcavity is increased, the transmission peak of structure and the full width at half maximum of the transparency window also increase accordingly. The change of the geometric parameters of slit will modulate the resonance characteristics of structure, and the corresponding physical mechanism is explained by the temporal coupled mode theory. In our works, the metal waveguide and microcavities are coupled by the energy leakage of microcavities assisted by slits, which breaks the limit of separation distance between metal waveguide and microcavity, and contributes to the manufacture of devices. The results of the paper will have applications in designing the compact photonic devices based on surface plasmon polaritons.
      Corresponding author: Chen Jun-Xue, cjxueoptics@163.com
    [1]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [2]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [3]

    Xu Q, Sandhu S, Povinelli M L, Shakya J, Fan S, Lipson M 2006 Phys. Rev. Lett. 96 123901Google Scholar

    [4]

    Chen H, Chan C T 2007 Appl. Phys. Lett. 91 183518Google Scholar

    [5]

    Zhang Z, Zhang L, Li H, Chen H 2014 Appl. Phys. Lett. 104 231114Google Scholar

    [6]

    Chen J, Wang C, Zhang R, Xiao J 2012 Opt. Lett. 37 5133Google Scholar

    [7]

    Yun B, Hu G, Cui Y 2013 Plasmonics 8 267

    [8]

    Lu Q, Wang Z, Huang Q, Jiang W, Wu Z, Wang Y, Xia J 2017 J. Lightwave Technol. 35 1710Google Scholar

    [9]

    Rumpf R C 2012 Prog. Electromagn. Res. B 36 221Google Scholar

    [10]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [11]

    Mario L Y, Chin M K 2008 Opt. Express 16 1796Google Scholar

    [12]

    Han Z, I.Bozhevolnyi S 2011 Opt. Express 19 3251Google Scholar

    [13]

    宁仁霞, 鲍婕, 焦铮 2017 物理学报 66 100202Google Scholar

    Ning R X, Bao J, Jiao Z 2017 Acta Phys. Sin. 66 100202Google Scholar

    [14]

    Haddadpour A, Nezhad V F, Yu Z, Veronis G 2016 Opt. Lett. 41 4340Google Scholar

    [15]

    Yu Z, Veronis G, Fan S 2008 Appl. Phys. Lett. 92 041117Google Scholar

    [16]

    Fan S, Suh W, Joannopoulos J D 2003 J. Opt. Soc. Am. A 20 569Google Scholar

    [17]

    Suh W, Wang Z, Fan S 2004 IEEE J. Quantum Electron. 40 1511Google Scholar

    [18]

    Chen J, Wang P, Zhang Z M, Lu Y, Ming H 2011 Phys. Rev. E 84 026603Google Scholar

    [19]

    王辉, 沙威, 黄志祥, 吴先良, 沈晶 2014 物理学报 63 184210Google Scholar

    Wang H, Sha W, Huang Z, Wu X, Shen J 2014 Acta Phys. Sin. 63 184210Google Scholar

    [20]

    Zhang Z, Ng G I, Hu T, Qiu H, Guo X, Wang W, Rouifed M S, Liu C, Wang H 2017 Appl. Phys. Lett. 111 081105Google Scholar

  • 图 1  单个金属波导-微腔侧边耦合结构. 银-空气-银构成一个高局域的MDM波导结构, 空气层厚度为wd, 金属微腔的长度为L, 宽度为D. 波导与微腔间通过开口的狭缝进行耦合, 狭缝的宽度为C, 高度为S, 狭缝中心与微腔中心的偏移量为dsp

    Fig. 1.  The schematic diagram of single metal waveguide-cavity side-coupled structure. The MDM waveguide is consisted by silver-air-silver. The width of air layer is wd. The length and width of metal microcavity are L and D, respectively. A slit is used to connect the waveguide and microcavity. The width and height of slit are denoted as C and S, respectively. The center-to-center distance between slit and cavity is denoted as dsp.

    图 2  狭缝偏移位移固定(dsp = 120 nm), 不同狭缝宽度情况下 (a) 结构的透射谱; (b)结构共振Q值的变化情况. 结构谐振时, 对应的磁场振幅分布(|Hy|)也在图(b) 中给出. 狭缝宽度固定(C = 100 nm), 不同狭缝偏移量情况下, (c) 结构的透射谱; (d) 结构共振Q值的变化情况. 微腔的尺寸(长L = 650 nm, 宽度D = 200 nm), 波导的宽度wd = 200 nm

    Fig. 2.  As the location offset of slit is fixed (dsp = 120 nm), (a) the transmittance spectra of structure with the different width C, (b) the Q factor of structure versus the width C. The amplitude distribution of magnetic field at the resonant wavelength of structure with width C = 100 nm is also shown in the inset of Fig. 2(b). (c) The transmittance spectra of structure with the different location offset dsp; (d) the Q factor of structure versus the dsp. The length and width of microcavity are L = 650 nm and D = 200 nm, respectively. The thickness of waveguide wd = 200 nm.

    图 3  金属波导-双微腔侧边耦合结构示意图. 在图1的基础上再加入一个谐振腔, 并为两个谐振腔编号为①与②. 靠近波导的为1号微腔, 所有的结构参数的尾数都为1; 远离波导的为2号谐振腔, 所有的结构参数的尾数为2. 空气层厚度为wd

    Fig. 3.  The schematic diagram of metal waveguide-double microcavities side-coupled structure. A other microcavity is introduced into the structure shown in Fig.1. The two microcavities are numbered as ① and ②, respectively. The width of air layer is wd.

    图 4  波导-双微腔结构的透射谱. 其中, 红色实线表示FDFD方法得到的结果, 蓝色圆点为TCMT方法得到的结果. 为了便于比较, 单个波导-微腔结构的透射谱在图中以黑色虚线表示; (b)波导-双微腔结构中, 透射波的位相变化情况. 数值模拟中, 结构的几何参数为L1 = 650 nm, D1 = 200 nm, S1 = 200 nm, C1 = 100 nm, dsp1 = 120 nm, L2 = 625 nm, D2 = 200 nm, S2 = 250 nm, C2 = 40 nm, dsp2 = 80 nm, wd = 200 nm.

    Fig. 4.  (a) The transmittance spectra of waveguide-microcavities structure. The red line and blue dotted line denote the results obtained from FDFD simulation and TCMT, respectively. For comparison, the transmittance spectra of the single waveguide-microcavity are shown with black dashed line; (b) for waveguide-microcavities structure, the phase of output wave versus the wavelength. In simulation, the parameters of structure are L1 = 650 nm, D1 = 200 nm, S1 = 200 nm, C1 = 100 nm, dsp1 = 120 nm, L2 = 625 nm, D2 = 200 nm, S2 = 250 nm, C2 = 40 nm, dsp2 = 80 nm and wd = 200 nm.

    图 5  类EIT窗口透射峰值和FWHM与狭缝开口宽度C2的关系. 结构的其他参数为L1 = 650 nm, D1 = 200 nm, S1 = 200 nm, C1 = 100 nm, dsp1 = 120 nm, L2 = 625 nm, D2 = 200 nm, S2 = 250 nm, dsp2 = 80 nm, wd = 200 nm

    Fig. 5.  The peak value of transmission and the FWHM of EIT window versus the width C2 of slit. In simulation, the geometrical parameters of structure are L1 = 650 nm, D1 = 200 nm, S1 = 200 nm, C1 = 100 nm, dsp1 = 120 nm, L2 = 625 nm, D2 = 200 nm, S2 = 250 nm, dsp2 = 80 nm and wd = 200 nm.

  • [1]

    Harris S E, Field J E, Imamoglu A 1990 Phys. Rev. Lett. 64 1107Google Scholar

    [2]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [3]

    Xu Q, Sandhu S, Povinelli M L, Shakya J, Fan S, Lipson M 2006 Phys. Rev. Lett. 96 123901Google Scholar

    [4]

    Chen H, Chan C T 2007 Appl. Phys. Lett. 91 183518Google Scholar

    [5]

    Zhang Z, Zhang L, Li H, Chen H 2014 Appl. Phys. Lett. 104 231114Google Scholar

    [6]

    Chen J, Wang C, Zhang R, Xiao J 2012 Opt. Lett. 37 5133Google Scholar

    [7]

    Yun B, Hu G, Cui Y 2013 Plasmonics 8 267

    [8]

    Lu Q, Wang Z, Huang Q, Jiang W, Wu Z, Wang Y, Xia J 2017 J. Lightwave Technol. 35 1710Google Scholar

    [9]

    Rumpf R C 2012 Prog. Electromagn. Res. B 36 221Google Scholar

    [10]

    Johnson P B, Christy R W 1972 Phys. Rev. B 6 4370Google Scholar

    [11]

    Mario L Y, Chin M K 2008 Opt. Express 16 1796Google Scholar

    [12]

    Han Z, I.Bozhevolnyi S 2011 Opt. Express 19 3251Google Scholar

    [13]

    宁仁霞, 鲍婕, 焦铮 2017 物理学报 66 100202Google Scholar

    Ning R X, Bao J, Jiao Z 2017 Acta Phys. Sin. 66 100202Google Scholar

    [14]

    Haddadpour A, Nezhad V F, Yu Z, Veronis G 2016 Opt. Lett. 41 4340Google Scholar

    [15]

    Yu Z, Veronis G, Fan S 2008 Appl. Phys. Lett. 92 041117Google Scholar

    [16]

    Fan S, Suh W, Joannopoulos J D 2003 J. Opt. Soc. Am. A 20 569Google Scholar

    [17]

    Suh W, Wang Z, Fan S 2004 IEEE J. Quantum Electron. 40 1511Google Scholar

    [18]

    Chen J, Wang P, Zhang Z M, Lu Y, Ming H 2011 Phys. Rev. E 84 026603Google Scholar

    [19]

    王辉, 沙威, 黄志祥, 吴先良, 沈晶 2014 物理学报 63 184210Google Scholar

    Wang H, Sha W, Huang Z, Wu X, Shen J 2014 Acta Phys. Sin. 63 184210Google Scholar

    [20]

    Zhang Z, Ng G I, Hu T, Qiu H, Guo X, Wang W, Rouifed M S, Liu C, Wang H 2017 Appl. Phys. Lett. 111 081105Google Scholar

  • [1] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [2] 高海燕, 杨欣达, 周波, 贺青, 韦联福. 耦合诱导的四分之一波长超导谐振器微波传输透明. 物理学报, 2022, 71(6): 064202. doi: 10.7498/aps.71.20211758
    [3] 张彩霞, 马向超, 张建奇. Au(111)薄膜表面等离激元和热载流子输运性质的理论研究. 物理学报, 2022, 71(22): 227801. doi: 10.7498/aps.71.20221166
    [4] 吴晗, 吴竞宇, 陈卓. 基于超表面的Tamm等离激元与激子的强耦合作用. 物理学报, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [5] 李盼. 表面等离激元纳米聚焦研究进展. 物理学报, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [6] 张文君, 高龙, 魏红, 徐红星. 表面等离激元传播的调制. 物理学报, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [7] 吴立祥, 李鑫, 杨元杰. 基于双层阿基米德螺线的表面等离激元涡旋产生方法. 物理学报, 2019, 68(23): 234201. doi: 10.7498/aps.68.20190747
    [8] 贾玥, 陈肖含, 张好, 张临杰, 肖连团, 贾锁堂. Rydberg原子的电磁诱导透明光谱的噪声转移特性. 物理学报, 2018, 67(21): 213201. doi: 10.7498/aps.67.20181168
    [9] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收. 物理学报, 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [10] 唐宏, 王登龙, 张蔚曦, 丁建文, 肖思国. 纵波光学声子耦合对级联型电磁感应透明半导体量子阱中暗-亮光孤子类型的调控. 物理学报, 2017, 66(3): 034202. doi: 10.7498/aps.66.034202
    [11] 邓红梅, 黄磊, 李静, 陆叶, 李传起. 基于石墨烯加载的不对称纳米天线对的表面等离激元单向耦合器. 物理学报, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [12] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [13] 杨韵茹, 关建飞. 基于金属-电介质-金属波导结构的等离子体滤波器的数值研究. 物理学报, 2016, 65(5): 057301. doi: 10.7498/aps.65.057301
    [14] 杜英杰, 谢小涛, 杨战营, 白晋涛. 电磁诱导透明系统中的暗孤子. 物理学报, 2015, 64(6): 064202. doi: 10.7498/aps.64.064202
    [15] 张红, 尹海峰, 张开彪, 林家和. 基于含时密度泛函理论的表面等离激元研究进展. 物理学报, 2015, 64(7): 077303. doi: 10.7498/aps.64.077303
    [16] 朱华, 颜振东, 詹鹏, 王振林. 局域表面等离激元诱导的三次谐波增强效应. 物理学报, 2013, 62(17): 178104. doi: 10.7498/aps.62.178104
    [17] 吕纯海, 谭磊, 谭文婷. 压缩真空中的电磁诱导透明. 物理学报, 2011, 60(2): 024204. doi: 10.7498/aps.60.024204
    [18] 李晓莉, 张连水, 杨宝柱, 杨丽君. 闭合Λ型4能级系统中的电磁诱导透明和电磁诱导吸收. 物理学报, 2010, 59(10): 7008-7014. doi: 10.7498/aps.59.7008
    [19] 张连水, 李晓莉, 王 健, 杨丽君, 冯晓敏, 李晓苇, 傅广生. 光学-射频双光子耦合作用下的电磁诱导透明和电磁诱导吸收. 物理学报, 2008, 57(8): 4921-4926. doi: 10.7498/aps.57.4921
    [20] 杨丽君, 张连水, 李晓莉, 李晓苇, 郭庆林, 韩 理, 傅广生. 多窗口可调谐电磁诱导透明研究. 物理学报, 2006, 55(10): 5206-5210. doi: 10.7498/aps.55.5206
计量
  • 文章访问数:  7441
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-12
  • 修回日期:  2020-06-16
  • 上网日期:  2020-06-17
  • 刊出日期:  2020-07-05

/

返回文章
返回