搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激波冲击作用下液膜破碎的气液两相流

彭旭 李斌 王顺尧 饶国宁 陈网桦

引用本文:
Citation:

激波冲击作用下液膜破碎的气液两相流

彭旭, 李斌, 王顺尧, 饶国宁, 陈网桦

Gas-liquid two-phase flow of liquid film breaking process under shock wave

Peng Xu, Li Bin, Wang Shun-Yao, Rao Guo-Ning, Chen Wang-Hua
PDF
HTML
导出引用
  • 为了研究激波冲击作用下液膜的破碎过程, 采用计算流体力学方法对其气液两相流过程进行了三维数值模拟, 获得了激波的波系结构演变过程与液膜的变形、破碎、雾化特性, 并与实验结果进行了对比. 结果表明: 激波与液膜作用过程中存在入射、反射与透射现象, 透射激波强度与液体表面张力对液膜破碎过程有重要影响; 液膜在破碎过程中形成的雾化云团体积在前2.5 ms内迅速增长, 之后云团体积基本稳定; 在射流的作用下, 雾化云团内部形成不断扩张的三维空腔结构.
    The gas-liquid two-phase flow of liquid dispersing and breaking under the action of shock wave includes complex physical phenomena, such as turbulent mixing of gas-liquid two-phase, instability and breakage of liquid interface, and formation of internal cavity structure after atomization. In order to investigate the shock-wave-caused breaking process of the liquid film, a three-dimensional numerical simulation of the gas-liquid two-phase flow process is performed by using the computational fluid dynamics method. In the simulation, the Mach number of shock wave is 1.5 and the thickness of liquid film is 2 mm. The finite volume method is used to solve the three-dimensional Navier-Stokes equation. The volume of fluid model is applied to the gas-liquid two-phase flow. The k-ε double equation turbulence model is selected for the turbulence calculation. The evolution process of the wave system structure of the shock wave and the deformation, breakage and atomization characteristics of the liquid film are obtained, and compared with the experimental results. The results show that the incidence, reflection, and transmission phenomena occur during the interaction between the shock wave and the liquid film, and the intensity of the transmitted shock wave and the liquid surface tension have an important effect on the breaking process of the liquid film. The transmitted shock wave affects the shape of the broken cloud cluster on the left of the liquid film, while the incident shock wave and reflected shock wave affect the shape of the broken cloud cluster on the right side of the liquid film. The volume of the atomized cloud formed in the breaking process of the liquid film increases rapidly, first reaching 6.7 dm3 within 2.5 ms, then keeping stable basically. After the shock wave exits from the tube, a long narrow jet is formed. The maximum velocity reaches 519 m/s and appears in the interior of the jet, and then decreases continuously. Under the action of the jet, an expanding three-dimensional cavity structure is formed inside the atomizing cloud, and an annular vortex with negative pressure in the core area occurs in the cavity structure. Finally, the annular vortex continuously entrains the surrounding fluid in the process of forward movement, the strength of the vortex decreases and gradually dissipates in the space. This work is conducive to further understanding the interaction process of gas-liquid two-phase flow.
      通信作者: 饶国宁, raoguoning@163.com
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11802136)资助的课题
      Corresponding author: Rao Guo-Ning, raoguoning@163.com
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11802136)
    [1]

    戴剑锋, 樊学萍, 蒙波, 刘骥飞 2015 物理学报 64 094704Google Scholar

    Dai J F, Fan X P, Meng B, Liu J F 2015 Acta Phys. Sin. 64 094704Google Scholar

    [2]

    Zhang Y, Cao W G, Shu C M, Zhao M K, Yu C J, Xie Z B, Liang J H, Song Z Q, Cao X 2020 Fuel 261 116433Google Scholar

    [3]

    Batchelor G K, Wen C S 1982 J. Fluid Mech. 124 495Google Scholar

    [4]

    Whitby E R, McMurry P H 1997 Aerosol Sci. Technol. 27 673Google Scholar

    [5]

    Pilch M, Erdman C A 1987 Int. J. Multiphase Flow 13 741Google Scholar

    [6]

    Hsiang L P, Faeth G M 1995 Int. J. Multiphase Flow 21 545Google Scholar

    [7]

    Hsiang L P, Faeth G M 1992 Int. J. Multiphase Flow 18 635Google Scholar

    [8]

    Hsiang L P, Faeth G M 1993 Int. J. Multiphase Flow 19 721Google Scholar

    [9]

    Orme M 1997 Progress in Energy and Combustion Science 23 65Google Scholar

    [10]

    黄勇, 解立峰, 叶经方, 鲁长波, 安高军, 熊春华, 李永坚, 徐淳 2016 高压物理学报 30 227Google Scholar

    Huang Y, Xie L F, Ye J F, Lu C B, An G J, Xiong C H, Li Y J, Xu C 2016 Chin. J. High Press. Phys. 30 227Google Scholar

    [11]

    黄熙龙, 刘金宏, 廖深飞, 吴鋆 2018 中国科学: 物理学 力学 天文学 48 054701

    Huang X L, Liu J H, Liao S F, Wu Y 2018 Sci. China, Ser. G 48 054701

    [12]

    陆守香, 秦友花 2000 高压物理学报 14 151Google Scholar

    Lu S X, Qin Y H 2000 Chin. J. High Pressure Phys. 14 151Google Scholar

    [13]

    沙莎, 陈志华, 张庆兵 2015 物理学报 64 015201Google Scholar

    Sha S, Chen Z H, Zhang Q B 2015 Acta Phys. Sin. 64 015201Google Scholar

    [14]

    沙莎, 陈志华, 薛大文 2013 物理学报 62 144701Google Scholar

    Sha S, Chen Z H, Xue D W 2013 Acta Phys. Sin. 62 144701Google Scholar

    [15]

    Si T, Zhai Z G, Yang J M, Luo X S 2012 Phys. Fluids 24 054101Google Scholar

    [16]

    丁珏, 刘家骢 2001 兵工学报 22 481Google Scholar

    Ding Y, Liu J C 2001 Acta Arimam. 22 481Google Scholar

    [17]

    梁煜, 关奔, 翟志刚, 罗喜胜 2017 物理学报 66 064701Google Scholar

    Liang Y, Guan B, Zhai Z G, Luo X S 2017 Acta Phys. Sin. 66 064701Google Scholar

    [18]

    Faeth G M, Hsiang L P, Wu P K 1995 Int. J. Multiphase Flow 21 99Google Scholar

    [19]

    Chou W H, Hsiang L P, Faeth G M 1997 Int. J. Multiphase Flow 23 651Google Scholar

    [20]

    Batchelor G K1967 An Introduction to Fluid Dynamics (Oxford: Cambridge University Press)pp137−171

    [21]

    李斌 2012 博士学位论文(南京: 南京理工大学)

    Li B 2012 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese)

  • 图 1  激波与液膜作用系统几何结构图

    Fig. 1.  Geometry of the interaction system between shock wave and liquid film.

    图 2  计算域网格划分

    Fig. 2.  Mesh generation of the calculation domain.

    图 3  液膜破碎形态演变实验结果[21] (a) t = 0 ms; (b) t =1.5 ms; (c) t = 3 ms; (d) t = 3.5 ms

    Fig. 3.  Experiment results of liquid film breaking evolution: (a) t = 0 ms; (b) t = 1.5 ms; (c) t = 3 ms; (d) t = 3.5 ms.

    图 4  液膜破碎形态演变仿真结果 (a) t = 0 ms; (b) t = 1.5 ms; (c) t = 3 ms; (d) t = 3.5 ms

    Fig. 4.  Simulation results of liquid film breaking evolution: (a) t = 0 ms; (b) t = 1.5 ms; (c) t = 3 ms; (d) t = 3.5 ms.

    图 5  液膜抛撒距离的仿真与实验对比

    Fig. 5.  Comparison of simulation and experiment on the dispersal distance of liquid film.

    图 6  侧向视角下液膜破碎过程 (a) t = 1 ms; (b) t = 2 ms; (c) t = 3 ms; (d) t = 4 ms

    Fig. 6.  Process of liquid film breaking in side view: (a) t = 1 ms; (b) t = 2 ms; (c) t = 3 ms; (d) t = 4 ms.

    图 7  正向视角下液膜破碎过程 (a) t = 1 ms; (b) t = 2 ms; (c) t = 3 ms; (d) t = 4 ms

    Fig. 7.  Process of liquid film breaking in front view: (a) t = 1 ms; (b) t = 2 ms; (c) t = 3 ms; (d) t = 4 ms.

    图 8  液膜破碎形成的云团体积变化过程

    Fig. 8.  Process of cloud volume change caused by liquid film breaking.

    图 9  激波与液膜作用过程压力变化 (a) t = 0 ms; (b) t = 1 ms; (c) t = 2 ms; (d) t = 3 ms; (e) t = 4 ms; (f) t = 4 ms

    Fig. 9.  Pressure change during the interaction between shock wave and liquid film: (a) t = 0 ms; (b) t = 1 ms; (c) t = 2 ms; (d) t = 3 ms; (e) t = 4 ms; (f) t = 4 ms.

    图 10  不同时刻激波管中轴线上压力分布

    Fig. 10.  Pressure distribution on the central axis of shock tube at different times.

    图 11  激波与液膜作用过程速度变化 (a) t = 0 ms; (b) t = 1 ms; (c) t = 2 ms; (d) t = 3 ms; (e) t = 4 ms; (f) t = 5 ms

    Fig. 11.  Velocity change during the interaction between shock wave and liquid film: (a) t = 0 ms; (b) t = 1 ms; (c) t = 2 ms; (d) t = 3 ms; (e) t = 4 ms; (f) t = 5 ms.

    图 12  不同时刻激波管中轴线上速度分布

    Fig. 12.  Velocity distribution on the central axis of shock tube at different times.

  • [1]

    戴剑锋, 樊学萍, 蒙波, 刘骥飞 2015 物理学报 64 094704Google Scholar

    Dai J F, Fan X P, Meng B, Liu J F 2015 Acta Phys. Sin. 64 094704Google Scholar

    [2]

    Zhang Y, Cao W G, Shu C M, Zhao M K, Yu C J, Xie Z B, Liang J H, Song Z Q, Cao X 2020 Fuel 261 116433Google Scholar

    [3]

    Batchelor G K, Wen C S 1982 J. Fluid Mech. 124 495Google Scholar

    [4]

    Whitby E R, McMurry P H 1997 Aerosol Sci. Technol. 27 673Google Scholar

    [5]

    Pilch M, Erdman C A 1987 Int. J. Multiphase Flow 13 741Google Scholar

    [6]

    Hsiang L P, Faeth G M 1995 Int. J. Multiphase Flow 21 545Google Scholar

    [7]

    Hsiang L P, Faeth G M 1992 Int. J. Multiphase Flow 18 635Google Scholar

    [8]

    Hsiang L P, Faeth G M 1993 Int. J. Multiphase Flow 19 721Google Scholar

    [9]

    Orme M 1997 Progress in Energy and Combustion Science 23 65Google Scholar

    [10]

    黄勇, 解立峰, 叶经方, 鲁长波, 安高军, 熊春华, 李永坚, 徐淳 2016 高压物理学报 30 227Google Scholar

    Huang Y, Xie L F, Ye J F, Lu C B, An G J, Xiong C H, Li Y J, Xu C 2016 Chin. J. High Press. Phys. 30 227Google Scholar

    [11]

    黄熙龙, 刘金宏, 廖深飞, 吴鋆 2018 中国科学: 物理学 力学 天文学 48 054701

    Huang X L, Liu J H, Liao S F, Wu Y 2018 Sci. China, Ser. G 48 054701

    [12]

    陆守香, 秦友花 2000 高压物理学报 14 151Google Scholar

    Lu S X, Qin Y H 2000 Chin. J. High Pressure Phys. 14 151Google Scholar

    [13]

    沙莎, 陈志华, 张庆兵 2015 物理学报 64 015201Google Scholar

    Sha S, Chen Z H, Zhang Q B 2015 Acta Phys. Sin. 64 015201Google Scholar

    [14]

    沙莎, 陈志华, 薛大文 2013 物理学报 62 144701Google Scholar

    Sha S, Chen Z H, Xue D W 2013 Acta Phys. Sin. 62 144701Google Scholar

    [15]

    Si T, Zhai Z G, Yang J M, Luo X S 2012 Phys. Fluids 24 054101Google Scholar

    [16]

    丁珏, 刘家骢 2001 兵工学报 22 481Google Scholar

    Ding Y, Liu J C 2001 Acta Arimam. 22 481Google Scholar

    [17]

    梁煜, 关奔, 翟志刚, 罗喜胜 2017 物理学报 66 064701Google Scholar

    Liang Y, Guan B, Zhai Z G, Luo X S 2017 Acta Phys. Sin. 66 064701Google Scholar

    [18]

    Faeth G M, Hsiang L P, Wu P K 1995 Int. J. Multiphase Flow 21 99Google Scholar

    [19]

    Chou W H, Hsiang L P, Faeth G M 1997 Int. J. Multiphase Flow 23 651Google Scholar

    [20]

    Batchelor G K1967 An Introduction to Fluid Dynamics (Oxford: Cambridge University Press)pp137−171

    [21]

    李斌 2012 博士学位论文(南京: 南京理工大学)

    Li B 2012 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology) (in Chinese)

  • [1] 张升博, 张焕好, 张军, 毛勇建, 陈志华, 石启陈, 郑纯. 激波与轻质气柱作用过程的磁场抑制特性. 物理学报, 2024, 73(8): 084701. doi: 10.7498/aps.73.20231916
    [2] 贾雷明, 王智环, 王澍霏, 钟巍, 田宙. 二维平面激波折射的理论计算方法. 物理学报, 2023, 72(6): 064701. doi: 10.7498/aps.72.20222042
    [3] 李尚卿, 王伟民, 李玉同. 基于OpenFOAM的磁流体求解器的开发和应用. 物理学报, 2022, 71(11): 119501. doi: 10.7498/aps.71.20212432
    [4] 翟路生, 金宁德. 小管径气液两相流空隙率波传播的多尺度相关性. 物理学报, 2016, 65(1): 010501. doi: 10.7498/aps.65.010501
    [5] 陈平, 杜亚威, 薛友林. 垂直气液两相流混沌吸引子单元面积分析. 物理学报, 2016, 65(3): 034701. doi: 10.7498/aps.65.034701
    [6] 孙晓燕, 朱军芳. 部分道路关闭引起的交通激波特性研究. 物理学报, 2015, 64(11): 114502. doi: 10.7498/aps.64.114502
    [7] 易仕和, 陈植. 隔离段激波串流场特征的试验研究进展. 物理学报, 2015, 64(19): 199401. doi: 10.7498/aps.64.199401
    [8] 陈植, 易仕和, 朱杨柱, 何霖, 全鹏程. 强梯度复杂流场中的粒子动力学响应试验研究. 物理学报, 2014, 63(18): 188301. doi: 10.7498/aps.63.188301
    [9] 高忠科, 金宁德, 杨丹, 翟路生, 杜萌. 多元时间序列复杂网络流型动力学分析. 物理学报, 2012, 61(12): 120510. doi: 10.7498/aps.61.120510
    [10] 李洪伟, 周云龙, 刘旭, 孙斌. 基于随机子空间结合稳定图的气液两相流型分析. 物理学报, 2012, 61(3): 030508. doi: 10.7498/aps.61.030508
    [11] 孙斌, 王二朋, 郑永军. 气液两相流波动信号的时频谱分析研究. 物理学报, 2011, 60(1): 014701. doi: 10.7498/aps.60.014701
    [12] 王健, 李应红, 程邦勤, 苏长兵, 宋慧敏, 吴云. 等离子体气动激励控制激波的机理研究. 物理学报, 2009, 58(8): 5513-5519. doi: 10.7498/aps.58.5513
    [13] 郑桂波, 金宁德. 两相流流型多尺度熵及动力学特性分析. 物理学报, 2009, 58(7): 4485-4492. doi: 10.7498/aps.58.4485
    [14] 肖 楠, 金宁德. 基于混沌吸引子形态特性的两相流流型分类方法研究. 物理学报, 2007, 56(9): 5149-5157. doi: 10.7498/aps.56.5149
    [15] 金宁德, 董 芳, 赵 舒. 气液两相流电导波动信号复杂性测度分析及其流型表征. 物理学报, 2007, 56(2): 720-729. doi: 10.7498/aps.56.720
    [16] 吴钦宽. 一类非线性方程激波解的Sinc-Galerkin方法. 物理学报, 2006, 55(4): 1561-1564. doi: 10.7498/aps.55.1561
    [17] 吴钦宽. 一类激波问题的间接匹配解. 物理学报, 2005, 54(6): 2510-2513. doi: 10.7498/aps.54.2510
    [18] 周效锋, 陶淑芬, 刘佐权, 阚家德, 李德修. Fe73.5Cu1Nb3Si13.5B9非晶合金的激波纳米晶化速率和晶化度的对比研究. 物理学报, 2002, 51(2): 322-325. doi: 10.7498/aps.51.322
    [19] 何枫, 杨京龙, 沈孟育. 激波和剪切层相互作用下的超音速射流. 物理学报, 2002, 51(9): 1918-1922. doi: 10.7498/aps.51.1918
    [20] 张树东, 张为俊. 激光烧蚀Al靶产生的等离子体中辐射粒子的速度及激波. 物理学报, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
计量
  • 文章访问数:  6693
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-02
  • 修回日期:  2020-07-30
  • 上网日期:  2020-12-22
  • 刊出日期:  2020-12-20

/

返回文章
返回