搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全固态金属锂电池负极界面问题及解决策略

余启鹏 刘琦 王自强 李宝华

引用本文:
Citation:

全固态金属锂电池负极界面问题及解决策略

余启鹏, 刘琦, 王自强, 李宝华

Anode interface in all-solid-state lithium-metal batteries: Challenges and strategies

Yu Qi-Peng, Liu Qi, Wang Zi-Qiang, Li Bao-Hua
PDF
HTML
导出引用
  • 全固态金属锂电池有望提高当前商用锂离子电池的安全性及能量密度, 被广泛认为是下一代电池的重要研发方向. 其中的负极-电解质界面与电池性能紧密相连. 本文将该界面存在的问题划分为静态及动态两方面, 静态问题包括化学不稳定及物理接触差, 体现在电池循环前的巨大阻抗, 动态问题包括枝晶生长及孔洞形成, 体现在电池循环过程性能的快速衰退. 本文就静态及动态问题的起因及其解决策略进行分析, 并对高性能全固态金属锂电池的设计策略作出展望.
    The developing of all-solid-state lithium-metal batteries promises to improve safety and energy density. The challenges in the anode|electrolyte interface are crucial and divided into static and dynamic issues in this review. The static issues are mainly shown as the huge resistances appearing in the assembled batteries, while the dynamic issues are reflected in the rapid deterioration of cycling performance. The static issues are mainly due to the poor chemical stability and interfacial contact, while dendrite growth and void formation are contained in the dynamic issues. Solving dynamic issues on the basis of static issues can conduce to the construction of stable all-solid-state lithium-metal batteries.
      通信作者: 李宝华, libh@mail.sz.tsinghua.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51872157)、广东省珠江人才计划地方创新科研团队项目基金(批准号: 2017BT01N111)、深圳市工信局科技基金(批准号: 20170428145209110)和深圳市科创委科技计划(批准号: JCYJ20170817161753629, JCYJ20170412170911187)资助的课题
      Corresponding author: Li Bao-Hua, libh@mail.sz.tsinghua.edu.cn
    • Funds: Project supported by the National Nature Science Foundation of China (Grant No. 51872157), the Department of Science and Technology of Guangdong Province, China (Grant No. 2017BT01N111), Bureau of Industrial and Information Technology of Shenzhen, China (Grant No. 20170428145209110) and the Science and Technology Innovation Committee of Shenzhen, China (Grants Nos. JCYJ20170817161753629, JCYJ20170412170911187)
    [1]

    王朔, 周格, 禹习谦, 李泓 2017 储能科学与技术 6 810Google Scholar

    Wang S, Zhou G, Yu X Q, Li H 2017 Energ. Stor. Sci. Technol. 6 810Google Scholar

    [2]

    缪平, 姚桢, 刘庆华, 王保国 2020 储能科学与技术 9 670

    Liao P, Yao Z, Liu Q H, Wang B G 2020 Energ. Stor. Sci. Technol. 9 670

    [3]

    王其钰, 王朔, 张杰男, 郑杰允, 禹习谦, 李泓 2017 储能科学与技术 6 1008Google Scholar

    Wang Q Y, Wang S, Zhang J N, Zheng J Y, Yu X Q, Li H 2017 Energ. Stor. Sci. Technol. 6 1008Google Scholar

    [4]

    王其钰, 王朔, 周格, 张杰男, 郑杰允, 禹习谦, 李泓 2018 物理学报 67 128501Google Scholar

    Wang Q Y, Wang S, Zhou G, Zhang J N, Zheng J Y, Yu X Q, Li H 2018 Acta Phys. Sin. 67 128501Google Scholar

    [5]

    肖睿娟, 李泓, 陈立泉 2018 物理学报 67 128801Google Scholar

    Xiao R J, Li H, Chen L Q 2018 Acta Phys. Sin. 67 128801Google Scholar

    [6]

    樊亚平, 晏莉琴, 简德超, 吕桃林, 俞梦, 王振宇, 张全生, 解晶莹 2019 储能科学与技术 8 1040

    Fan Y P, Yan L Q, Jian D C, Lv T L, Yu M, Wang Z Y, Zhang Q S, Xie J Y 2019 Energ. Stor. Sci. Technol. 8 1040

    [7]

    陈晓霞, 刘凯, 王保国 2020 储能科学与技术 9 583

    Chen X X, Liu K, Wang B G 2020 Energ. Stor. Sci. Technol. 9 583

    [8]

    Li M, Lu J, Chen Z, Amine K 2018 Adv. Mater. 30 1800561Google Scholar

    [9]

    高静, 任文锋, 陈剑 2017 储能科学与技术 6 557Google Scholar

    Gao J, Ren W F, Chen J 2017 Energ. Stor. Sci. Technol. 6 557Google Scholar

    [10]

    石凯, 安德成, 贺艳兵, 李宝华, 康飞宇 2017 储能科学与技术 6 479Google Scholar

    Shi K, An D C, He Y B, Li B H, Kang F Y 2017 Energ. Stor. Sci. Technol. 6 479Google Scholar

    [11]

    张涛, 张晓平, 温兆银 2016 储能科学与技术 5 702Google Scholar

    Zhang T, Zhang X P, Wen Z Y 2016 Energ. Stor. Sci. Technol. 5 702Google Scholar

    [12]

    吴娇杨, 刘品, 胡勇胜, 李泓 2016 储能科学与技术 5 443

    Wu J Y, Liu P, Hu Y S, Li H 2016 Energ. Stor. Sci. Technol. 5 443

    [13]

    Cheng X B, Zhang R, Zhao C Z, Zhang Q 2017 Chem. Rev. 117 10403Google Scholar

    [14]

    罗飞, 褚赓, 黄杰, 孙洋, 李泓 2014 储能科学与技术 3 146Google Scholar

    Luo F, Chu G, Huang J, Song Y, Li H 2014 Energ. Stor. Sci. Technol. 3 146Google Scholar

    [15]

    李杨, 丁飞, 桑林, 钟海, 刘兴江 2016 储能科学与技术 5 615Google Scholar

    Li Y, Ding F, Sang L, Zhong H, Liu X J 2016 Energ. Stor. Sci. Technol. 5 615Google Scholar

    [16]

    孙滢智, 黄佳琦, 张学强, 张强 2017 储能科学与技术 6 464Google Scholar

    Sun Y Z, Huang J Q, Zhang X Q, Zhang Q 2017 Energ. Stor. Sci. Technol. 6 464Google Scholar

    [17]

    吴敬华, 姚霞银 2020 储能科学与技术 9 501

    Wu J H, Yao X Y 2020 Stor. Sci. Technol. 9 501

    [18]

    杨建锋, 李林艳, 吴振岳, 王开学 2019 储能科学与技术 8 829

    Yang J F, Li L Y, Wu Z Y, Wang K X 2019 Energ. Stor. Sci. Technol. 8 829

    [19]

    张永龙, 夏会玲, 林久, 陈少杰, 许晓雄 2018 储能科学与技术 7 994Google Scholar

    Zhang Y L, Xia H L, Lin J, Chen S J, Xu X X 2018 Energ. Stor. Sci. Technol. 7 994Google Scholar

    [20]

    许晓雄, 李泓 2018 储能科学与技术 7 1Google Scholar

    Xu X, Li H 2018 Energ. Stor. Sci. Technol. 7 1Google Scholar

    [21]

    吴勇民, 吴晓萌, 朱蕾, 徐碇皓, 田文生, 汤卫平 2016 储能科学与技术 5 678Google Scholar

    Wu Y M, Wu X M, Zhu L, Xu D H, Tian W S, Tang W P 2016 Energ. Stor. Sci. Technol. 5 678Google Scholar

    [22]

    夏求应, 孙硕, 徐璟, 昝峰, 岳继礼, 夏晖 2018 储能科学与技术 7 565Google Scholar

    Xia Q, Sun S, Xu J, Zan F, Yue J L, Xia H 2018 Energ. Stor. Sci. Technol. 7 565Google Scholar

    [23]

    Zhao Q, Stalin S, Zhao C Z, Archer L A 2020 Nat. Rev. Mater. 5 229Google Scholar

    [24]

    李泓 2018 储能科学与技术 7 188

    Li H 2018 Energ. Stor. Sci. Technol. 7 188

    [25]

    Schlenker R, Stepien D, Koch P, Hupfer T, Indris S, Roling B, Miss V, Fuchs A, Wilhelmi M, Ehrenberg H 2020 ACS Appl. Mater. Interfaces 12 20012Google Scholar

    [26]

    Porz L, Swamy T, Sheldon B W, Rettenwander D, Frömling T, Thaman H L, Berendts S, Uecker R, Carter W C, Chiang Y M 2017 Adv. Energy Mater. 7 1701003Google Scholar

    [27]

    Hartmann P, Leichtweiss T, Busche M R, Schneider M, Reich M, Sann J, Adelhelm P, Janek J 2013 J. Phys. Chem. C 117 21064Google Scholar

    [28]

    Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W 2017 Nano Lett. 17 565Google Scholar

    [29]

    Lee Y G, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko D S, Shiratsuchi T, Sugimoto T, Ryu S 2020 Nat. Energy 5 299Google Scholar

    [30]

    Hatzell K B, Chen X C, Cobb C L, Dasgupta N P, Dixit M B, Marbella L E, McDowell M T, Mukherjee P P, Verma A, Viswanathan V 2020 ACS Energy Lett. 5 922Google Scholar

    [31]

    Albertus P, Babinec S, Litzelman S, Newman A 2018 Nat. Energy 3 16Google Scholar

    [32]

    Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao Y C, Wei F, Mai L 2018 Joule 2 1991Google Scholar

    [33]

    张强, 姚霞银, 张洪周, 张联齐, 许晓雄 2016 储能科学与技术 5 659Google Scholar

    Zhang Q, Yao X Y, Zhang H Z, Zhang L Q, Xu X X 2016 Energ. Stor. Sci. Technol. 5 659Google Scholar

    [34]

    Xiao Y, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2010 Nat. Rev. Mater. 5 105

    [35]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [36]

    Lewis J A, Tippens J, Cortes F J Q, McDowell M T 2019 Trends in Chem. 1 845Google Scholar

    [37]

    Wang P, Qu W, Song W L, Chen H, Chen R, Fang D 2019 Adv. Funct. Mater. 29 1900950

    [38]

    Liu H, Cheng X B, Huang J Q, Yuan H, Lu Y, Yan C, Zhu G L, Xu R, Zhao C Z, Hou L P 2020 ACS Energy Lett. 5 833Google Scholar

    [39]

    黄晓, 吴林斌, 黄祯, 林久, 许晓雄 2020 储能科学与技术 9 479

    Huang X, Wu L B, Huang Z, Lin J, Xu X X 2020 Energ. Stor. Sci. Technol. 9 479

    [40]

    孙兴伟, 王龙龙, 姜丰, 马君, 周新红, 崔光磊 2019 储能科学与技术 8 1024

    Sun X W, Wang L L, Jiang F, Ma J, Zhou X H, Cui G L 2019 Energ. Stor. Sci. Technol. 8 1024

    [41]

    Wang C, Zhang H, Li J, Chai J, Dong S, Cui G 2018 J. Power Sources 397 157Google Scholar

    [42]

    Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J 2015 Solid State Ionics 278 98Google Scholar

    [43]

    Alpen U 1979 J. Solid State Chem. 29 379Google Scholar

    [44]

    Chung H, Kang B 2017 Chem. Mater. 29 8611Google Scholar

    [45]

    Wenzel S, Weber D A, Leichtweiss T, Busche M R, Sann J, Janek J 2016 Solid State Ionics 286 24Google Scholar

    [46]

    Wenzel S, Randau S, Leichtweiß T, Weber D A, Sann J, Zeier W G, Janek J 2016 Chem. Mater. 28 2400Google Scholar

    [47]

    Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J, Li J, More K L, Dudney N J, Chi M 2016 Nano Lett. 16 7030Google Scholar

    [48]

    Rettenwander D, Wagner R, Reyer A, Bonta M, Cheng L, Doeff M M, Limbeck A, Wilkening M, Amthauer G 2018 J. Phys. Chem. C 122 3780

    [49]

    Kato A, Kowada H, Deguchi M, Hotehama C, Hayashi A, Tatsumisago M 2018 Solid State Ionics 322 1Google Scholar

    [50]

    Wood K N, Steirer K X, Hafner S E, et al. 2018 Nat. Commun. 9 1Google Scholar

    [51]

    Wenzel S, Sedlmaier S J, Dietrich C, Zeier W G, Janek J 2018 Solid State Ionics 318 102Google Scholar

    [52]

    Schwöbel A, Hausbrand R, Jaegermann W 2015 Solid State Ionics 273 51Google Scholar

    [53]

    Wolfenstine J, Rangasamy E, Allen J L, Sakamoto J 2012 J. Power Sources 208 193Google Scholar

    [54]

    Zhang X, Xiang Q, Tang S, Wang A, Liu X, Luo J 2020 Nano Lett. 20 2871Google Scholar

    [55]

    Fu K K, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey S D, Dai J 2017 Sci. Adv. 3 e1601659Google Scholar

    [56]

    Eustathopoulos N, Voytovych R 2016 J. Mater. Sci. 51 425Google Scholar

    [57]

    Rangasamy E, Sahu G, Keum J K, Rondinone A J, Dudney N J, Liang C 2014 J. Mater. Chem. A 2 4111Google Scholar

    [58]

    Liu Z, Fu W, Payzant E A, Yu X, Wu Z, Dudney N J, Kiggans J, Hong K, Rondinone A J, Liang C 2013 J. Am. Chem. Soc. 135 975Google Scholar

    [59]

    Ishiguro K, Nakata Y, Matsui M, Uechi I, Takeda Y, Yamamoto O, Imanishi N 2013 J. Electrochem. Soc. 160 A1690Google Scholar

    [60]

    Ishiguro K, Nemori H, Sunahiro S, Nakata Y, Sudo R, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2014 J. Electrochem. Soc. 161 A668Google Scholar

    [61]

    Wan Z, Lei D, Yang W, Liu C, Shi K, Hao X, Shen L, Lv W, Li B, Yang Q H 2019 Adv. Funct. Mater. 29 1805301Google Scholar

    [62]

    Han X, Gong Y, Fu K K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G 2017 Nat. Mater. 16 572Google Scholar

    [63]

    El Shinawi H, Janek J 2013 J. Power Sources 225 13Google Scholar

    [64]

    Thangadurai V, Weppner W 2005 Adv. Funct. Mater. 15 107Google Scholar

    [65]

    Buschmann H, Berendts S, Mogwitz B, Janek J 2012 J. Power Sources 206 236Google Scholar

    [66]

    Cheng L, Crumlin E J, Chen W, Qiao R, Hou H, Lux S F, Zorba V, Russo R, Kostecki R, Liu Z 2014 Phys. Chem. Chem. Phys. 16 18294Google Scholar

    [67]

    Duan H, Chen W P, Fan M, Wang W P, Yu L, Tan S J, Chen X, Zhang Q, Xin S, Wan L J 2020 Angew. Chem. 59 1491Google Scholar

    [68]

    Cheng L, Liu M, Mehta A, Xin H, Lin F, Persson K, Chen G, Crumlin E J, Doeff M 2018 ACS Appl. Energy Materials 1 7244Google Scholar

    [69]

    Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X, Sun X 2019 Nano Energy 61 119Google Scholar

    [70]

    Tian H K, Xu B, Qi Y 2018 J. Power Sources 392 79Google Scholar

    [71]

    Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K, Pastel G, Lin C F, Mo Y 2017 Adv. Mater. 29 1606042Google Scholar

    [72]

    Luo W, Gong Y, Zhu Y, Fu K K, Dai J, Lacey S D, Wang C, Liu B, Han X, Mo Y 2016 J. Am. Chem. Soc. 138 12258Google Scholar

    [73]

    Hasegawa S, Imanishi N, Zhang T, Xie J, Hirano A, Takeda Y, Yamamoto O 2009 J. Power Sources 189 371Google Scholar

    [74]

    Yu Q, Han D, Lu Q, He Y B, Li S, Liu Q, Han C, Kang F, Li B 2019 ACS Appl. Mater. Interfaces 11 9911Google Scholar

    [75]

    Sakuma M, Suzuki K, Hirayama M, Kanno R 2016 Solid State Ionics 285 101Google Scholar

    [76]

    Ogawa M, Kanda R, Yoshida K, Uemura T, Harada K 2012 J. Power Sources 205 487Google Scholar

    [77]

    Nagao M, Hayashi A, Tatsumisago M 2012 Electrochem. 80 734Google Scholar

    [78]

    Lin D, Liu Y, Cui Y 2017 Nat. Nanotechnol. 12 194Google Scholar

    [79]

    Takeda Y, Yamamoto O, Imanishi N 2016 Electrochem. 84 210Google Scholar

    [80]

    张建军, 董甜甜, 杨金凤, 张敏, 崔光磊 2018 储能科学与技术 7 861Google Scholar

    Zhang J J, Dong T T, Yang J F, Zhang M, Cui G L 2018 Energ. Stor. Sci. Technol. 7 861Google Scholar

    [81]

    Dollé M, Sannier L, Beaudoin B, Trentin M, Tarascon J M 2002 Electrochem. and Solid State Lett. 5 A286Google Scholar

    [82]

    Maslyn J A, Loo W S, McEntush K D, Oh H J, Harry K J, Parkinson D Y, Balsara N P 2018 J. Phys. Chem. C 122 26797Google Scholar

    [83]

    Monroe C, Newman J 2004 J. Electrochem. Soc. 151 A880Google Scholar

    [84]

    Monroe C, Newman J 2005 J. Electrochem. Soc. 152 A396Google Scholar

    [85]

    Samsonov G V 2012 Handbook of the Physicochemical Properties of the Elements (Berlin: Springer Science & Business Media) p394

    [86]

    Schauser N S, Harry K J, Parkinson D Y, Watanabe H, Balsara N P 2014 J. Electrochem. Soc. 162 A398

    [87]

    Stone G, Mullin S, Teran A, Hallinan D, Minor A, Hexemer A, Balsara N 2012 J. Electrochem. Soc. 159 A222Google Scholar

    [88]

    Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A, Balsara N P 2014 Nat. Mater. 13 69Google Scholar

    [89]

    Harry K J, Higa K, Srinivasan V, Balsara N P 2016 J. Electrochem. Soc. 163 A2216Google Scholar

    [90]

    Golozar M, Hovington P, Paolella A, Bessette S P, Lagacé M, Bouchard P, Demers H, Gauvin R, Zaghib K 2018 Nano Lett. 18 7583Google Scholar

    [91]

    Brissot C, Rosso M, Chazalviel J N, Lascaud S 1999 J. Power Sources 81 925

    [92]

    Kerman K, Luntz A, Viswanathan V, Chiang Y M, Chen Z 2017 J. Electrochem. Soc. 164 A1731Google Scholar

    [93]

    Janek J, Zeier W G 2016 Nature Energy 1 1

    [94]

    周洪, 魏凤, 吴永庆 2020 储能科学与技术 9 1001

    Zhou H, Wei F, Wu Y Q 2020 Energ. Stor. Sci. Technol. 9 1001

    [95]

    Garcia Mendez R, Mizuno F, Zhang R, Arthur T S, Sakamoto J 2017 Electrochim. Acta 237 144Google Scholar

    [96]

    Han F, Yue J, Zhu X, Wang C 2018 Adv. Energy Mater. 8 1703644Google Scholar

    [97]

    Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S 2013 Phys. Chem. Chem. Phys. 15 18600Google Scholar

    [98]

    Aguesse F, Manalastas W, Buannic L, Lopez del Amo J M, Singh G, Llordés A, Kilner J 2017 ACS Appl. Mater. Interfaces 9 3808Google Scholar

    [99]

    Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M 2015 ACS Appl. Mater. Interfaces 7 2073Google Scholar

    [100]

    Ren Y, Shen Y, Lin Y, Nan C W 2015 Electrochem. Commun. 57 27Google Scholar

    [101]

    Cheng E J, Sharafi A, Sakamoto J 2017 Electrochim. Acta 223 85Google Scholar

    [102]

    Sharafi A, Meyer H M, Nanda J, Wolfenstine J, Sakamoto J 2016 J. Power Sources 302 135Google Scholar

    [103]

    Swamy T, Park R, Sheldon B W, Rettenwander D, Porz L, Berendts S, Uecker R, Carter W C, Chiang Y M 2018 J. Electrochem. Soc. 165 A3648Google Scholar

    [104]

    Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G 2015 Nat. Commun. 6 1

    [105]

    Choudhury S, Archer L A 2016 Adv. Electron. Mater. 2 1500246Google Scholar

    [106]

    Han F, Westover A S, Yue J, Fan X, Wang F, Chi M, Leonard D N, Dudney N J, Wang H, Wang C 2019 Nat. Energy 4 187Google Scholar

    [107]

    Ahmad Z, Viswanathan V 2017 Phys. Rev. Lett. 119 056003Google Scholar

    [108]

    Raj R, Wolfenstine J 2017 J. Power Sources 343 119Google Scholar

    [109]

    Manalastas W, Rikarte J, Chater R J, Brugge R, Aguadero A, Buannic L, Llordés A, Aguesse F, Kilner J 2019 J. Power Sources 412 287Google Scholar

    [110]

    Wang C, Gong Y, Dai J, Zhang L, Xie H, Pastel G, Liu B, Wachsman E, Wang H, Hu L 2017 J. Am. Chem. Soc. 139 14257Google Scholar

    [111]

    Seitzman N, Guthrey H, Sulas D B, Platt H A, Al Jassim M, Pylypenko S 2018 J. Electrochem. Soc. 165 A3732Google Scholar

    [112]

    Marbella L E, Zekoll S, Kasemchainan J, Emge S P, Bruce P G, Grey C P 2019 Chem. Mater. 31 2762Google Scholar

    [113]

    Schmidt R D, Sakamoto J 2016 J. Power Sources 324 126Google Scholar

    [114]

    Kim S, Jung C, Kim H, Thomas Alyea K E, Yoon G, Kim B, Badding M E, Song Z, Chang J, Kim J, Im D, Kang K 2020 Adv. Energy Mater. 10 1903993Google Scholar

    [115]

    Kazyak E, Garcia Mendez R, LePage W S, Sharafi A, Davis A L, Sanchez A J, Chen K H, Haslam C, Sakamoto J, Dasgupta N P 2020 Matter 2 1025Google Scholar

    [116]

    Koshikawa H, Matsuda S, Kamiya K, Miyayama M, Kubo Y, Uosaki K, Hashimoto K, Nakanishi S 2018 J. Power Sources 376 147Google Scholar

    [117]

    Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105Google Scholar

    [118]

    Yu S, Schmidt R D, Garcia Mendez R, Herbert E, Dudney N J, Wolfenstine J B, Sakamoto J, Siegel D J 2016 Chem. Mater. 28 197Google Scholar

    [119]

    Iriyama Y, Kako T, Yada C, Abe T, Ogumi Z 2005 Solid State Ionics 176 2371Google Scholar

    [120]

    Sharafi A, Kazyak E, Davis A L, Yu S, Thompson T, Siegel D J, Dasgupta N P, Sakamoto J 2017 Chem. Mater. 29 7961Google Scholar

    [121]

    Chen Y T, Jena A, Pang W K, Peterson V K, Sheu H S, Chang H, Liu R S 2017 J. Phys. Chem. C 121 15565Google Scholar

    [122]

    Han F, Zhu Y, He X, Mo Y, Wang C 2016 Adv. Energy Mater. 6 1501590Google Scholar

    [123]

    Doyle M, Fuller T F, Newman J 1994 Electrochim. Acta 39 2073Google Scholar

    [124]

    Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J 2010 J. Power Sources 195 6847Google Scholar

    [125]

    Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J 2010 J. Electrochem. Soc. 157 A1092Google Scholar

    [126]

    Zhang X, Wang S, Xue C, Xin C, Lin Y, Shen Y, Li L, Nan C W 2019 Adv. Mater. 31 e1806082Google Scholar

    [127]

    Frenck L, Maslyn J A, Loo W S, Parkinson D Y, Balsara N P 2019 ACS Appl. Mater. Interfaces 11 47878Google Scholar

    [128]

    Fu J, Yu P, Zhang N, Ren G, Zheng S, Huang W, Long X, Li H, Liu X 2019 Energy & Environ. Sci. 12 1404

    [129]

    Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H 2018 ACS Energy Lett. 3 1212Google Scholar

    [130]

    Song Y, Yang L, Zhao W, Wang Z, Zhao Y, Wang Z, Zhao Q, Liu H, Pan F 2019 Adv. Energy Mater. 9 1900671Google Scholar

    [131]

    Maslyn J A, Frenck L, Loo W S, Parkinson D Y, Balsara N P 2019 ACS Appl. Energy Mater. 2 8197Google Scholar

    [132]

    Hiratani M, Miyauchi K, Kudo T 1988 Solid State Ionics 28 1406

    [133]

    Okita K, Ikeda K i, Sano H, Iriyama Y, Sakaebe H 2011 J. Power Sources 196 2135Google Scholar

    [134]

    Krauskopf T, Mogwitz B, Rosenbach C, Zeier W G, Janek J 2019 Adv. Energy Mater. 9 1902568Google Scholar

    [135]

    Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough J B 2016 J. Am. Chem. Soc. 138 9385Google Scholar

    [136]

    Mai W, Yu Q, Han C, Kang F, Li B 2020 Adv. Funct. Mater. 190991 2

    [137]

    Liu Q, Zhou D, Shanmukaraj D, Li P, Kang F, Li B, Armand M, Wang G 2020 ACS Energy Lett. 5 1456Google Scholar

    [138]

    Li Q, Yi T, Wang X, Pan H, Quan B, Liang T, Guo X, Yu X, Wang H, Huang X 2019 Nano Energy 63 103895Google Scholar

    [139]

    Xu S, McOwen D W, Wang C, Zhang L, Luo W, Chen C, Li Y, Gong Y, Dai J, Kuang Y 2018 Nano Lett. 18 3926Google Scholar

    [140]

    Liu B, Zhang L, Xu S, McOwen D W, Gong Y, Yang C, Pastel G R, Xie H, Fu K, Dai J 2018 Energy Stor. Mater. 14 376Google Scholar

    [141]

    Chen Y, Wang Z, Li X, Yao X, Wang C, Li Y, Xue W, Yu D, Kim S Y, Yang F 2020 Nature 578 251Google Scholar

    [142]

    Herring C 1950 J. Appl. Phys. 21 437Google Scholar

    [143]

    Frost H J, Ashby M F 1982 Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Oxford: Pergamon press) p11

    [144]

    Sun J, He L, Lo Y C, Xu T, Bi H, Sun L, Zhang Z, Mao S X, Li J 2014 Nat. Mater. 13 1007Google Scholar

    [145]

    Tu K N 2007 Solder Joint Technology (Vol. 117) (Berlin: Springer) pp153−181

    [146]

    Tian L, Li J, Sun J, Ma E, Shan Z W 2013 Sci. Rep. 3 2113Google Scholar

    [147]

    Mali M, Roos J, Sonderegger M, Brinkmann D, Heitjans P 1988 J. of Phys. F: Metal Phys. 18 403Google Scholar

    [148]

    He Y, Lu C, Liu S, Zheng W, Luo J 2019 Adv. Energy Mater. 9 1901810Google Scholar

    [149]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K 2011 Nat. Mater. 10 682Google Scholar

  • 图 1  全固态金属锂电池中金属锂负极-固态电解质界面的静态问题及动态问题示意图[25-28]

    Fig. 1.  Schema of static and dynamic challenges of anode|electrolyte interface in all-solid-state lithium-metal batteries[25-28].

    图 2  石榴石型LLZO固态电解质-金属锂界面的扫描电子显微镜(SEM)图像[54]

    Fig. 2.  Scanning electron microscope (SEM) image of cross-section garnet-type Li7La3Zr2O12 (LLZO)|lithium metal interface[54].

    图 3  NH4F处理表面污染物转化为LiF包覆层示意图[67]

    Fig. 3.  Schematic illustration showing the conversion from contaminated Li6.4La3Zr1.4Ta0.6O12 (LLZTO) to LiF-coated LLZTO by NH4F treatment, and the surface stability against air exposure and hostless evolution of Li metal[67].

    图 4  金属锂负极-固态电解质界面表征的研究历史[30]

    Fig. 4.  Timeline of imaging and characterization of Li-metal anode|solid electrolyte interfaces[30].

    图 5  三种不同金属锂不规则沉积 空隙型的 (a) X射线断层扫描图, (b) 三维重构图, (c)生长机理示意图; 球状型的 (d) X射线断层扫描图, (e) 三维重构图, (f) 生长机理示意图; 非球型的 (g) X射线断层扫描图, (h) 三维重构图, (i) 生长机理示意图[82]

    Fig. 5.  Three different irregular deposition of lithium metal: (a) X-ray tomography, (b) three-dimensional reconstruction, (c) schematic diagram of growth mechanism of void type; (d) X-ray tomography, (e) three-dimensional reconstruction, (f) schematic diagram of growth mechanism of globule type; (g) X-ray tomography, (h) three-dimensional reconstruction, (i) schematic diagram of growth mechanism of protruding nonglobular type[82].

    图 6  不同阶段锂枝晶生长的局部电流密度分布图 (a) 0−8.27 C/cm2; (b) 8.27−6.53 C/cm2; (c) 16.53−35.82 C/cm2; (d) 35.82−54.72 C/cm2[89]

    Fig. 6.  Mapping of local current density for different stages during the growth of lithium globule: (a) 0−8.27 C/cm2; (b) 8.27−16.53 C/cm2; (c) 16.53−35.82 C/cm2; (d) 35.82−54.72 C/cm2[89].

    图 7  (a) 金属锂负极边缘上针状枝晶的SEM图; (b) 聚焦离子束(FIB)打磨后针状枝晶的SEM图; (c) (d) 纳米操纵器推动针状锂枝晶后弯折的SEM图; (e) (f) 纳米操纵器在金属锂表面刮擦的SEM图[90]

    Fig. 7.  SEM images showing (a) dendrite on the edge of the anode; (b) milled dendrite using focused ion beam (FIB) showing hollow morphology; (c) the nanomanipulator shown by red circle before scratching the dendrite; (d) the nanomanipulator after scratching the dendrite showing the bent in the nanomanipulator; (e) the nanomanipulator before scratching metallic Li sheet; and (f) the nanomanipulator after scratching metallic Li sheet showing the accumulation of Li on the tip.

    图 8  (a)锂枝晶在固态电解质中的简化示意图, 其中枝晶顶部的箭头表示来自金属锂的施加压力, 沿着侧面的箭头表示由于沿该界面的摩擦而产生的剪切力; (b) 锂沉积过电势及裂纹拓展应力与缺陷尺寸的关系[26]

    Fig. 8.  (a) Simplified schematic of a Li filament in a solid electrolyte matrix; (b) Inverse square root dependence of Li plating overpotential and crack-extension stress (σ0, max) on defect size. Curves for glassy LPS and LLZTO are shown[26].

    图 9  金属锂在含有缺陷的LLZO表面沉积行为示意图[114]

    Fig. 9.  Schematic descriptions of uneven lithium-ion flux induced by surface morphological fluctuations and the corresponding inhomogeneous lithium deposition[114].

    图 10  金属锂在含有金界面层的LLZO表面沉积行为示意图[114]

    Fig. 10.  Schematic description of lithium redistribution through the gold layer and lithium nucleation. [114].

    图 11  (a) LLCZN及 (b) LLCZN@LAO的金属锂对称电池的极化曲线; (c) 稳态电流与施加电压的关系图(插图: 电流与施加施加电压的时间关系图); (d)锂枝晶在电解质内部生长及抑制枝晶生长的示意图[130]

    Fig. 11.  Lithium platting/stripping performance of (a) LLCZN and (b) LLCZN@LAO in Li symmetric cells at different current densities; (c) values of Is for LLCZN and LLCZN@LAO with different applied external voltages; chronoamperometry results of LLCZN and LLCZN@LAO with an applied external voltage of 1 V (inset); (d) schematic illustrations of Li formation within LLCZN and how to suppress it through surface coating [130].

    图 12  (a)“电化学过滤”法示意图; (b)“电化学过滤”法对应的电化学曲线; (c) 处理前的X射线断层扫描图; (d)和(e)“电化学过滤”法处理后的X射线断层扫描图[131]

    Fig. 12.  (a) Schematic of the electrochemical filtering treatment; (b) Current density and voltage of one electrochemical filtering treatment over time; (c) Slice through a reconstructed volume of a symmetric cell after 14 conditioning cycles. No inhomogeneities were observed at the interfaces, (d) (e) Slices through a reconstructed volume of the symmetric cell in (c) after an electrochemical filtering treatment [131].

    图 13  基于LAGP高性能金属锂电池中自愈合界面的设计与构造: Li |LAGP| LMO电池在不同界面修饰层作用下循环过程中的界面演变行为示意图 (a) 无界面修饰层; (b) 凝胶电解质修饰层; (c) 自愈合界面修饰层[135]

    Fig. 13.  Design and fabrication of the SHE Janus interfaces for high-performance LAGP-based lithium metal batteries. (a)−(c) Schematic illustrations of the interfacial evolution in Li|LAGP|LMO batteries without interface layers and with GPEs and SHEs as Janus interface layers during cycling, respectively[135].

    图 14  (a)原始金属锂电极和石榴石型固态电解质在剥离/沉积过程相互作用示意图; (b)金属锂-PDMS复合电极和石榴石型固态电解质在剥离/沉积过程相互作用示意图[54]

    Fig. 14.  Schematic illustration of the (a) pristine lithium foil with garnet-type electrolyte; (b) stress self-adapted interface by using compressible PDMS/Li metal anode[54].

    图 15  (a)基于MIEC三维管状集流体的金属锂负极结构示意图; (b)金属锂在碳基小管内以单晶形式沉积的TEM图; (c)碳基小管在沉积金属锂前后的高分辨TEM图[141]

    Fig. 15.  (a)Schematic process of creep-enabled Li deposition/stripping in an MIEC tubular matrix, where Coble creep dominates via interfacial diffusion along the MIEC/Libcc incoherent interface; (b) TEM images of the Li metal deposition inside the carbon tubule as a single crystal; (c) high-resolution TEM imaging of a tubule before plating [141].

    表 1  不同界面问题解决策略的优劣比较

    Table 1.  Comparison of advantages and disadvantages of different interfacial strategies.

    界面
    问题
    解决策略优点不足参考文献
    静态
    问题
    加热易实现、对聚合物电解质效果显著对疏锂的无机固态电解质无效、
    无法解决化学稳定性差问题
    [61,62]
    加压易实现、效果显著仅在装配前加压不能解决动态
    问题、电池运行加压实用性低、
    无法解决化学稳定性差问题
    [5760]
    掺杂对无机固态电解质有效、能一定
    程度解决化学稳定性差问题
    易降低离子电导率[6365]
    电解质纯化有望促使金属锂均匀沉积无法避免杂质再次形成[66,6870]
    NH4F预处理避免污染物再次形成、
    有望抑制锂枝晶
    需防范HF污染[67]
    界面修饰能同时解决两种静态问题薄膜制备工艺成本高、
    生产效率较低
    [28,55,62,7174]
    锂合金负极能同时解决两种静态问题、
    对动态问题也有帮助
    降低负极比能量密度[7577,132134]
    动态
    问题
    聚合物电解质改性综合提高固态电解质的
    离子电导率、机械强度等
    影响因素较多且效果相对有限[86,124127]
    引入反应界面层结合界面层与锂合金负极的优点薄膜制备工艺成本高、生产效率低[28,55,62,71,72,
    114,128,129]
    晶粒表面包覆降低固态电解质电子电
    导率抑制枝晶生长
    热处理时需要避免元素扩散[130]
    金属锂负极纯化有效避免金属锂的不均匀沉积及剥离亟需开发大规模、低成本的生产方法[131]
    聚合物复合界面有效解决静态问题及消除
    体积变化所带来的应力
    引入额外的界面阻碍电荷转移、
    制备超薄的聚合物界面层难度大
    [135,136]
    弹性集流体可逆地储存及释放应力降低金属负极的电子电导率[54]
    三维结构为金属锂沉积预留体积大规模制备具挑战[138141]
    下载: 导出CSV
  • [1]

    王朔, 周格, 禹习谦, 李泓 2017 储能科学与技术 6 810Google Scholar

    Wang S, Zhou G, Yu X Q, Li H 2017 Energ. Stor. Sci. Technol. 6 810Google Scholar

    [2]

    缪平, 姚桢, 刘庆华, 王保国 2020 储能科学与技术 9 670

    Liao P, Yao Z, Liu Q H, Wang B G 2020 Energ. Stor. Sci. Technol. 9 670

    [3]

    王其钰, 王朔, 张杰男, 郑杰允, 禹习谦, 李泓 2017 储能科学与技术 6 1008Google Scholar

    Wang Q Y, Wang S, Zhang J N, Zheng J Y, Yu X Q, Li H 2017 Energ. Stor. Sci. Technol. 6 1008Google Scholar

    [4]

    王其钰, 王朔, 周格, 张杰男, 郑杰允, 禹习谦, 李泓 2018 物理学报 67 128501Google Scholar

    Wang Q Y, Wang S, Zhou G, Zhang J N, Zheng J Y, Yu X Q, Li H 2018 Acta Phys. Sin. 67 128501Google Scholar

    [5]

    肖睿娟, 李泓, 陈立泉 2018 物理学报 67 128801Google Scholar

    Xiao R J, Li H, Chen L Q 2018 Acta Phys. Sin. 67 128801Google Scholar

    [6]

    樊亚平, 晏莉琴, 简德超, 吕桃林, 俞梦, 王振宇, 张全生, 解晶莹 2019 储能科学与技术 8 1040

    Fan Y P, Yan L Q, Jian D C, Lv T L, Yu M, Wang Z Y, Zhang Q S, Xie J Y 2019 Energ. Stor. Sci. Technol. 8 1040

    [7]

    陈晓霞, 刘凯, 王保国 2020 储能科学与技术 9 583

    Chen X X, Liu K, Wang B G 2020 Energ. Stor. Sci. Technol. 9 583

    [8]

    Li M, Lu J, Chen Z, Amine K 2018 Adv. Mater. 30 1800561Google Scholar

    [9]

    高静, 任文锋, 陈剑 2017 储能科学与技术 6 557Google Scholar

    Gao J, Ren W F, Chen J 2017 Energ. Stor. Sci. Technol. 6 557Google Scholar

    [10]

    石凯, 安德成, 贺艳兵, 李宝华, 康飞宇 2017 储能科学与技术 6 479Google Scholar

    Shi K, An D C, He Y B, Li B H, Kang F Y 2017 Energ. Stor. Sci. Technol. 6 479Google Scholar

    [11]

    张涛, 张晓平, 温兆银 2016 储能科学与技术 5 702Google Scholar

    Zhang T, Zhang X P, Wen Z Y 2016 Energ. Stor. Sci. Technol. 5 702Google Scholar

    [12]

    吴娇杨, 刘品, 胡勇胜, 李泓 2016 储能科学与技术 5 443

    Wu J Y, Liu P, Hu Y S, Li H 2016 Energ. Stor. Sci. Technol. 5 443

    [13]

    Cheng X B, Zhang R, Zhao C Z, Zhang Q 2017 Chem. Rev. 117 10403Google Scholar

    [14]

    罗飞, 褚赓, 黄杰, 孙洋, 李泓 2014 储能科学与技术 3 146Google Scholar

    Luo F, Chu G, Huang J, Song Y, Li H 2014 Energ. Stor. Sci. Technol. 3 146Google Scholar

    [15]

    李杨, 丁飞, 桑林, 钟海, 刘兴江 2016 储能科学与技术 5 615Google Scholar

    Li Y, Ding F, Sang L, Zhong H, Liu X J 2016 Energ. Stor. Sci. Technol. 5 615Google Scholar

    [16]

    孙滢智, 黄佳琦, 张学强, 张强 2017 储能科学与技术 6 464Google Scholar

    Sun Y Z, Huang J Q, Zhang X Q, Zhang Q 2017 Energ. Stor. Sci. Technol. 6 464Google Scholar

    [17]

    吴敬华, 姚霞银 2020 储能科学与技术 9 501

    Wu J H, Yao X Y 2020 Stor. Sci. Technol. 9 501

    [18]

    杨建锋, 李林艳, 吴振岳, 王开学 2019 储能科学与技术 8 829

    Yang J F, Li L Y, Wu Z Y, Wang K X 2019 Energ. Stor. Sci. Technol. 8 829

    [19]

    张永龙, 夏会玲, 林久, 陈少杰, 许晓雄 2018 储能科学与技术 7 994Google Scholar

    Zhang Y L, Xia H L, Lin J, Chen S J, Xu X X 2018 Energ. Stor. Sci. Technol. 7 994Google Scholar

    [20]

    许晓雄, 李泓 2018 储能科学与技术 7 1Google Scholar

    Xu X, Li H 2018 Energ. Stor. Sci. Technol. 7 1Google Scholar

    [21]

    吴勇民, 吴晓萌, 朱蕾, 徐碇皓, 田文生, 汤卫平 2016 储能科学与技术 5 678Google Scholar

    Wu Y M, Wu X M, Zhu L, Xu D H, Tian W S, Tang W P 2016 Energ. Stor. Sci. Technol. 5 678Google Scholar

    [22]

    夏求应, 孙硕, 徐璟, 昝峰, 岳继礼, 夏晖 2018 储能科学与技术 7 565Google Scholar

    Xia Q, Sun S, Xu J, Zan F, Yue J L, Xia H 2018 Energ. Stor. Sci. Technol. 7 565Google Scholar

    [23]

    Zhao Q, Stalin S, Zhao C Z, Archer L A 2020 Nat. Rev. Mater. 5 229Google Scholar

    [24]

    李泓 2018 储能科学与技术 7 188

    Li H 2018 Energ. Stor. Sci. Technol. 7 188

    [25]

    Schlenker R, Stepien D, Koch P, Hupfer T, Indris S, Roling B, Miss V, Fuchs A, Wilhelmi M, Ehrenberg H 2020 ACS Appl. Mater. Interfaces 12 20012Google Scholar

    [26]

    Porz L, Swamy T, Sheldon B W, Rettenwander D, Frömling T, Thaman H L, Berendts S, Uecker R, Carter W C, Chiang Y M 2017 Adv. Energy Mater. 7 1701003Google Scholar

    [27]

    Hartmann P, Leichtweiss T, Busche M R, Schneider M, Reich M, Sann J, Adelhelm P, Janek J 2013 J. Phys. Chem. C 117 21064Google Scholar

    [28]

    Wang C, Gong Y, Liu B, Fu K, Yao Y, Hitz E, Li Y, Dai J, Xu S, Luo W 2017 Nano Lett. 17 565Google Scholar

    [29]

    Lee Y G, Fujiki S, Jung C, Suzuki N, Yashiro N, Omoda R, Ko D S, Shiratsuchi T, Sugimoto T, Ryu S 2020 Nat. Energy 5 299Google Scholar

    [30]

    Hatzell K B, Chen X C, Cobb C L, Dasgupta N P, Dixit M B, Marbella L E, McDowell M T, Mukherjee P P, Verma A, Viswanathan V 2020 ACS Energy Lett. 5 922Google Scholar

    [31]

    Albertus P, Babinec S, Litzelman S, Newman A 2018 Nat. Energy 3 16Google Scholar

    [32]

    Xu L, Tang S, Cheng Y, Wang K, Liang J, Liu C, Cao Y C, Wei F, Mai L 2018 Joule 2 1991Google Scholar

    [33]

    张强, 姚霞银, 张洪周, 张联齐, 许晓雄 2016 储能科学与技术 5 659Google Scholar

    Zhang Q, Yao X Y, Zhang H Z, Zhang L Q, Xu X X 2016 Energ. Stor. Sci. Technol. 5 659Google Scholar

    [34]

    Xiao Y, Wang Y, Bo S H, Kim J C, Miara L J, Ceder G 2010 Nat. Rev. Mater. 5 105

    [35]

    Famprikis T, Canepa P, Dawson J A, Islam M S, Masquelier C 2019 Nat. Mater. 18 1278Google Scholar

    [36]

    Lewis J A, Tippens J, Cortes F J Q, McDowell M T 2019 Trends in Chem. 1 845Google Scholar

    [37]

    Wang P, Qu W, Song W L, Chen H, Chen R, Fang D 2019 Adv. Funct. Mater. 29 1900950

    [38]

    Liu H, Cheng X B, Huang J Q, Yuan H, Lu Y, Yan C, Zhu G L, Xu R, Zhao C Z, Hou L P 2020 ACS Energy Lett. 5 833Google Scholar

    [39]

    黄晓, 吴林斌, 黄祯, 林久, 许晓雄 2020 储能科学与技术 9 479

    Huang X, Wu L B, Huang Z, Lin J, Xu X X 2020 Energ. Stor. Sci. Technol. 9 479

    [40]

    孙兴伟, 王龙龙, 姜丰, 马君, 周新红, 崔光磊 2019 储能科学与技术 8 1024

    Sun X W, Wang L L, Jiang F, Ma J, Zhou X H, Cui G L 2019 Energ. Stor. Sci. Technol. 8 1024

    [41]

    Wang C, Zhang H, Li J, Chai J, Dong S, Cui G 2018 J. Power Sources 397 157Google Scholar

    [42]

    Wenzel S, Leichtweiss T, Krüger D, Sann J, Janek J 2015 Solid State Ionics 278 98Google Scholar

    [43]

    Alpen U 1979 J. Solid State Chem. 29 379Google Scholar

    [44]

    Chung H, Kang B 2017 Chem. Mater. 29 8611Google Scholar

    [45]

    Wenzel S, Weber D A, Leichtweiss T, Busche M R, Sann J, Janek J 2016 Solid State Ionics 286 24Google Scholar

    [46]

    Wenzel S, Randau S, Leichtweiß T, Weber D A, Sann J, Zeier W G, Janek J 2016 Chem. Mater. 28 2400Google Scholar

    [47]

    Ma C, Cheng Y, Yin K, Luo J, Sharafi A, Sakamoto J, Li J, More K L, Dudney N J, Chi M 2016 Nano Lett. 16 7030Google Scholar

    [48]

    Rettenwander D, Wagner R, Reyer A, Bonta M, Cheng L, Doeff M M, Limbeck A, Wilkening M, Amthauer G 2018 J. Phys. Chem. C 122 3780

    [49]

    Kato A, Kowada H, Deguchi M, Hotehama C, Hayashi A, Tatsumisago M 2018 Solid State Ionics 322 1Google Scholar

    [50]

    Wood K N, Steirer K X, Hafner S E, et al. 2018 Nat. Commun. 9 1Google Scholar

    [51]

    Wenzel S, Sedlmaier S J, Dietrich C, Zeier W G, Janek J 2018 Solid State Ionics 318 102Google Scholar

    [52]

    Schwöbel A, Hausbrand R, Jaegermann W 2015 Solid State Ionics 273 51Google Scholar

    [53]

    Wolfenstine J, Rangasamy E, Allen J L, Sakamoto J 2012 J. Power Sources 208 193Google Scholar

    [54]

    Zhang X, Xiang Q, Tang S, Wang A, Liu X, Luo J 2020 Nano Lett. 20 2871Google Scholar

    [55]

    Fu K K, Gong Y, Liu B, Zhu Y, Xu S, Yao Y, Luo W, Wang C, Lacey S D, Dai J 2017 Sci. Adv. 3 e1601659Google Scholar

    [56]

    Eustathopoulos N, Voytovych R 2016 J. Mater. Sci. 51 425Google Scholar

    [57]

    Rangasamy E, Sahu G, Keum J K, Rondinone A J, Dudney N J, Liang C 2014 J. Mater. Chem. A 2 4111Google Scholar

    [58]

    Liu Z, Fu W, Payzant E A, Yu X, Wu Z, Dudney N J, Kiggans J, Hong K, Rondinone A J, Liang C 2013 J. Am. Chem. Soc. 135 975Google Scholar

    [59]

    Ishiguro K, Nakata Y, Matsui M, Uechi I, Takeda Y, Yamamoto O, Imanishi N 2013 J. Electrochem. Soc. 160 A1690Google Scholar

    [60]

    Ishiguro K, Nemori H, Sunahiro S, Nakata Y, Sudo R, Matsui M, Takeda Y, Yamamoto O, Imanishi N 2014 J. Electrochem. Soc. 161 A668Google Scholar

    [61]

    Wan Z, Lei D, Yang W, Liu C, Shi K, Hao X, Shen L, Lv W, Li B, Yang Q H 2019 Adv. Funct. Mater. 29 1805301Google Scholar

    [62]

    Han X, Gong Y, Fu K K, He X, Hitz G T, Dai J, Pearse A, Liu B, Wang H, Rubloff G 2017 Nat. Mater. 16 572Google Scholar

    [63]

    El Shinawi H, Janek J 2013 J. Power Sources 225 13Google Scholar

    [64]

    Thangadurai V, Weppner W 2005 Adv. Funct. Mater. 15 107Google Scholar

    [65]

    Buschmann H, Berendts S, Mogwitz B, Janek J 2012 J. Power Sources 206 236Google Scholar

    [66]

    Cheng L, Crumlin E J, Chen W, Qiao R, Hou H, Lux S F, Zorba V, Russo R, Kostecki R, Liu Z 2014 Phys. Chem. Chem. Phys. 16 18294Google Scholar

    [67]

    Duan H, Chen W P, Fan M, Wang W P, Yu L, Tan S J, Chen X, Zhang Q, Xin S, Wan L J 2020 Angew. Chem. 59 1491Google Scholar

    [68]

    Cheng L, Liu M, Mehta A, Xin H, Lin F, Persson K, Chen G, Crumlin E J, Doeff M 2018 ACS Appl. Energy Materials 1 7244Google Scholar

    [69]

    Huo H, Chen Y, Zhao N, Lin X, Luo J, Yang X, Liu Y, Guo X, Sun X 2019 Nano Energy 61 119Google Scholar

    [70]

    Tian H K, Xu B, Qi Y 2018 J. Power Sources 392 79Google Scholar

    [71]

    Luo W, Gong Y, Zhu Y, Li Y, Yao Y, Zhang Y, Fu K, Pastel G, Lin C F, Mo Y 2017 Adv. Mater. 29 1606042Google Scholar

    [72]

    Luo W, Gong Y, Zhu Y, Fu K K, Dai J, Lacey S D, Wang C, Liu B, Han X, Mo Y 2016 J. Am. Chem. Soc. 138 12258Google Scholar

    [73]

    Hasegawa S, Imanishi N, Zhang T, Xie J, Hirano A, Takeda Y, Yamamoto O 2009 J. Power Sources 189 371Google Scholar

    [74]

    Yu Q, Han D, Lu Q, He Y B, Li S, Liu Q, Han C, Kang F, Li B 2019 ACS Appl. Mater. Interfaces 11 9911Google Scholar

    [75]

    Sakuma M, Suzuki K, Hirayama M, Kanno R 2016 Solid State Ionics 285 101Google Scholar

    [76]

    Ogawa M, Kanda R, Yoshida K, Uemura T, Harada K 2012 J. Power Sources 205 487Google Scholar

    [77]

    Nagao M, Hayashi A, Tatsumisago M 2012 Electrochem. 80 734Google Scholar

    [78]

    Lin D, Liu Y, Cui Y 2017 Nat. Nanotechnol. 12 194Google Scholar

    [79]

    Takeda Y, Yamamoto O, Imanishi N 2016 Electrochem. 84 210Google Scholar

    [80]

    张建军, 董甜甜, 杨金凤, 张敏, 崔光磊 2018 储能科学与技术 7 861Google Scholar

    Zhang J J, Dong T T, Yang J F, Zhang M, Cui G L 2018 Energ. Stor. Sci. Technol. 7 861Google Scholar

    [81]

    Dollé M, Sannier L, Beaudoin B, Trentin M, Tarascon J M 2002 Electrochem. and Solid State Lett. 5 A286Google Scholar

    [82]

    Maslyn J A, Loo W S, McEntush K D, Oh H J, Harry K J, Parkinson D Y, Balsara N P 2018 J. Phys. Chem. C 122 26797Google Scholar

    [83]

    Monroe C, Newman J 2004 J. Electrochem. Soc. 151 A880Google Scholar

    [84]

    Monroe C, Newman J 2005 J. Electrochem. Soc. 152 A396Google Scholar

    [85]

    Samsonov G V 2012 Handbook of the Physicochemical Properties of the Elements (Berlin: Springer Science & Business Media) p394

    [86]

    Schauser N S, Harry K J, Parkinson D Y, Watanabe H, Balsara N P 2014 J. Electrochem. Soc. 162 A398

    [87]

    Stone G, Mullin S, Teran A, Hallinan D, Minor A, Hexemer A, Balsara N 2012 J. Electrochem. Soc. 159 A222Google Scholar

    [88]

    Harry K J, Hallinan D T, Parkinson D Y, MacDowell A A, Balsara N P 2014 Nat. Mater. 13 69Google Scholar

    [89]

    Harry K J, Higa K, Srinivasan V, Balsara N P 2016 J. Electrochem. Soc. 163 A2216Google Scholar

    [90]

    Golozar M, Hovington P, Paolella A, Bessette S P, Lagacé M, Bouchard P, Demers H, Gauvin R, Zaghib K 2018 Nano Lett. 18 7583Google Scholar

    [91]

    Brissot C, Rosso M, Chazalviel J N, Lascaud S 1999 J. Power Sources 81 925

    [92]

    Kerman K, Luntz A, Viswanathan V, Chiang Y M, Chen Z 2017 J. Electrochem. Soc. 164 A1731Google Scholar

    [93]

    Janek J, Zeier W G 2016 Nature Energy 1 1

    [94]

    周洪, 魏凤, 吴永庆 2020 储能科学与技术 9 1001

    Zhou H, Wei F, Wu Y Q 2020 Energ. Stor. Sci. Technol. 9 1001

    [95]

    Garcia Mendez R, Mizuno F, Zhang R, Arthur T S, Sakamoto J 2017 Electrochim. Acta 237 144Google Scholar

    [96]

    Han F, Yue J, Zhu X, Wang C 2018 Adv. Energy Mater. 8 1703644Google Scholar

    [97]

    Nagao M, Hayashi A, Tatsumisago M, Kanetsuku T, Tsuda T, Kuwabata S 2013 Phys. Chem. Chem. Phys. 15 18600Google Scholar

    [98]

    Aguesse F, Manalastas W, Buannic L, Lopez del Amo J M, Singh G, Llordés A, Kilner J 2017 ACS Appl. Mater. Interfaces 9 3808Google Scholar

    [99]

    Cheng L, Chen W, Kunz M, Persson K, Tamura N, Chen G, Doeff M 2015 ACS Appl. Mater. Interfaces 7 2073Google Scholar

    [100]

    Ren Y, Shen Y, Lin Y, Nan C W 2015 Electrochem. Commun. 57 27Google Scholar

    [101]

    Cheng E J, Sharafi A, Sakamoto J 2017 Electrochim. Acta 223 85Google Scholar

    [102]

    Sharafi A, Meyer H M, Nanda J, Wolfenstine J, Sakamoto J 2016 J. Power Sources 302 135Google Scholar

    [103]

    Swamy T, Park R, Sheldon B W, Rettenwander D, Porz L, Berendts S, Uecker R, Carter W C, Chiang Y M 2018 J. Electrochem. Soc. 165 A3648Google Scholar

    [104]

    Qian J, Henderson W A, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J G 2015 Nat. Commun. 6 1

    [105]

    Choudhury S, Archer L A 2016 Adv. Electron. Mater. 2 1500246Google Scholar

    [106]

    Han F, Westover A S, Yue J, Fan X, Wang F, Chi M, Leonard D N, Dudney N J, Wang H, Wang C 2019 Nat. Energy 4 187Google Scholar

    [107]

    Ahmad Z, Viswanathan V 2017 Phys. Rev. Lett. 119 056003Google Scholar

    [108]

    Raj R, Wolfenstine J 2017 J. Power Sources 343 119Google Scholar

    [109]

    Manalastas W, Rikarte J, Chater R J, Brugge R, Aguadero A, Buannic L, Llordés A, Aguesse F, Kilner J 2019 J. Power Sources 412 287Google Scholar

    [110]

    Wang C, Gong Y, Dai J, Zhang L, Xie H, Pastel G, Liu B, Wachsman E, Wang H, Hu L 2017 J. Am. Chem. Soc. 139 14257Google Scholar

    [111]

    Seitzman N, Guthrey H, Sulas D B, Platt H A, Al Jassim M, Pylypenko S 2018 J. Electrochem. Soc. 165 A3732Google Scholar

    [112]

    Marbella L E, Zekoll S, Kasemchainan J, Emge S P, Bruce P G, Grey C P 2019 Chem. Mater. 31 2762Google Scholar

    [113]

    Schmidt R D, Sakamoto J 2016 J. Power Sources 324 126Google Scholar

    [114]

    Kim S, Jung C, Kim H, Thomas Alyea K E, Yoon G, Kim B, Badding M E, Song Z, Chang J, Kim J, Im D, Kang K 2020 Adv. Energy Mater. 10 1903993Google Scholar

    [115]

    Kazyak E, Garcia Mendez R, LePage W S, Sharafi A, Davis A L, Sanchez A J, Chen K H, Haslam C, Sakamoto J, Dasgupta N P 2020 Matter 2 1025Google Scholar

    [116]

    Koshikawa H, Matsuda S, Kamiya K, Miyayama M, Kubo Y, Uosaki K, Hashimoto K, Nakanishi S 2018 J. Power Sources 376 147Google Scholar

    [117]

    Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z, Hartley G O, Marrow J, Bruce P G 2019 Nat. Mater. 18 1105Google Scholar

    [118]

    Yu S, Schmidt R D, Garcia Mendez R, Herbert E, Dudney N J, Wolfenstine J B, Sakamoto J, Siegel D J 2016 Chem. Mater. 28 197Google Scholar

    [119]

    Iriyama Y, Kako T, Yada C, Abe T, Ogumi Z 2005 Solid State Ionics 176 2371Google Scholar

    [120]

    Sharafi A, Kazyak E, Davis A L, Yu S, Thompson T, Siegel D J, Dasgupta N P, Sakamoto J 2017 Chem. Mater. 29 7961Google Scholar

    [121]

    Chen Y T, Jena A, Pang W K, Peterson V K, Sheu H S, Chang H, Liu R S 2017 J. Phys. Chem. C 121 15565Google Scholar

    [122]

    Han F, Zhu Y, He X, Mo Y, Wang C 2016 Adv. Energy Mater. 6 1501590Google Scholar

    [123]

    Doyle M, Fuller T F, Newman J 1994 Electrochim. Acta 39 2073Google Scholar

    [124]

    Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J 2010 J. Power Sources 195 6847Google Scholar

    [125]

    Liu S, Imanishi N, Zhang T, Hirano A, Takeda Y, Yamamoto O, Yang J 2010 J. Electrochem. Soc. 157 A1092Google Scholar

    [126]

    Zhang X, Wang S, Xue C, Xin C, Lin Y, Shen Y, Li L, Nan C W 2019 Adv. Mater. 31 e1806082Google Scholar

    [127]

    Frenck L, Maslyn J A, Loo W S, Parkinson D Y, Balsara N P 2019 ACS Appl. Mater. Interfaces 11 47878Google Scholar

    [128]

    Fu J, Yu P, Zhang N, Ren G, Zheng S, Huang W, Long X, Li H, Liu X 2019 Energy & Environ. Sci. 12 1404

    [129]

    Shao Y, Wang H, Gong Z, Wang D, Zheng B, Zhu J, Lu Y, Hu Y S, Guo X, Li H 2018 ACS Energy Lett. 3 1212Google Scholar

    [130]

    Song Y, Yang L, Zhao W, Wang Z, Zhao Y, Wang Z, Zhao Q, Liu H, Pan F 2019 Adv. Energy Mater. 9 1900671Google Scholar

    [131]

    Maslyn J A, Frenck L, Loo W S, Parkinson D Y, Balsara N P 2019 ACS Appl. Energy Mater. 2 8197Google Scholar

    [132]

    Hiratani M, Miyauchi K, Kudo T 1988 Solid State Ionics 28 1406

    [133]

    Okita K, Ikeda K i, Sano H, Iriyama Y, Sakaebe H 2011 J. Power Sources 196 2135Google Scholar

    [134]

    Krauskopf T, Mogwitz B, Rosenbach C, Zeier W G, Janek J 2019 Adv. Energy Mater. 9 1902568Google Scholar

    [135]

    Zhou W, Wang S, Li Y, Xin S, Manthiram A, Goodenough J B 2016 J. Am. Chem. Soc. 138 9385Google Scholar

    [136]

    Mai W, Yu Q, Han C, Kang F, Li B 2020 Adv. Funct. Mater. 190991 2

    [137]

    Liu Q, Zhou D, Shanmukaraj D, Li P, Kang F, Li B, Armand M, Wang G 2020 ACS Energy Lett. 5 1456Google Scholar

    [138]

    Li Q, Yi T, Wang X, Pan H, Quan B, Liang T, Guo X, Yu X, Wang H, Huang X 2019 Nano Energy 63 103895Google Scholar

    [139]

    Xu S, McOwen D W, Wang C, Zhang L, Luo W, Chen C, Li Y, Gong Y, Dai J, Kuang Y 2018 Nano Lett. 18 3926Google Scholar

    [140]

    Liu B, Zhang L, Xu S, McOwen D W, Gong Y, Yang C, Pastel G R, Xie H, Fu K, Dai J 2018 Energy Stor. Mater. 14 376Google Scholar

    [141]

    Chen Y, Wang Z, Li X, Yao X, Wang C, Li Y, Xue W, Yu D, Kim S Y, Yang F 2020 Nature 578 251Google Scholar

    [142]

    Herring C 1950 J. Appl. Phys. 21 437Google Scholar

    [143]

    Frost H J, Ashby M F 1982 Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics (Oxford: Pergamon press) p11

    [144]

    Sun J, He L, Lo Y C, Xu T, Bi H, Sun L, Zhang Z, Mao S X, Li J 2014 Nat. Mater. 13 1007Google Scholar

    [145]

    Tu K N 2007 Solder Joint Technology (Vol. 117) (Berlin: Springer) pp153−181

    [146]

    Tian L, Li J, Sun J, Ma E, Shan Z W 2013 Sci. Rep. 3 2113Google Scholar

    [147]

    Mali M, Roos J, Sonderegger M, Brinkmann D, Heitjans P 1988 J. of Phys. F: Metal Phys. 18 403Google Scholar

    [148]

    He Y, Lu C, Liu S, Zheng W, Luo J 2019 Adv. Energy Mater. 9 1901810Google Scholar

    [149]

    Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K 2011 Nat. Mater. 10 682Google Scholar

  • [1] 李梅, 钟淑英, 胡军平, 孙宝珍, 徐波. 固态电解质Li1+xAlxTi2–x (PO4)3中 Li+的迁移特性. 物理学报, 2024, 73(13): 138201. doi: 10.7498/aps.73.20240044
    [2] 华彪, 孙宝珍, 王靖轩, 石晶, 徐波. Li含量对Li3xLa(2/3)–x(1/3)–2xTiO3固态电解质表面稳定性、电子结构及Li离子输运性质的影响. 物理学报, 2023, 72(2): 028201. doi: 10.7498/aps.72.20221808
    [3] 杨源, 胡乃方, 金永成, 马君, 崔光磊. 富锂正极材料在全固态锂电池中的研究进展. 物理学报, 2023, 72(11): 118801. doi: 10.7498/aps.72.20230258
    [4] 耿晓彬, 李顶根, 徐波. 固态电解质电池锂枝晶生长机械应力-热力学相场模拟研究. 物理学报, 2023, 72(22): 220201. doi: 10.7498/aps.72.20230824
    [5] 何兵, 练宇翔, 吴木生, 罗文崴, 杨慎博, 欧阳楚英. 阳离子调控对卤化物固态电解质性能的改善. 物理学报, 2022, 71(20): 208201. doi: 10.7498/aps.71.20221050
    [6] 游逸玮, 崔建文, 张小锋, 郑锋, 吴顺情, 朱梓忠. 锂磷氧氮(LiPON)固态电解质与Li负极界面特性. 物理学报, 2021, 70(13): 136801. doi: 10.7498/aps.70.20202214
    [7] 邵光伟, 郭珊珊, 于瑞, 陈南梁, 叶美丹, 刘向阳. 可拉伸超级电容器的研究进展:电极、电解质和器件. 物理学报, 2020, 69(17): 178801. doi: 10.7498/aps.69.20200881
    [8] 张念, 任国玺, 章辉, 周櫈, 刘啸嵩. 石榴石型固态电解质表界面问题及优化的研究进展. 物理学报, 2020, 69(22): 228806. doi: 10.7498/aps.69.20201533
    [9] 冯吴亮, 王飞, 周星, 吉晓, 韩福东, 王春生. 固态电解质与电极界面的稳定性. 物理学报, 2020, 69(22): 228206. doi: 10.7498/aps.69.20201554
    [10] 王鑫萌, 石鹏, 张学强, 陈爱兵, 张强. 实用化条件下金属锂负极失效的研究. 物理学报, 2020, 69(22): 228501. doi: 10.7498/aps.69.20200906
    [11] 赵宁, 穆爽, 郭向欣. 石榴石型固态锂电池中的物理问题. 物理学报, 2020, 69(22): 228804. doi: 10.7498/aps.69.20201191
    [12] 刘玉龙, 辛明杨, 丛丽娜, 谢海明. 聚氧乙烯基聚合物固态电池的界面研究进展. 物理学报, 2020, 69(22): 228202. doi: 10.7498/aps.69.20201588
    [13] 彭林峰, 曾子琪, 孙玉龙, 贾欢欢, 谢佳. 富钠反钙钛矿型固态电解质的简易合成与电化学性能. 物理学报, 2020, 69(22): 228201. doi: 10.7498/aps.69.20201227
    [14] 张桥保, 龚正良, 杨勇. 硫化物固态电解质材料界面及其表征的研究进展. 物理学报, 2020, 69(22): 228803. doi: 10.7498/aps.69.20201581
    [15] 曹文卓, 李泉, 王胜彬, 李文俊, 李泓. 金属锂在固态电池中的沉积机理、策略及表征. 物理学报, 2020, 69(22): 228204. doi: 10.7498/aps.69.20201293
    [16] 陈棋, 尚学府, 张鹏, 徐鹏, 王淼, 今西誠之. 流延法制备高锂离子电导Li1.4Al0.4Ti1.6(PO4)3固态电解质及其环氧树脂改性. 物理学报, 2017, 66(18): 188201. doi: 10.7498/aps.66.188201
    [17] 郭立强, 陶剑, 温娟, 程广贵, 袁宁一, 丁建宁. 玉米淀粉固态电解质质子\电子杂化突触晶体管. 物理学报, 2017, 66(16): 168501. doi: 10.7498/aps.66.168501
    [18] 郭立强, 温娟, 程广贵, 袁宁一, 丁建宁. 基于KH550-GO固态电解质中电容耦合作用的双侧栅IZO薄膜晶体管. 物理学报, 2016, 65(17): 178501. doi: 10.7498/aps.65.178501
    [19] 郭文昊, 肖惠, 门传玲. SiO2固态电解质中的质子特性对氧化物双电层薄膜晶体管性能的影响. 物理学报, 2015, 64(7): 077302. doi: 10.7498/aps.64.077302
    [20] 俞文海, 丁屹. 固体电解质与电极之间界面的分数维模型及其频率响应. 物理学报, 1989, 38(10): 1621-1627. doi: 10.7498/aps.38.1621
计量
  • 文章访问数:  18181
  • PDF下载量:  699
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-29
  • 修回日期:  2020-09-04
  • 上网日期:  2020-11-17
  • 刊出日期:  2020-11-20

/

返回文章
返回