-
After more than 20 years of development, semiconductor spintronics has become an important and interdisciplinary research filed of spin-based physics, materials and phenomenon. Spin light emitting diode (spin LED) is one of the fascinating topics in semiconductor spintronic, and it is also one of devices in which the radiative recombination of spin-polarized carriers results in luminescence exhibiting a net circular polarization. The research of spin LED involves the studies of materials, structures, and spin based physics in spin injector and active region. The spin injection, spin transport, and spin detection are key factors for understanding the spin based physics in spin LED. Here in this paper, we comprehensively review the current research status and the latest results. Finally, we also discuss the future research trend.
-
Keywords:
- semiconductor spintronics /
- spin LED /
- spin polarization /
- spin injection
[1] Holub M, Bhattacharya P 2007 J. Phys. D: Appl. Phys. 40 R179Google Scholar
[2] Farshchi R, Ramsteiner M, Herfort J, Tahraoui A, Grahn H T 2011 Appl. Phys. Lett. 98 162508Google Scholar
[3] Asshoff P, Merz A, Kalt H, Hetterich M 2011 Appl. Phys. Lett. 98 112106Google Scholar
[4] Kim D Y 2006 J. Korean Phys. Soc. 49 S505
[5] Fiederling R, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A, Molenkamp L W 1999 Nature 402 787Google Scholar
[6] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar
[7] Taniyama T, Wada E, Itoh M, Yamaguchi M 2011 NPG Asia Mater. 3 65Google Scholar
[8] Lu Y, Truong V G, Renucci P, Tran M, Jaffrès H, Deranlot C, George J M, Lemaître A, Zheng Y, Demaille D, Binh P H, Amand T, Marie X 2008 Appl. Phys. Lett. 93 152102Google Scholar
[9] Rashba E I 2000 Phys. Rev. B 62 R16267Google Scholar
[10] Elliott R J 1954 Phys. Rev. 96 266Google Scholar
[11] Zhao F 2010 Ph. D Thesis (France: University of Toulouse)
[12] Soldat H, Li M, Gerhardt N C, Hofmann M R, Ludwig A, Ebbing A, Reuter D, Wieck A D, Stromberg F, Keune W, Wende H 2011 Appl. Phys. Lett. 99 051102Google Scholar
[13] Saikin S, Shen M, Cheng M C 2006 J. Phys. Condens. Matter 18 1535Google Scholar
[14] Young D K, Johnston-Halperin E, Awschalom D D, Ohno Y, Ohno H 2002 Appl. Phys. Lett. 80 1598Google Scholar
[15] Jiang X, Wang R, Shelby R M, Macfarlane R M, Bank S R, Harris J S, Parkin S S P 2005 Phys. Rev. Lett. 94 056601Google Scholar
[16] Zhu H J, Ramsteiner M, Kostial H, Wassermeier M, Schönherr H P, Ploog K H 2001 Phys. Rev. Lett. 87 016601Google Scholar
[17] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508Google Scholar
[18] Barate P, Liang S, Zhang T T, Frougier J, Vidal M, Renucci P, Devaux X, Xu B, Jaffrès H, George J M, Marie X, Hehn M, Mangin S, Zheng Y, Amand T, Tao B, Han X F, Wang Z, Lu Y 2014 Appl. Phys. Lett. 105 012404Google Scholar
[19] Hanbicki A T, Jonker B T, Itskos G, Kioseoglou G, Petrou A 2002 Appl. Phys. Lett. 80 1240Google Scholar
[20] Motsnyi V F, De Boeck J, Das J, Van Roy W, Borghs G, Goovaerts E, Safarov V I 2002 Appl. Phys. Lett. 81 265Google Scholar
[21] Lombez L, Braun P F, Renucci P, Gallo P, Carrère H, Binh P H, Marie X, Amand T, Gauffier J L, Urbaszek B, Arnoult A, Fontaine C, Deranlot C, Mattana R, Jaffrès H 2007 Phys. Status Solidi C 4 567Google Scholar
[22] Wu H, Zheng H, Liu J, Li G, Xu P, Zhu H, Zhang H, Zhao J 2010 Sci. China Phys. Mech. 53 649Google Scholar
[23] Barate P, Liang S H, Zhang T T, Frougier J, Xu B, Schieffer P, Vidal M, Jaffrès H, Lépine B, Tricot S, Cadiz F, Garandel T, George J M, Amand T, Devaux X, Hehn M, Mangin S, Tao B, Han X F, Wang Z G, Marie X, Lu Y, Renucci P 2017 Phys. Rev. Appl. 8 054027Google Scholar
[24] Gerhardt N C, Hövel S, Brenner C, Hofmann M R, Lo F Y, Reuter D, Wieck A D, Schuster E, Keune W, Westerholt K 2005 Appl. Phys. Lett. 87 032502Google Scholar
[25] Adelmann C, Hilton J L, Schultz B D, McKernan S, Palmstrøm C J, Lou X, Chiang H S, Crowell P A 2006 Appl. Phys. Lett. 89 112511Google Scholar
[26] Hövel S, Gerhardt N C, Hofmann M R, Lo F Y, Ludwig A, Reuter D, Wieck A D, Schuster E, Wende H, Keune W, Petracic O, Westerholt K 2008 Appl. Phys. Lett. 93 021117Google Scholar
[27] Grenet L, Jamet M, Noé P, Calvo V, Hartmann J M, Nistor L E, Rodmacq B, Auffret S, Warin P, Samson Y 2009 Appl. Phys. Lett. 94 032502Google Scholar
[28] Zarpellon J, Jaffrès H, Frougier J, Deranlot C, George J M, Mosca D H, Lemaître A, Freimuth F, Duong Q H, Renucci P, Marie X 2012 Phys. Rev. B 86 205314Google Scholar
[29] Liang S H, Zhang T T, Barate P, Frougier J, Vidal M, Renucci P, Xu B, Jaffrès H, George J M, Devaux X, Hehn M, Marie X, Mangin S, Yang H X, Hallal A, Chshiev M, Amand T, Liu H F, Liu D P, Han X F, Wang Z G, Lu Y 2014 Phys. Rev. B 90 085310Google Scholar
[30] Tao B S, Barate P, Frougier J, Renucci P, Xu B, Djeffal A, Jaffrès H, George J M, Marie X, Petit-Watelot S, Mangin S, Han X F, Wang Z G, Lu Y 2016 Appl. Phys. Lett. 108 152404Google Scholar
[31] Tao B, Barate P, Devaux X, Renucci P, Frougier J, Djeffal A, Liang S, Xu B, Hehn M, Jaffrès H, George J M, Marie X, Mangin S, Han X, Wang Z, Lu Y 2018 Nanoscale 10 10213Google Scholar
[32] Cadiz F, Djeffal A, Lagarde D, Balocchi A, Tao B, Xu B, Liang S, Stoffel M, Devaux X, Jaffres H, George J M, Hehn M, Mangin S, Carrere H, Marie X, Amand T, Han X, Wang Z, Urbaszek B, Lu Y, Renucci P 2018 Nano Lett. 18 2381Google Scholar
[33] Kyrychenko F V, Stanton C J, Abernathy C R, Pearton S J, Ren F, Thaler G, Frazier R, Buyanova I, Bergman J P, Chen W M 2005 AIP Conf. Proc. 772 1319Google Scholar
[34] Beschoten B, Johnston-Halperin E, Young D K, Poggio M, Grimaldi J E, Keller S, DenBaars S P, Mishra U K, Hu E L, Awschalom D D 2001 Phys. Rev. B 63 121202Google Scholar
[35] Krishnamurthy S, van Schilfgaarde M, Newman N 2003 Appl. Phys. Lett. 83 1761Google Scholar
[36] Buyanova I A, Izadifard M, Chen W M, Kim J, Ren F, Thaler G, Abernathy C R, Pearton S J, Pan C C, Chen G T, Chyi J I, Zavada J M 2005 AIP Conf. Proc. 772 1399Google Scholar
[37] Ham M H, Yoon S, Park Y, Bian L, Ramsteiner M, Myoung J M 2006 J. Phys. Condens. Matter 18 7703Google Scholar
[38] Banerjee D, Adari R, Sankaranarayan S, Kumar A, Ganguly S, Aldhaheri R W, Hussain M A, Balamesh A S, Saha D 2013 Appl. Phys. Lett. 103 242408Google Scholar
[39] Chen J Y, Ho C Y, Lu M L, Chu L J, Chen K C, Chu S W, Chen W, Mou C Y, Chen Y F 2014 Nano Lett. 14 3130Google Scholar
[40] Bhattacharya A, Baten Z, Frost T, Bhattacharya P 2017 IEEE Photon. Technol. Lett. 29 338Google Scholar
[41] Bhattacharya A, Baten M Z, Iorsh I, Frost T, Kavokin A, Bhattacharya P 2017 Phys. Rev. Lett. 119 067701Google Scholar
[42] Chen J Y, Wong T M, Chang C W, Dong C Y, Chen Y F 2014 Nat. Nanotechnol. 9 845Google Scholar
[43] Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X, Zhang X 2016 Nat. Nanotechnol. 11 598Google Scholar
[44] Sanchez O L, Ovchinnikov D, Misra S, Allain A, Kis A 2016 Nano Lett. 16 5792Google Scholar
-
图 6 在闪锌矿GaAs直接带隙能带中的光选择定则 (a)体材料及(b)量子阱中的电子空穴复合选择定则. 上边蓝色球代表电子, 下边的红色球代表空穴, 箭头代表自旋方向. 其中CB代表导带, HH代表重空穴带, LH代表轻空穴带, HH是三重简并态, LH是单态.
$ {\mathrm{\sigma }}^{-} $ 和$ {\mathrm{\sigma }}^{+} $ 分别代表左旋光与右旋光. 在量子阱结构中由于晶格应变和结构限制, 电子与LH态空穴的复合几率被大大抑制[1]Fig. 6. Electric dipole allowed radiative inter-band transitions and corresponding optical polarization for the cases of (a) bulk material with degenerate heavy- and light-hole bands and (b) a quantum well in which epitaxial strain and quantum confinement have lifted the heavy- and light-hole band degeneracy[1].
图 9 Gerhardt等[24]利用具有垂直磁各向异性的FeTb作为自旋注入端的自旋发光二极管 (a)结构示意图; (b)电致发光与磁场的关系, 他们在未加磁场剩余磁态下, 在90 K下得到了0.7%的圆偏振光极化率
Fig. 9. Schematic Spin LED device structure of the LED with Tb/Fe multilayer (a) reported by Gerhardt et al.[24], Circular polarization as a function of the applied magnetic field at 90 K (b), they observed PC of 0.7%
图 10 (a) 基于垂直磁各向异性Ta/CoFeB/MgO为自旋注入端的自旋发光二极管结构示意图, 虚线选定区对应的TEM照片, 其中插图为缩小后的TEM照片; (b)温度依赖的圆偏振极化率及注入电子极化率; (c)温度依赖的F因子及载流子寿命
$ \tau $ 、电子自旋弛豫时间$ {\tau }_{\mathrm{s}} $ Fig. 10. (a) Schematic device structure of Spin LED and HR-TEM image of CoFeB/MgO PMA injector; (b) temperature dependence of PC without magnetic field and with 0.4 T field. Temperature dependence of PE is calculated by PE = PC/F from the data without field; (c) temperature dependence of τS, τ, and F factor deduced from the TRPL measurements
图 12 (a), (b)基于垂直各向异性的Ta/CoFeB/MgO作为自旋注入端InGaAs/GaAs量子点spin LED 的TEM及其结构示意图; (c) InGaAs/GaAs量子点AFM图; (d)零磁场下9 K观测到了约35%电致发光圆偏振光极化率[32]
Fig. 12. Spin LED device with p-doped InAs/GaAs quantum dots and polarization resolved electroluminescence of an ensemble of quantum dots: (a) High resolution-transmission electron microscope image of the injector Ta/CoFeB/MgO/GaAs; (b) schematic structure of the spin LED device. A single layer of InAs QDs is embedded in the intrinsic region of the p-i-n junction of the LED; (c) AFM image of InAs QDs; (d) strongly polarized single dot emission at zero applied field[32].
表 1 基于面内磁各向异性自旋注入端的自旋发光二极管
Table 1. Spin LED based on spin injector with in-plane magnetic anisotropic.
自旋注入端 LED结构 PC/T 文献 时间 Fe InGaAs QW 2%/300 K Zhu等[16] 2001 Fe/(Al)GaAs GaAs QW 32%/4.5 K Hanbicki等[19] 2002 CoFe/Al2O3 GaAs bulk 21%/80 K Motsnyi等.[20] 2002 CoFe/MgO GaAs QW 52%/100 K Jiang等[15] 2005 Co/Al2O3 InAs QD 15%/1.7 K Lombez等[21] 2007 CoFeB/MgO GaAs QW 32%/100 K Lu等[8] 2008 Fe/AlOx GaAs QW 18%/80 K Wu等[22] 2010 CoFeB/MgO GaAs QW 25%/25 K Barate等[18] 2014 CoFeB/MgO GaAs QW 23%(Sputtering), 18%(MBE)/25 K Barate等[23] 2017 表 2 基于垂直磁各向异性的自旋注入端的自旋发光二极管
Table 2. Spin LED based on spin injector with out-plane magnetic anisotropic.
自旋注入端 LED结构 Pc/T 文献 时间 FeTb InGaAs QW 0.75%/90 K Gerhardt等[24] 2005 MnGa AlGaAs QW ~3%/20 K Adelmann等[25] 2006 FeTb AlGaAs QW ~3%/300 K Hövel等[26] 2008 CoPt SiGe QW ~3%/5 K Grenet等[27] 2009 CoPt GaAs QW ~2.5%/20 K Zarpellon等[28] 2012 Ta/CoFeB/MgO GaAs QW ~20%/25 K, ~8%/RT Liang等[29] 2014 MgO/CoFeB/Ta/CoFeB/MgO GaAs QW ~10%/10 K Tao等[30] 2016 Mo/CoFeB/MgO GaAs QW ~9.5%/10 K Tao等[31] 2018 Ta/CoFeB/MgO GaAs QD 35%/9 K Cadiz等[32] 2018 -
[1] Holub M, Bhattacharya P 2007 J. Phys. D: Appl. Phys. 40 R179Google Scholar
[2] Farshchi R, Ramsteiner M, Herfort J, Tahraoui A, Grahn H T 2011 Appl. Phys. Lett. 98 162508Google Scholar
[3] Asshoff P, Merz A, Kalt H, Hetterich M 2011 Appl. Phys. Lett. 98 112106Google Scholar
[4] Kim D Y 2006 J. Korean Phys. Soc. 49 S505
[5] Fiederling R, Keim M, Reuscher G, Ossau W, Schmidt G, Waag A, Molenkamp L W 1999 Nature 402 787Google Scholar
[6] Ohno Y, Young D K, Beschoten B, Matsukura F, Ohno H, Awschalom D D 1999 Nature 402 790Google Scholar
[7] Taniyama T, Wada E, Itoh M, Yamaguchi M 2011 NPG Asia Mater. 3 65Google Scholar
[8] Lu Y, Truong V G, Renucci P, Tran M, Jaffrès H, Deranlot C, George J M, Lemaître A, Zheng Y, Demaille D, Binh P H, Amand T, Marie X 2008 Appl. Phys. Lett. 93 152102Google Scholar
[9] Rashba E I 2000 Phys. Rev. B 62 R16267Google Scholar
[10] Elliott R J 1954 Phys. Rev. 96 266Google Scholar
[11] Zhao F 2010 Ph. D Thesis (France: University of Toulouse)
[12] Soldat H, Li M, Gerhardt N C, Hofmann M R, Ludwig A, Ebbing A, Reuter D, Wieck A D, Stromberg F, Keune W, Wende H 2011 Appl. Phys. Lett. 99 051102Google Scholar
[13] Saikin S, Shen M, Cheng M C 2006 J. Phys. Condens. Matter 18 1535Google Scholar
[14] Young D K, Johnston-Halperin E, Awschalom D D, Ohno Y, Ohno H 2002 Appl. Phys. Lett. 80 1598Google Scholar
[15] Jiang X, Wang R, Shelby R M, Macfarlane R M, Bank S R, Harris J S, Parkin S S P 2005 Phys. Rev. Lett. 94 056601Google Scholar
[16] Zhu H J, Ramsteiner M, Kostial H, Wassermeier M, Schönherr H P, Ploog K H 2001 Phys. Rev. Lett. 87 016601Google Scholar
[17] Ikeda S, Hayakawa J, Ashizawa Y, Lee Y M, Miura K, Hasegawa H, Tsunoda M, Matsukura F, Ohno H 2008 Appl. Phys. Lett. 93 082508Google Scholar
[18] Barate P, Liang S, Zhang T T, Frougier J, Vidal M, Renucci P, Devaux X, Xu B, Jaffrès H, George J M, Marie X, Hehn M, Mangin S, Zheng Y, Amand T, Tao B, Han X F, Wang Z, Lu Y 2014 Appl. Phys. Lett. 105 012404Google Scholar
[19] Hanbicki A T, Jonker B T, Itskos G, Kioseoglou G, Petrou A 2002 Appl. Phys. Lett. 80 1240Google Scholar
[20] Motsnyi V F, De Boeck J, Das J, Van Roy W, Borghs G, Goovaerts E, Safarov V I 2002 Appl. Phys. Lett. 81 265Google Scholar
[21] Lombez L, Braun P F, Renucci P, Gallo P, Carrère H, Binh P H, Marie X, Amand T, Gauffier J L, Urbaszek B, Arnoult A, Fontaine C, Deranlot C, Mattana R, Jaffrès H 2007 Phys. Status Solidi C 4 567Google Scholar
[22] Wu H, Zheng H, Liu J, Li G, Xu P, Zhu H, Zhang H, Zhao J 2010 Sci. China Phys. Mech. 53 649Google Scholar
[23] Barate P, Liang S H, Zhang T T, Frougier J, Xu B, Schieffer P, Vidal M, Jaffrès H, Lépine B, Tricot S, Cadiz F, Garandel T, George J M, Amand T, Devaux X, Hehn M, Mangin S, Tao B, Han X F, Wang Z G, Marie X, Lu Y, Renucci P 2017 Phys. Rev. Appl. 8 054027Google Scholar
[24] Gerhardt N C, Hövel S, Brenner C, Hofmann M R, Lo F Y, Reuter D, Wieck A D, Schuster E, Keune W, Westerholt K 2005 Appl. Phys. Lett. 87 032502Google Scholar
[25] Adelmann C, Hilton J L, Schultz B D, McKernan S, Palmstrøm C J, Lou X, Chiang H S, Crowell P A 2006 Appl. Phys. Lett. 89 112511Google Scholar
[26] Hövel S, Gerhardt N C, Hofmann M R, Lo F Y, Ludwig A, Reuter D, Wieck A D, Schuster E, Wende H, Keune W, Petracic O, Westerholt K 2008 Appl. Phys. Lett. 93 021117Google Scholar
[27] Grenet L, Jamet M, Noé P, Calvo V, Hartmann J M, Nistor L E, Rodmacq B, Auffret S, Warin P, Samson Y 2009 Appl. Phys. Lett. 94 032502Google Scholar
[28] Zarpellon J, Jaffrès H, Frougier J, Deranlot C, George J M, Mosca D H, Lemaître A, Freimuth F, Duong Q H, Renucci P, Marie X 2012 Phys. Rev. B 86 205314Google Scholar
[29] Liang S H, Zhang T T, Barate P, Frougier J, Vidal M, Renucci P, Xu B, Jaffrès H, George J M, Devaux X, Hehn M, Marie X, Mangin S, Yang H X, Hallal A, Chshiev M, Amand T, Liu H F, Liu D P, Han X F, Wang Z G, Lu Y 2014 Phys. Rev. B 90 085310Google Scholar
[30] Tao B S, Barate P, Frougier J, Renucci P, Xu B, Djeffal A, Jaffrès H, George J M, Marie X, Petit-Watelot S, Mangin S, Han X F, Wang Z G, Lu Y 2016 Appl. Phys. Lett. 108 152404Google Scholar
[31] Tao B, Barate P, Devaux X, Renucci P, Frougier J, Djeffal A, Liang S, Xu B, Hehn M, Jaffrès H, George J M, Marie X, Mangin S, Han X, Wang Z, Lu Y 2018 Nanoscale 10 10213Google Scholar
[32] Cadiz F, Djeffal A, Lagarde D, Balocchi A, Tao B, Xu B, Liang S, Stoffel M, Devaux X, Jaffres H, George J M, Hehn M, Mangin S, Carrere H, Marie X, Amand T, Han X, Wang Z, Urbaszek B, Lu Y, Renucci P 2018 Nano Lett. 18 2381Google Scholar
[33] Kyrychenko F V, Stanton C J, Abernathy C R, Pearton S J, Ren F, Thaler G, Frazier R, Buyanova I, Bergman J P, Chen W M 2005 AIP Conf. Proc. 772 1319Google Scholar
[34] Beschoten B, Johnston-Halperin E, Young D K, Poggio M, Grimaldi J E, Keller S, DenBaars S P, Mishra U K, Hu E L, Awschalom D D 2001 Phys. Rev. B 63 121202Google Scholar
[35] Krishnamurthy S, van Schilfgaarde M, Newman N 2003 Appl. Phys. Lett. 83 1761Google Scholar
[36] Buyanova I A, Izadifard M, Chen W M, Kim J, Ren F, Thaler G, Abernathy C R, Pearton S J, Pan C C, Chen G T, Chyi J I, Zavada J M 2005 AIP Conf. Proc. 772 1399Google Scholar
[37] Ham M H, Yoon S, Park Y, Bian L, Ramsteiner M, Myoung J M 2006 J. Phys. Condens. Matter 18 7703Google Scholar
[38] Banerjee D, Adari R, Sankaranarayan S, Kumar A, Ganguly S, Aldhaheri R W, Hussain M A, Balamesh A S, Saha D 2013 Appl. Phys. Lett. 103 242408Google Scholar
[39] Chen J Y, Ho C Y, Lu M L, Chu L J, Chen K C, Chu S W, Chen W, Mou C Y, Chen Y F 2014 Nano Lett. 14 3130Google Scholar
[40] Bhattacharya A, Baten Z, Frost T, Bhattacharya P 2017 IEEE Photon. Technol. Lett. 29 338Google Scholar
[41] Bhattacharya A, Baten M Z, Iorsh I, Frost T, Kavokin A, Bhattacharya P 2017 Phys. Rev. Lett. 119 067701Google Scholar
[42] Chen J Y, Wong T M, Chang C W, Dong C Y, Chen Y F 2014 Nat. Nanotechnol. 9 845Google Scholar
[43] Ye Y, Xiao J, Wang H, Ye Z, Zhu H, Zhao M, Wang Y, Zhao J, Yin X, Zhang X 2016 Nat. Nanotechnol. 11 598Google Scholar
[44] Sanchez O L, Ovchinnikov D, Misra S, Allain A, Kis A 2016 Nano Lett. 16 5792Google Scholar
计量
- 文章访问数: 12392
- PDF下载量: 580
- 被引次数: 0