搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种复合型极化转换表面及其在天线辐射散射调控中的应用

郭泽旭 曹祥玉 高军 李思佳 杨欢欢 郝彪

引用本文:
Citation:

一种复合型极化转换表面及其在天线辐射散射调控中的应用

郭泽旭, 曹祥玉, 高军, 李思佳, 杨欢欢, 郝彪

Composite polarization conversion metasurface and its application in integrated regulation radiation and scattering of antenna

Guo Ze-Xu, Cao Xiang-Yu, Gao Jun, Li Si-Jia, Yang Huan-Huan, Hao Biao
PDF
HTML
导出引用
  • 透射型极化转换表面因其具有易于与天线共形的巨大应用优势, 受到国内外学者的广泛关注. 本文将极化栅结构与各向异性贴片结构相结合, 设计并验证了一种复合型透射极化转换单元, 将该极化转换单元组成透射超表面, 可以同时实现极化选择和透射型线-圆极化变换两种功能. 当电磁波极化方向垂直于极化栅延伸方向入射到复合型极化转换表面时, 该极化转换表面可以在9.3—10.9 GHz实现透射型线-右旋圆极化转换, 当电磁波极化方向平行于极化栅延伸方向入射时, 可以实现同极化全反射. 将该极化转换单元及其镜像单元棋盘排布后组成棋盘排布表面, 以电磁表面覆层的形式应用于带宽为9.4—10.7 GHz的线极化源微带天线, 利用圆极化的相反旋向对消特性, 组成一款新颖的线极化天线. 相比于源微带天线, 在9.5—10.5 GHz该天线的线极化纯度得到提高, 同时实现了天线的前向增益提高和带内雷达散射截面减缩, 最大减缩量达39.2 dB. 实验验证和仿真结果吻合较好, 该设计在高增益、低散射天线设计和天线辐散射性能综合调控中具有重要的参考价值.
    The transmission polarization conversion metasurface has been widely concerned, because it has the advantage of being easy to be conformal with the antenna. Based on the reasonable arrangement of transmission polarization conversion units, various and complex electromagnetic functions can be realized. As the electromagnetic open window on the flight platform, the antenna is the bottleneck that restricts the decrease of radar cross section (RCS) of the whole flight platform. It is difficult to simultaneously realize the normal and efficient radiation of the antenna and the decrease of the RCS of the antenna. When the designed transmission metasurface is used in the antenna design, the radiation and scattering of the antenna can be regulated comprehensively. In this paper, a composite polarization conversion metasurface is proposed and verified. The unit cell of composite polarization conversion metasurface consists of two mirror symmetrical anisotropic metal patches in the upper layer, a dielectric layer and a polarization gate in the lower layer. When the polarization direction of the incident electromagnetic wave is perpendicular to the extension direction of the polarization gate and arrives at the composite polarization conversion surface, the conversion surface can realize the conversion from transmission linear polarization to right-hand circular polarization in a frequency range from 9.3 GHz to 10.9 GHz. When the polarization direction of the incident electromagnetic wave is parallel to the extension direction of the polarization gate, co-polarized total reflection can be realized. The chessboard arrangement metasurface is composed of composite polarization conversion unit and its mirror unit. A novel linearly polarized chessboard arrangement metasurface antenna is composed of the linearly polarized source microstrip antenna with a bandwidth of 9.4–10.7 GHz and the chessboard arrangement metasurface. By using the counter rotating cancellation characteristic of circular polarization, the chessboard arrangement metasurface antenna maintains linearly polarized radiation. Comparing with the source microstrip antenna, the linear polarization purity of chessboard arrangement metasurface antenna is improved from 9.5 GHz to 10.5 GHz. At the same time, the forward gain of the chessboard arrangement antenna increases and the radar cross section decreases. The maximum reduction is 39.2 dB. To further verify the practicability of the design and analysis, the chessboard arrangement metasurface antenna sample is fabricated and measured in microwave anechoic chamber with an Agilent 5230C network analyzer. The experimental results are in good agreement with the simulation results. This study has important reference value in the design of high gain, low RCS antenna and integrated regulation radiation and scattering of antenna.
      通信作者: 曹祥玉, 418604809@qq.com
    • 基金项目: 国家自然科学基金(批准号: 61471389, 61671464, 61701523, 61801508)和陕西省自然科学基金(批准号: 2018JM6040, 2019JQ-103, 2020JM-350)资助的课题
      Corresponding author: Cao Xiang-Yu, 418604809@qq.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471389, 61671464, 61701523, 61801508) and the Natural Science Foundation of Shanxi Province, China (Grant Nos. 2018JM6040, 2019JQ-103, 2020JM-350)
    [1]

    Challita F, Laly P, Yusuf M, Tanghe E, Joseph W, Lienard M, Gaillot D P, Degauque P 2020 IEEE Antennas Wirel. Propag. Lett. 19 297Google Scholar

    [2]

    Gaillot D P, Tanghe E, Joseph W, Laly P, Tran V C, Lienard M, Martens L 2015 IEEE Trans. Antennas Propag. 63 3219Google Scholar

    [3]

    Dimitrov K C, Lee Y, Min B W, Park J, Jeong J, Kim H J 2020 IEEE Antennas Wirel. Propag. Lett. 19 317Google Scholar

    [4]

    Hasani H, Silva J S, Capdevila S, Garcia-Vigueras M, Mosig, J R 2019 IEEE Trans. Antennas Propag. 67 5325Google Scholar

    [5]

    韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 物理学报 65 044201Google Scholar

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201Google Scholar

    [6]

    Lin D M, Fan P Y, Hasman E, Brongersma M L 2014 Science 345 28Google Scholar

    [7]

    Tao Z, Wan X, Pan B C, Cui T J 2017 Appl. Phys. Lett. 110 121901Google Scholar

    [8]

    Binion J D, Lier E, Werner D H, Hand T H, Jiang Z H, Werner P L 2020 IEEE Trans. Antennas Propag. 68 1302Google Scholar

    [9]

    Lei M, Feng N Y, Wang Q M, Hao Y N, Huang S G, Bi K 2016 J. Appl. Phys. 119 244504Google Scholar

    [10]

    Luo H, Cheng Y Z 2019 Opt. Mater. 96 109279Google Scholar

    [11]

    Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Wang M, Gao X X, Cui T J 2019 Phys. Rev. Appl. 12 024012Google Scholar

    [12]

    Zheng Q Q, Li Y F, Pang Y Q, Chen H Y, Sui S, Yang J F, Ma H, Qu S B, Zhang J Q 2017 IEEE Trans. Antennas Propag. 65 4470Google Scholar

    [13]

    Yang B W, Liu T, Guo H J, Xiao S Y, Zhou L 2019 Sci. Bull. 64 823Google Scholar

    [14]

    Li S J, Li Y B, Li H, Wang Z X, Zhang C, Guo Z X, Li R Q, Cao X Y, Cheng Qiang, Cui T J 2020 Ann. Phys.(Berlin) 6 2000020Google Scholar

    [15]

    Guo Y H, Huang Y J, Li X, Pu M B, Gao P, Jin J J, Ma X L, Luo X G 2019 Adv. Opt. Mater. 7 1900503Google Scholar

    [16]

    Li S J, Cui T J, Li Y B, Zhang C, Li R Q, Cao X Y, Guo Z X 2019 Adv. Theory Simul. 2 1900105Google Scholar

    [17]

    Yu Y Z, Xiao F J, He C, Jin R H, Zhu W R 2020 Opt. Express 28 11797Google Scholar

    [18]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304Google Scholar

    [19]

    Yu H C, Cao X Y, Gao J, Yang H H, Jidi L R, Han J F, Tong L I 2018 Opt. Mater. Express 8 3373Google Scholar

    [20]

    Lin B Q, Guo J X, Ma Y H, Wu W S, Duan X Y, Wang Z, Li Y 2018 Appl. Phys. A 124 715Google Scholar

    [21]

    Guo Z X, Cao X Y, Gao J, Yang H H, Jidi L R 2020 J. Appl. Phys. 127 115103Google Scholar

    [22]

    Ni C, Chen M S, Zhang Z X, Wu X L 2018 IEEE Trans. Antennas Propag. 17 78Google Scholar

    [23]

    兰俊祥, 曹祥玉, 高军, 韩江枫, 刘涛, 丛丽丽, 王思铭 2019 物理学报 68 034101Google Scholar

    Lan J X, Cao X Y, Gao J, Han J F, Liu T, Cong L L, Wang S M 2019 Acta Phys. Sin. 68 034101Google Scholar

    [24]

    Modi A Y, Alyahya M A, Balanis C A, Birtcher C R 2020 IEEE Trans. Antennas Propag. 68 1436Google Scholar

  • 图 1  复合型极化转换表面单元结构示意图

    Fig. 1.  Schematic of the unit of composite polarization conversion metasurface.

    图 2  复合型极化转换单元透射系数、反射系数、相位和轴比曲线 (a) 透射系数、反射系数和轴比; (b) 相位和相位差

    Fig. 2.  The transmission coefficient, reflection coefficient, phase and AR of the unit of composite polarization conversion metasurface: (a) Transmission coefficient, reflection coefficient and AR; (b) phase and phase difference.

    图 3  极化转换原理图

    Fig. 3.  The schematic of polarization conversion.

    图 4  10 Hz频点处, 复合型极化转换单元感应电流强度和电场强度分布图 (a) x极化入射波; (b) y极化入射波

    Fig. 4.  The induced current and electric field intensity distribution of composite polarization conversion metasurface: (a) x-polarized incident wave; (b) y-polarized incident wave.

    图 5  源微带天线和基于12 × 12单元排布表面的圆极化高增益天线 (a)线极化微带天线; (b)圆极化高增益天线

    Fig. 5.  The source microstrip antenna and circularly polarized high gain antenna based on 12 × 12 units arrangement matasurface (a) The linearly polarized microstrip antenna; (b) the circularly polarized high gain antenna.

    图 6  12 × 12排布表面-天线与源天线对比图 (a) 反射系数随频率变化曲线; (b) 轴比随频率变化曲线;

    Fig. 6.  Comparison between the 12 × 12 units arrangement metasurface-antenna and source antenna: (a) Reflection coefficient varies with frequency; (b) AR varies with frequency.

    图 7  线-圆极化转换现象示意图 (a) 线-左旋圆极化转换; (b) 线-右旋圆极化转换

    Fig. 7.  Schematic of the linear to circular polarization conversion phenomenon: (a) Linear to left-hand circular polarization conversion; (b) linear to right-hand circular polarization conversion.

    图 8  基于棋盘排布表面的线极化低RCS高增益天线

    Fig. 8.  Linearly polarized low RCS high gain antenna based on chessboard arrangement metasurface

    图 9  棋盘排布表面-天线与源天线对比图 (a) 反射系数随频率变化; (b) 轴比随频率变化; (c) 实际增益随θ变化; (d) 实际增益随频率变化

    Fig. 9.  Comparison between the chessboard arrangement metasurface-antenna and source antenna: (a) Reflection coefficient varies with frequency; (b) AR varies with frequency; (c) realized gain varies with θ; (d) realized gain varies with frequency.

    图 10  天线散射图 (a) 源天线; (b) 棋盘排布表面-天线

    Fig. 10.  Scattering pattern of antenna: (a) Source antenna; (b) chessboard arrangement metasurface-antenna.

    图 11  天线低RCS特性分析曲线 (a) 源天线和棋盘排布表面-天线单站RCS; (b) 单元及其镜像单元反射幅值曲线; (c) 单元及其镜像单元极化转换率曲线; (d) 单元及其镜像单元反射相位曲线

    Fig. 11.  Analysis curve of low RCS characteristics of antenna: (a) Source antenna and chessboard arrangement metasurface-antenna single station RCS; (b) reflection amplitude curve of unit and its mirror unit; (c) polarization conversion curve of unit and its mirror unit; (d) reflection phase curve of unit and its mirror unit.

    图 12  (a) 加工样品示意图; (b) 实测环境示意图

    Fig. 12.  (a) Schematic of fabricated sample; (b) measured environment.

    图 13  仿真结果与实验结果对比 (a) 源天线反射系数随频率变化; (b) 源天线实际增益随θ变化; (c) 棋盘排布表面-天线反射系数随频率变化; (d) 棋盘排布表面-天线实际增益随θ变化

    Fig. 13.  Comparison between simulation results and measurement results: (a) Reflection coefficient varies with frequency of source antenna; (b) realized gain varies with θ of source antenna; (c) reflection coefficient varies with frequency of chessboard arrangement metasurface-antenna; (d) realized gain varies with θ of chessboard arrangement metasurface-antenna.

  • [1]

    Challita F, Laly P, Yusuf M, Tanghe E, Joseph W, Lienard M, Gaillot D P, Degauque P 2020 IEEE Antennas Wirel. Propag. Lett. 19 297Google Scholar

    [2]

    Gaillot D P, Tanghe E, Joseph W, Laly P, Tran V C, Lienard M, Martens L 2015 IEEE Trans. Antennas Propag. 63 3219Google Scholar

    [3]

    Dimitrov K C, Lee Y, Min B W, Park J, Jeong J, Kim H J 2020 IEEE Antennas Wirel. Propag. Lett. 19 317Google Scholar

    [4]

    Hasani H, Silva J S, Capdevila S, Garcia-Vigueras M, Mosig, J R 2019 IEEE Trans. Antennas Propag. 67 5325Google Scholar

    [5]

    韩江枫, 曹祥玉, 高军, 李思佳, 张晨 2016 物理学报 65 044201Google Scholar

    Han J F, Cao X Y, Gao J, Li S J, Zhang C 2016 Acta Phys. Sin. 65 044201Google Scholar

    [6]

    Lin D M, Fan P Y, Hasman E, Brongersma M L 2014 Science 345 28Google Scholar

    [7]

    Tao Z, Wan X, Pan B C, Cui T J 2017 Appl. Phys. Lett. 110 121901Google Scholar

    [8]

    Binion J D, Lier E, Werner D H, Hand T H, Jiang Z H, Werner P L 2020 IEEE Trans. Antennas Propag. 68 1302Google Scholar

    [9]

    Lei M, Feng N Y, Wang Q M, Hao Y N, Huang S G, Bi K 2016 J. Appl. Phys. 119 244504Google Scholar

    [10]

    Luo H, Cheng Y Z 2019 Opt. Mater. 96 109279Google Scholar

    [11]

    Wu L W, Ma H F, Gou Y, Wu R Y, Wang Z X, Wang M, Gao X X, Cui T J 2019 Phys. Rev. Appl. 12 024012Google Scholar

    [12]

    Zheng Q Q, Li Y F, Pang Y Q, Chen H Y, Sui S, Yang J F, Ma H, Qu S B, Zhang J Q 2017 IEEE Trans. Antennas Propag. 65 4470Google Scholar

    [13]

    Yang B W, Liu T, Guo H J, Xiao S Y, Zhou L 2019 Sci. Bull. 64 823Google Scholar

    [14]

    Li S J, Li Y B, Li H, Wang Z X, Zhang C, Guo Z X, Li R Q, Cao X Y, Cheng Qiang, Cui T J 2020 Ann. Phys.(Berlin) 6 2000020Google Scholar

    [15]

    Guo Y H, Huang Y J, Li X, Pu M B, Gao P, Jin J J, Ma X L, Luo X G 2019 Adv. Opt. Mater. 7 1900503Google Scholar

    [16]

    Li S J, Cui T J, Li Y B, Zhang C, Li R Q, Cao X Y, Guo Z X 2019 Adv. Theory Simul. 2 1900105Google Scholar

    [17]

    Yu Y Z, Xiao F J, He C, Jin R H, Zhu W R 2020 Opt. Express 28 11797Google Scholar

    [18]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304Google Scholar

    [19]

    Yu H C, Cao X Y, Gao J, Yang H H, Jidi L R, Han J F, Tong L I 2018 Opt. Mater. Express 8 3373Google Scholar

    [20]

    Lin B Q, Guo J X, Ma Y H, Wu W S, Duan X Y, Wang Z, Li Y 2018 Appl. Phys. A 124 715Google Scholar

    [21]

    Guo Z X, Cao X Y, Gao J, Yang H H, Jidi L R 2020 J. Appl. Phys. 127 115103Google Scholar

    [22]

    Ni C, Chen M S, Zhang Z X, Wu X L 2018 IEEE Trans. Antennas Propag. 17 78Google Scholar

    [23]

    兰俊祥, 曹祥玉, 高军, 韩江枫, 刘涛, 丛丽丽, 王思铭 2019 物理学报 68 034101Google Scholar

    Lan J X, Cao X Y, Gao J, Han J F, Liu T, Cong L L, Wang S M 2019 Acta Phys. Sin. 68 034101Google Scholar

    [24]

    Modi A Y, Alyahya M A, Balanis C A, Birtcher C R 2020 IEEE Trans. Antennas Propag. 68 1436Google Scholar

  • [1] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面. 物理学报, 2024, 73(14): 148701. doi: 10.7498/aps.73.20240525
    [2] 李桐, 杨欢欢, 李奇, 廖嘉伟, 高坤, 季轲峰, 曹祥玉. 基于共享孔径技术的低RCS电磁超构表面天线设计. 物理学报, 2024, 73(12): 124101. doi: 10.7498/aps.73.20240142
    [3] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面. 物理学报, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [4] 范辉颖, 罗杰. 非厄密电磁超表面研究进展. 物理学报, 2022, 71(24): 247802. doi: 10.7498/aps.71.20221706
    [5] 黄帅, 吴天昊, 管春生, 丁旭旻, 吴昱明, 吴群, 唐晓斌. 波导谐振腔集成馈电型波前调控 惠更斯超表面研究. 物理学报, 2022, 71(22): 224101. doi: 10.7498/aps.71.20221284
    [6] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面. 物理学报, 2022, 71(22): 224102. doi: 10.7498/aps.71.20221256
    [7] 龙洁, 李九生. 相变材料与超表面复合结构太赫兹移相器. 物理学报, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [8] 严巍, 王纪永, 曲俞睿, 李强, 仇旻. 基于相变材料超表面的光学调控. 物理学报, 2020, 69(15): 154202. doi: 10.7498/aps.69.20200453
    [9] 刘俊群. 天线方向系数的一类计算逼近方法. 物理学报, 2020, 69(2): 028401. doi: 10.7498/aps.69.20191268
    [10] 李晓楠, 周璐, 赵国忠. 基于反射超表面产生太赫兹涡旋波束. 物理学报, 2019, 68(23): 238101. doi: 10.7498/aps.68.20191055
    [11] 平兰兰, 张新军, 杨桦, 徐国盛, 苌磊, 吴东升, 吕虹, 郑长勇, 彭金花, 金海红, 何超, 甘桂华. 螺旋波等离子体原型实验装置中天线的优化设计与功率沉积. 物理学报, 2019, 68(20): 205201. doi: 10.7498/aps.68.20182107
    [12] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [13] 郭文龙, 王光明, 李海鹏, 侯海生. 单层超薄高效圆极化超表面透镜. 物理学报, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [14] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [15] 范亚, 屈绍波, 王甲富, 张介秋, 冯明德, 张安学. 基于交叉极化旋转相位梯度超表面的宽带异常反射. 物理学报, 2015, 64(18): 184101. doi: 10.7498/aps.64.184101
    [16] 余积宝, 马华, 王甲富, 冯明德, 李勇峰, 屈绍波. 基于开口椭圆环的高效超宽带极化旋转超表面. 物理学报, 2015, 64(17): 178101. doi: 10.7498/aps.64.178101
    [17] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 圆极化波反射聚焦超表面. 物理学报, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [18] 杨勇, 孙伟强, 庄虔伟, 冯涛, 许胜勇, 解思深. 近场宽带电场耦合天线的高频结构模拟器软件仿真及性能分析. 物理学报, 2012, 61(20): 208401. doi: 10.7498/aps.61.208401
    [19] 郑奎松, 吴昌英, 万国宾, 韦高. 复合左右手技术的二元阵天线的计算及测量. 物理学报, 2011, 60(5): 054104. doi: 10.7498/aps.60.054104
    [20] 王玥, 吴群, 施卫, 贺训军, 殷景华. 基于纳观域碳纳米管的太赫兹波天线研究. 物理学报, 2009, 58(2): 919-924. doi: 10.7498/aps.58.919
计量
  • 文章访问数:  8665
  • PDF下载量:  269
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-27
  • 修回日期:  2020-08-13
  • 上网日期:  2020-11-27
  • 刊出日期:  2020-12-05

/

返回文章
返回