搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于触觉感知的自供能可拉伸压电橡胶皮肤电子器件

姚宽明 姚靖仪 海照 李登峰 解兆谦 于欣格

引用本文:
Citation:

用于触觉感知的自供能可拉伸压电橡胶皮肤电子器件

姚宽明, 姚靖仪, 海照, 李登峰, 解兆谦, 于欣格

Stretchable self-powered epidermal electronics from piezoelectric rubber for tactile sensing

Yao Kuan-Ming, Yao Jing-Yi, Hai Zhao, Li Deng-Feng, Xie Zhao-Qian, Yu Xin-Ge
PDF
HTML
导出引用
  • 柔软、轻薄的皮肤电子器件是当今的研究热点之一, 在健康监测、疾病预防及治疗方面有诸多应用. 但是目前柔性能量供给器件从厚度和尺寸上仍然无法满足皮肤电子的集成要求. 本文主要阐述一种应用压电橡胶复合材料的柔性皮肤电子器件, 采用压电陶瓷材料锆钛酸铅(PZT)、聚二甲基硅氧烷(PDMS)和石墨烯的混合体系组成柔性传感器. 混合后的压电橡胶材料柔软, 轻薄, 延展性良好, 结合优化力学性能的蛇形结构叉指电极以及PDMS柔性基底, 使该器件柔软、可拉伸, 能与皮肤无缝紧密贴合. 该触觉感知柔性皮肤电子器件不仅可以准确测量2.84—11.72 kPa范围的压力, 且能够适应弯曲、拉伸等机械变化, 并且在不同方向上的拉伸应变达到20%时都仍然能保持良好的压电性能, 证明该器件可以在人体日常动作造成的皮肤应变下保持良好的稳定性能. 该器件可以贴于体表以监测并区分触摸、点按、轻拍、敲击等动作, 输出的电能足够点亮15个LED灯泡, 在自供能皮肤电子领域有巨大发展和应用潜力.
    Soft, thin, skin-integrated electronics, i.e. epidermal electronics, has become a hotspot in biomedical engineering and drawn great attention for their applications in health monitoring, disease diagnosis and therapies. However, soft powering system is still a challenge for epidermal electronics, since the thickness and weight of the existing flexible energy harvesting and storage devices are very hard to meet the requirements of epidermal electronics. Here we present a stretchable and flexible self-powering epidermal electronic device based on rubbery piezoelectric composites formed by a ternary blend of PDMS, lead zirconate titanate (PZT) and graphene. The mixed PZT rubber is soft, ultra-thin and light weight and intrinsically stretchable. By combining soft PDMS substrate and advanced mechanics designed interdigital electrodes/interconnects, a stretchable and skin-integrated device for tactile sensing is realized. The soft device can not only accurately measure a board range of force from 2.84 kPa to 11.72 kPa but also exhibit great flexibility that can maintain stable performance under various mechanical deformations, such as bending, stretching and twisting. On-skin demonstration tests reveal that this self-powering device can clearly distinguish the differences among mechanical stimulations such as touching, poking, tapping and hitting. Furthermore, the self-powering nature of these devices allows energy to be harvested from daily body actives, for instance, hard touching by hand can lighten up to 15 light-emitting diodes.
      通信作者: 解兆谦, zxie@dlut.edu.cn ; 于欣格, xingeyu@cityu.edu.hk
      Corresponding author: Xie Zhao-Qian, zxie@dlut.edu.cn ; Yu Xin-Ge, xingeyu@cityu.edu.hk
    [1]

    Yu X, Wang H, Ning X, et al. 2018 Nat. Biomed. Eng. 2 165Google Scholar

    [2]

    Koo J, MacEwan M R, Kang S K, et al. 2018 Nat. Med. 24 1830Google Scholar

    [3]

    Ray T R, Choi J, Bandodkar A J, et al. 2019 Chem. Rev. 119 5461Google Scholar

    [4]

    Wang C, Wang C, Huang Z, et al. 2018 Adv. Mater. 30 1801368Google Scholar

    [5]

    Carlson A, Bowen A M, Huang Y, et al. 2012 Adv. Mater. 24 5284Google Scholar

    [6]

    Sim K, Chen S, Li Z, et al. 2019 Nat. Electron. 2 471Google Scholar

    [7]

    Liu Y, Xu Y, Avila R, et al. 2019 Nanotechnology 30 414001Google Scholar

    [8]

    Rogers J A, Nuzzo R G 2005 Mater. Today 8 50

    [9]

    Widlund T, Yang S, Hsu Y Y, et al. 2014 Int. J. Solids Struct. 51 4026Google Scholar

    [10]

    Wang B, Bao S, Vinnikova S, et al. 2017 npj Flex. Electron. 1 1Google Scholar

    [11]

    Xie Z, Ji B, Huo Q 2018 J. Appl. Mech. Trans. ASME 85 045001Google Scholar

    [12]

    Chen H, Zhu F, Jang K I, et al. 2018 J. Mech. Phys. Solids 120 199Google Scholar

    [13]

    Guo Q, Koo J, Xie Z, et al. 2019 Adv. Funct. Mater. 29 1905451Google Scholar

    [14]

    Xie Z, Avila R, Huang Y, et al. 2019 Adv. Mater. 32 1902767

    [15]

    Webb R C, Bonifas A P, Behnaz A, et al. 2013 Nat. Mater. 12 938Google Scholar

    [16]

    Yang J, Shi R, Lou Z, et al. 2019 Small 15 1902801Google Scholar

    [17]

    Boutry C M, Beker L, Kaizawa Y, et al. 2019 Nat. Biomed. Eng. 3 47Google Scholar

    [18]

    Wang C C, Li X, Hu H, et al. 2018 Nat. Biomed. Eng. 2 687Google Scholar

    [19]

    Ma Y, Choi J, Hourlier-Fargette A, et al. 2018 Proc. Natl. Acad. Sci. U. S. A. 115 11144Google Scholar

    [20]

    Liu Y, Zhao L, Avila R, et al. 2020 Mater. Today Phys. 13 100199Google Scholar

    [21]

    Wang Y, Qiu Y, Ameri S K, et al. 2018 npj Flex. Electron. 2 1Google Scholar

    [22]

    Torrente-Rodríguez R M, Tu J, Yang Y, et al. 2020 Matter 2 921Google Scholar

    [23]

    Kim S B, Lee K H, Raj M S, et al. 2018 Small 14 1802876Google Scholar

    [24]

    Bandodkar A J, Gutruf P, Choi J, et al. 2019 Sci. Adv. 5 eaav3294Google Scholar

    [25]

    Goni O, Lee S, Jin H, et al. 2020 PNAS 117 7063Google Scholar

    [26]

    Lee K H, Ni X, Lee J H J Y, et al. 2019 Nat. Biomed. Eng. 4 148

    [27]

    Liu Y, Norton J J S, Qazi R, et al. 2016 Sci. Adv. 2 e1601185Google Scholar

    [28]

    Shin G, Gomez A M, Al-Hasani R, et al. 2017 Neuron 93 509Google Scholar

    [29]

    Gutruf P, Rogers J A 2018 Curr. Opin. Neurobiol. 50 42

    [30]

    Park S Il, Brenner D S, Shin G, et al. 2015 Nat. Biotechnol. 33 1280Google Scholar

    [31]

    Chung H U, Kim B H, Lee J Y, et al. 2019 Science (80-.) 363 eaau0780Google Scholar

    [32]

    Hong Y J, Jeong H, Cho K W, et al. 2019 Adv. Funct. Mater. 29 1808247Google Scholar

    [33]

    Huang Z, Hao Y, Li Y, et al. 2018 Nat. Electron. 1 473Google Scholar

    [34]

    Yu X, Xie Z, Yu Y, et al. 2019 Nature 575 473Google Scholar

    [35]

    Liu Y, Wang L, Zhao L, et al. 2020 Adv. Electron. Mater. 6 1901174Google Scholar

    [36]

    Liu Y, Zhao L, Wang L, et al. 2019 Adv. Mater. Technol. 4 1900744Google Scholar

    [37]

    Erturk A, Inman D J 2011 Chichester

    [38]

    Lin Z H, Yang Y, Wu J M, et al. 2012 J. Phys. Chem. Lett. 3 3599Google Scholar

    [39]

    Niu X, Jia W, Qian S, et al. 2019 ACS Sustain. Chem. Eng. 7 979Google Scholar

    [40]

    Liu Y, Wang L, Zhao L, et al. 2020 InfoMat 2 318Google Scholar

    [41]

    Jung J H, Lee M, Hong J Il, et al. 2011 ACS Nano 5 10041Google Scholar

    [42]

    Kim K H, Lee K Y, Seo J S, et al. 2011 Small 7 2577Google Scholar

    [43]

    Hwang G T, Park H, Lee J H, et al. 2014 Adv. Mater. 26 4880Google Scholar

    [44]

    Park K Il, Son J H, Hwang G T, et al. 2014 Adv. Mater. 26 2514Google Scholar

    [45]

    Dagdeviren C, Yang B D, Su Y, et al. 2014 Proc. Natl. Acad. Sci. U. S. A. 111 1927Google Scholar

    [46]

    Arumugam V, Naresh M D, Sanjeevi R 1994 J. Biosci. 19 307Google Scholar

  • 图 1  柔性压电皮肤电子器件 (a) 器件结构图; (b) 蛇纹线结构叉指电极整体、细节及其设计图; (c) 器件贴于皮肤表面的照片; (d) 对器件分别进行纵向、横向拉伸及扭转、弯曲变形的照片; (e) 三元压电橡胶表面形貌的SEM图像; (f) SEM图像范围内C, Si, O, Pb, Zr, Ti元素的能量色散X射线EDX分布图

    Fig. 1.  The flexible piezoelectric epidermal electronic device: (a) Explosive view of the structure of the device; (b) overall and detailed photos of the serpentine structured interdigital electrodes and the design; (c) photograph showing the device attached to the skin; (d) photographs showing the device under longitudinal and latitudinal stretching, twisting and bending, respectively; (e) the SEM image of the surface morphology of the graphene/PZT/PDMS ternary piezoelectric rubber; (f) energy dispersive X-ray spectroscopy (EDX) images illustrating the distribution of C, Si, O, Pb, Zr and Ti.

    图 2  压电器件在1 Hz撞击频率下随撞击压力变化的电学性能 (a) 不同撞击压力下开路电压输出的实时测量值; (b) 以压力为变量的开路电压平均峰值曲线, 内插图为1 kPa及以下的小数量级压力下(虚线框内部分)的开路电压输出曲线放大图; (c) 不同撞击压力下短路电流输出的实时测量值; (d) 以压力为变量的短路电流平均峰值曲线, 内插图为1 kPa及以下的小数量级压力下(虚线框内部分)的短路电流输出曲线放大图

    Fig. 2.  Electrical performance of the piezoelectric device with varying applied pressure under a hitting frequency of 1 Hz: (a) Real-time measured open-circuit voltage output under varying applied pressure; (b) average peak open-circuit voltage as a function of pressure (inset: OC voltage output at about 1 kPa pressure and below); (c) real-time measured short-circuit current output under varying applied pressure; (d) average peak short-circuit current as a function of pressure (inset: SC current output at about 1 kPa pressure and below).

    图 3  压电器件在纵向以及横向不同拉伸应变下, 在同一撞击压力((23.17 ± 1.76) kPa)下的电学性能 (a) 纵向拉伸下的开路电压输出实时测量值; (b) 纵向拉伸下的开路电压平均峰值统计图; (c) 横向拉伸下的开路电压输出实时测量值; (d) 横向拉伸下的开路电压平均峰值统计图

    Fig. 3.  Electrical performance of the piezoelectric device with identical applied pressure ((23.17 ± 1.76) kPa) under varying longitu-dinal and latitudinal stretching strain: (a) Real-time measured open-circuit voltage output under varying longitudinal stretching strain; (b) average peak open-circuit voltage as a function of longitudinal strain; (c) real-time measured open-circuit voltage output under varying latitudinal strain; (d) average peak open-circuit voltage as a function of latitudinal strain.

    图 4  压电器件贴于人体表面实际测试时的电学性能 (a) 4种不同力度的接触方式: 触摸、点按、轻拍、敲击; (b) 开路电压输出的实时测量值; (c) 开路电压平均峰值统计图; (d) 短路电流输出的实时测量值; (e) 短路电流平均峰值统计图; (f) 器件经历长时间后的触觉传感开路电压与原始性能的对比; (g)器件经历长时间后的触觉传感短路电流与原始性能的对比

    Fig. 4.  Electrical performance of the piezoelectric device when attached to human skin: (a) Photos of four different contact method: touching, poking, tapping and hitting; (b) real-time measured open-circuit voltage outputs; (c) average peak open-circuit voltages; (d) real-time measured short-circuit current outputs; (e) average peak short-circuit currents; (f) comparison between open-circuit voltage outputs of devices in original state and after one-month use when used for tactile sensing; (g) comparison between short-circuit current outputs of devices in original state and after one-month use when used for tactile sensing.

    图 5  压电器件输出电能为15个LED灯泡供电测试 (a), (b) 在手指与压电器件分离时, LED灯灭; (c), (d) 手指敲打压电器件瞬间, 15个LED灯泡全部亮起

    Fig. 5.  Demonstration test of supplying energy for 15 LED bulbs only by the piezoelectric device: (a), (b) LEDs are blacked out when fingers lift off from the device; (c), (d) 15 LEDs are all lighten up at the moment fingers hit the device.

  • [1]

    Yu X, Wang H, Ning X, et al. 2018 Nat. Biomed. Eng. 2 165Google Scholar

    [2]

    Koo J, MacEwan M R, Kang S K, et al. 2018 Nat. Med. 24 1830Google Scholar

    [3]

    Ray T R, Choi J, Bandodkar A J, et al. 2019 Chem. Rev. 119 5461Google Scholar

    [4]

    Wang C, Wang C, Huang Z, et al. 2018 Adv. Mater. 30 1801368Google Scholar

    [5]

    Carlson A, Bowen A M, Huang Y, et al. 2012 Adv. Mater. 24 5284Google Scholar

    [6]

    Sim K, Chen S, Li Z, et al. 2019 Nat. Electron. 2 471Google Scholar

    [7]

    Liu Y, Xu Y, Avila R, et al. 2019 Nanotechnology 30 414001Google Scholar

    [8]

    Rogers J A, Nuzzo R G 2005 Mater. Today 8 50

    [9]

    Widlund T, Yang S, Hsu Y Y, et al. 2014 Int. J. Solids Struct. 51 4026Google Scholar

    [10]

    Wang B, Bao S, Vinnikova S, et al. 2017 npj Flex. Electron. 1 1Google Scholar

    [11]

    Xie Z, Ji B, Huo Q 2018 J. Appl. Mech. Trans. ASME 85 045001Google Scholar

    [12]

    Chen H, Zhu F, Jang K I, et al. 2018 J. Mech. Phys. Solids 120 199Google Scholar

    [13]

    Guo Q, Koo J, Xie Z, et al. 2019 Adv. Funct. Mater. 29 1905451Google Scholar

    [14]

    Xie Z, Avila R, Huang Y, et al. 2019 Adv. Mater. 32 1902767

    [15]

    Webb R C, Bonifas A P, Behnaz A, et al. 2013 Nat. Mater. 12 938Google Scholar

    [16]

    Yang J, Shi R, Lou Z, et al. 2019 Small 15 1902801Google Scholar

    [17]

    Boutry C M, Beker L, Kaizawa Y, et al. 2019 Nat. Biomed. Eng. 3 47Google Scholar

    [18]

    Wang C C, Li X, Hu H, et al. 2018 Nat. Biomed. Eng. 2 687Google Scholar

    [19]

    Ma Y, Choi J, Hourlier-Fargette A, et al. 2018 Proc. Natl. Acad. Sci. U. S. A. 115 11144Google Scholar

    [20]

    Liu Y, Zhao L, Avila R, et al. 2020 Mater. Today Phys. 13 100199Google Scholar

    [21]

    Wang Y, Qiu Y, Ameri S K, et al. 2018 npj Flex. Electron. 2 1Google Scholar

    [22]

    Torrente-Rodríguez R M, Tu J, Yang Y, et al. 2020 Matter 2 921Google Scholar

    [23]

    Kim S B, Lee K H, Raj M S, et al. 2018 Small 14 1802876Google Scholar

    [24]

    Bandodkar A J, Gutruf P, Choi J, et al. 2019 Sci. Adv. 5 eaav3294Google Scholar

    [25]

    Goni O, Lee S, Jin H, et al. 2020 PNAS 117 7063Google Scholar

    [26]

    Lee K H, Ni X, Lee J H J Y, et al. 2019 Nat. Biomed. Eng. 4 148

    [27]

    Liu Y, Norton J J S, Qazi R, et al. 2016 Sci. Adv. 2 e1601185Google Scholar

    [28]

    Shin G, Gomez A M, Al-Hasani R, et al. 2017 Neuron 93 509Google Scholar

    [29]

    Gutruf P, Rogers J A 2018 Curr. Opin. Neurobiol. 50 42

    [30]

    Park S Il, Brenner D S, Shin G, et al. 2015 Nat. Biotechnol. 33 1280Google Scholar

    [31]

    Chung H U, Kim B H, Lee J Y, et al. 2019 Science (80-.) 363 eaau0780Google Scholar

    [32]

    Hong Y J, Jeong H, Cho K W, et al. 2019 Adv. Funct. Mater. 29 1808247Google Scholar

    [33]

    Huang Z, Hao Y, Li Y, et al. 2018 Nat. Electron. 1 473Google Scholar

    [34]

    Yu X, Xie Z, Yu Y, et al. 2019 Nature 575 473Google Scholar

    [35]

    Liu Y, Wang L, Zhao L, et al. 2020 Adv. Electron. Mater. 6 1901174Google Scholar

    [36]

    Liu Y, Zhao L, Wang L, et al. 2019 Adv. Mater. Technol. 4 1900744Google Scholar

    [37]

    Erturk A, Inman D J 2011 Chichester

    [38]

    Lin Z H, Yang Y, Wu J M, et al. 2012 J. Phys. Chem. Lett. 3 3599Google Scholar

    [39]

    Niu X, Jia W, Qian S, et al. 2019 ACS Sustain. Chem. Eng. 7 979Google Scholar

    [40]

    Liu Y, Wang L, Zhao L, et al. 2020 InfoMat 2 318Google Scholar

    [41]

    Jung J H, Lee M, Hong J Il, et al. 2011 ACS Nano 5 10041Google Scholar

    [42]

    Kim K H, Lee K Y, Seo J S, et al. 2011 Small 7 2577Google Scholar

    [43]

    Hwang G T, Park H, Lee J H, et al. 2014 Adv. Mater. 26 4880Google Scholar

    [44]

    Park K Il, Son J H, Hwang G T, et al. 2014 Adv. Mater. 26 2514Google Scholar

    [45]

    Dagdeviren C, Yang B D, Su Y, et al. 2014 Proc. Natl. Acad. Sci. U. S. A. 111 1927Google Scholar

    [46]

    Arumugam V, Naresh M D, Sanjeevi R 1994 J. Biosci. 19 307Google Scholar

  • [1] 刘瑛, 郭斯琳, 张勇, 杨鹏, 吕克洪, 邱静, 刘冠军. 1/f噪声及其在二维材料石墨烯中的研究进展. 物理学报, 2023, 72(1): 017302. doi: 10.7498/aps.72.20221253
    [2] 明知非, 宋海洋, 安敏荣. 基于分子动力学模拟的石墨烯镁基复合材料力学行为. 物理学报, 2022, 71(8): 086201. doi: 10.7498/aps.71.20211753
    [3] 魏宁, 赵思涵, 李志辉, 区炳显, 花安平, 赵军华. 石墨烯尺寸和分布对石墨烯/铝基复合材料裂纹扩展的影响. 物理学报, 2022, 71(13): 134702. doi: 10.7498/aps.71.20212203
    [4] 廖天军, 杨智敏, 林比宏. 基于电荷和热输运的石墨烯热电子器件性能优化. 物理学报, 2021, 70(22): 227901. doi: 10.7498/aps.70.20211110
    [5] 周海涛, 熊希雅, 罗飞, 罗炳威, 刘大博, 申承民. 原位生长技术制备石墨烯强化铜基复合材料. 物理学报, 2021, 70(8): 086201. doi: 10.7498/aps.70.20201943
    [6] 李会华, 张嘉辉, 余森江, 卢晨曦, 李领伟. 柔性基周期性厚度梯度薄膜的应变效应. 物理学报, 2021, 70(1): 016801. doi: 10.7498/aps.70.20201008
    [7] 丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件. 物理学报, 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [8] 李林利, 薛春霞. 压电材料双曲壳热弹耦合作用下的混沌运动. 物理学报, 2019, 68(1): 010501. doi: 10.7498/aps.68.20181714
    [9] 王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺君, 贺龙辉. 镍层间掺杂多层石墨烯的电子结构及光吸收特性研究. 物理学报, 2019, 68(18): 187301. doi: 10.7498/aps.68.20190523
    [10] 闫昕, 梁兰菊, 张璋, 杨茂生, 韦德泉, 王猛, 李院平, 吕依颖, 张兴坊, 丁欣, 姚建铨. 基于石墨烯编码超构材料的太赫兹波束多功能动态调控. 物理学报, 2018, 67(11): 118102. doi: 10.7498/aps.67.20180125
    [11] 王越, 冷雁冰, 王丽, 董连和, 刘顺瑞, 王君, 孙艳军. 基于石墨烯振幅可调的宽带类电磁诱导透明超材料设计. 物理学报, 2018, 67(9): 097801. doi: 10.7498/aps.67.20180114
    [12] 王波, 房玉龙, 尹甲运, 刘庆彬, 张志荣, 郭艳敏, 李佳, 芦伟立, 冯志红. 表面预处理对石墨烯上范德瓦耳斯外延生长GaN材料的影响. 物理学报, 2017, 66(24): 248101. doi: 10.7498/aps.66.248101
    [13] 龚健, 张利伟, 陈亮, 乔文涛, 汪舰. 石墨烯基双曲色散特异材料的负折射与体等离子体性质. 物理学报, 2015, 64(6): 067301. doi: 10.7498/aps.64.067301
    [14] 娄利飞, 潘青彪, 吴志华. 基于石墨烯用于微弱能量获取的柔性微结构研究. 物理学报, 2014, 63(15): 158501. doi: 10.7498/aps.63.158501
    [15] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态. 物理学报, 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [16] 姚志东, 李炜, 高先龙. 点缺陷扶手型石墨烯量子点的电子性质研究. 物理学报, 2012, 61(11): 117105. doi: 10.7498/aps.61.117105
    [17] 陈蕾, 李平, 文玉梅, 王东. 高磁导率材料FeCuNbSiB对超磁致伸缩/压电层合材料磁电性能的影响. 物理学报, 2011, 60(6): 067501. doi: 10.7498/aps.60.067501
    [18] 康朝阳, 唐军, 李利民, 潘海斌, 闫文盛, 徐彭寿, 韦世强, 陈秀芳, 徐现刚. 不同极性6H-SiC表面石墨烯的制备及其电子结构的研究. 物理学报, 2011, 60(4): 047302. doi: 10.7498/aps.60.047302
    [19] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [20] 卞雷祥, 文玉梅, 李平. 磁致伸缩/压电叠层复合材料磁-机-电耦合系数分析. 物理学报, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
计量
  • 文章访问数:  11931
  • PDF下载量:  471
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-04
  • 修回日期:  2020-06-12
  • 上网日期:  2020-06-19
  • 刊出日期:  2020-09-05

/

返回文章
返回