搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等效介质原理的宽角超材料吸波体设计

吴雨明 王任 丁霄 王秉中

引用本文:
Citation:

基于等效介质原理的宽角超材料吸波体设计

吴雨明, 王任, 丁霄, 王秉中

Design of wide-angle metamaterial absorbers based on equivalent medium theory

Wu Yu-Ming, Wang Ren, Ding Xiao, Wang Bing-Zhong
PDF
HTML
导出引用
  • 超材料吸波体的吸波性能会受到电磁波入射角度的影响, 角度不敏感的吸波材料设计一直是吸波材料设计的难点之一. 本文基于等效介质原理设计了一种宽入射角超材料吸波体. 超材料吸波体单元由竖直放置在理想导体(PEC)上的双面开口谐振环组成, 谐振环开口处加载集总电阻R和集总电容C, 其中电阻R用于调控超材料的等效电磁参数, 电容C用于调控超材料的谐振频率和实现单元小型化. 当TE波(横电波, 电场方向与入射面垂直的平面电磁波)照射时, 电阻R = 4000 Ω, C = 1.5 pF, 在1.59 GHz处, 本文设计的宽角超材料吸波体实现了70°内90%以上的吸波率, 当入射角度达到75°, 也仍然有85%以上的吸波率, 并且基于等效介质原理的理论分析结果和仿真结果及测量结果都基本符合; 当TM波(横磁波, 磁场方向与入射面垂直的平面电磁波)照射时, 电阻R = 1200 Ω, C = 1.5 pF, 此时需将超材料单元旋转90°, 在1.59 GHz处, 本文设计的宽角超材料吸波体实现了70°内90%以上的吸波率, 当入射角度达到75°, 也仍然有85%以上的吸波率. 测试结果基本与仿真结果符合. 此外, 当电容C发生改变而其余参数不改变时, 本文设计的超材料吸波体在新的谐振频率处仍然具有同样的宽角吸波性能, 具有宽频带的工作特性.
    The performances of metamaterial absorbers can be affected by the incidence angle of electromagnetic wave. It is difficult to design the incidence angle-insensitive metamaterial absorbers. In this paper, we propose a metamaterial absorber with wide-angle incidence based on the equivalent medium theory. The absorber unit consists of a double-sided split resonant ring placed vertically on the ground. The resistors and capacitors are loaded at the opening of the resonant ring. The resistor is used to adjust the equivalent electromagnetic parameters of the metamaterial, and the capacitor is used to control the resonant frequency of the metamaterial and miniaturize the unit. When the transverse electric (TE) plane wave impinges on the surface of the absorber, R = 4000 Ohm and C = 1.5 pF, the proposed absorber can achieve an absorptivity greater than 90% at 1.59 GHz up to an incidence angle reaching 70°. Besides, the absorber can achieve an 85% absorptivity under an incidence angle of 75°. when the transverse magnetic (TM) plane wave impinges on the surface of the absorbers, R = 1200 Ω and C = 1.5 pF, the proposed absorber can achieve an absorptivity of greater than 90% at 1.59 GHz up to a 70°incidence angle. Besides, the absorber can also achieve an absorptivity of 85% up to 75°. The results show that the measurement results are basically consistent with the simulation results. In addition, when the capacitance is changed while the other parameters are fixed, the metamaterial absorber proposed in this paper still has the same wide-angle absorbing performance at the new resonant frequency. In other words, the proposed absorber has broadband operating characteristics. A frequency-tunable metamaterial absorber with wide-angle incidence can be designed based on the aforementioned results. The results in this paper provide a method of tuning capacitance. The opening is set at the other end of the split ring, and the same fixed-value resistor and variable capacitor are loaded on the left opening, and the corresponding DC bias feeder is designed. One end of the DC bias line is directly connected to the ground, and the other end needs to be separately connected to the other DC bias feeder of each unit to realize the control of the variable capacitors of each unit.
      通信作者: 王秉中, bzwang@uestc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61731005, 61901086)、博士后创新人才支持计划(批准号: BX20180057)、中国博士后科学基金(批准号: 2018M640907)和中央高校基本科研业务费(批准号: ZYGX2019J101)资助的课题
      Corresponding author: Wang Bing-Zhong, bzwang@uestc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61731005, 61901086), the Postdoctoral Innovation Talents Support Program, China (Grant No. BX20180057), the China Postdoctoral Science Foundation (Grant No. 2018M640907), and the Fundamental Research Fund for the Central Universities, China (Grant No. ZYGX2019J101)
    [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [2]

    Wang B X, Zhai X, Wang G Z, Huang W Q, Wang L L 2015 IEEE Photonics J. 7 4600108Google Scholar

    [3]

    Ding F, Cui X, Ge C, Jin Y, He S L 2012 Appl. Phys. Lett. 100 103506Google Scholar

    [4]

    Lin X Q, Mei P, Zhang P C, Chen Z Z D, Fan Y 2016 IEEE Trans. Antennas Propag. 64 4910Google Scholar

    [5]

    Hao J P, Lheurette E, Burgnies L, Okada E, Lippens D 2014 Appl. Phys. Lett. 105 081102Google Scholar

    [6]

    Deng T W, Li Z W, Chen Z N 2017 IEEE Trans. Antennas Propag. 65 5886Google Scholar

    [7]

    Shang Y P, Shen Z X, Xiao S Q 2013 IEEE Trans. Antennas Propag. 61 6022Google Scholar

    [8]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230Google Scholar

    [9]

    Chen H T 2012 Opt. Express 20 7165Google Scholar

    [10]

    顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华 2011 物理学报 60 087802Google Scholar

    Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W D, Ma H 2011 Acta Phys. Sin. 60 087802Google Scholar

    [11]

    程用志, 聂彦, 龚荣洲, 王鲜 2013 物理学报 62 044103Google Scholar

    Chen Y Z, Nie Y, Gong R Z, Wang X 2013 Acta Phys. Sin. 62 044103Google Scholar

    [12]

    熊益军, 王岩, 王强, 王春齐, 黄小忠, 张芬, 周丁 2018 物理学报 67 084202Google Scholar

    Xiong Y J, Wang Y, Wang Q, Wang C Q, Huang X Z, Zhang F, Zhou D 2018 Acta Phys. Sin. 67 084202Google Scholar

    [13]

    李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥 2019 物理学报 68 095201Google Scholar

    Li YH, Deng L W, Luo H, He L H, He J, Xu Y C, Huang S X 2019 Acta Phys. Sin. 68 095201Google Scholar

    [14]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer, Landy N I, Fan K, Zhang X, Padilla, Averitt 2008 Phys. Rev. B 78 241103Google Scholar

    [15]

    Wang B N, Koschny T, Soukouli Costa M 2009 Phys. Rev. B 80 033108Google Scholar

    [16]

    Lee D, Hwang J G, Lim D, Hara T, Lim S 2016 Sci. Rep. 6 27155Google Scholar

    [17]

    Nguyen T T, Lim S 2017 Sci. Rep. 7 3204Google Scholar

    [18]

    Lim D, Lee D, Lim S 2016 Sci. Rep. 6 39686Google Scholar

    [19]

    Wang J Y, Yang R C, Tian J P, Wei C X, Zhang W M 2018 IEEE Antennas Wirel. Propag. Lett. 17 1242Google Scholar

    [20]

    Amiri M, Tofigh F, Shariati N, Lipman J, Abolhasan M 2020 Sci. Rep. 10 13638Google Scholar

    [21]

    Assimonis S D, Fusco V 2019 Sci. Rep. 9 2082Google Scholar

    [22]

    Huang X T, Lu C H, Rong C C, Liu M H 2018 Opt. Mater. Exp. 8 2520Google Scholar

    [23]

    Singh H S 2020 Microwave Opt. Technol. Lett. 62 718Google Scholar

    [24]

    Abdulkarim Y, Deng L W, Luo H, Huang S X, He L H, Han L Y, Muhammadsharif F F, Altintas O, Sabah C, Karaaslan M 2020 Bull. Mater. Sci. 43 116Google Scholar

    [25]

    Ji S J, Jiang C X, Zhao J, Yang J L, Wang J L, Dai H D 2019 Curr. Appl. Phys. 19 1164Google Scholar

    [26]

    Jin Y, Xiao S S, Mortensen N A, He S L 2011 Opt. Express 19 11114Google Scholar

    [27]

    Feng S M, Halterman K 2012 Phys. Rev. B 86 165103Google Scholar

    [28]

    Zhong S M, He S L 2013 Sci. Rep. 3 2083Google Scholar

    [29]

    吴雨明, 丁霄, 王任, 王秉中 2020 物理学报 69 054202Google Scholar

    Wu Y M, Ding X, Wang R, Wang B Z 2020 Acta Phys. Sin. 69 054202Google Scholar

    [30]

    Chen X D, Grzegorczyk T M, Wu B I, Pacheco J, Kong J A 2004 Phys. Rev. E 70 016608Google Scholar

  • 图 1  单元模型和理论模型 (a)宽角超材料吸波体单元模型; (b)理论分析模型

    Fig. 1.  Unit cell and theoretical model: (a) Wide-angle metamaterial absorber unit cell; (b) theoretical model.

    图 2  超材料吸波体的谐振频率随电容的变化 (a) TE波照射; (b) TM波照射

    Fig. 2.  Resonant frequency of metamaterial absorber varies with capacitance: (a) TE wave; (b) TM wave.

    图 3  超材料的等效磁导率虚部和实部以及超材料吸波体反射系数随电阻R的变化 (a) TE波照射时磁导率实部; (b) TE波照射时磁导率虚部; (c) TM波照射时磁导率实部; (d) TM波照射时虚部; (e) TE波照射超材料吸波体反射系数随电阻R的变化; (f) TM波照射超材料吸波体反射系数随电阻R的变化

    Fig. 3.  The imaginary parts and real parts of the equivalent permeability of the metamaterial and the reflection coefficient of the absorber varies with the resistor: (a) Real parts of the equivalent permeability under TE wave; (b) imaginary parts of the equivalent permeability under TE wave; (c) real parts of the equivalent permeability under TM wave; (d) imaginary parts of the equivalent permeability under TM wave; (e) the reflection coefficient of the absorber varies with the resistor under TE wave; (f) the reflection coefficient of the absorber varies with the resistor under TM wave.

    图 4  等效磁导率 (a) TE波照射; (b) TM波照射

    Fig. 4.  The equivalent permeability (a) TE wave; (b) TM wave.

    图 5  超材料吸波体反射系数随角度的变化 (a) TE波照射; (b) TM波照射

    Fig. 5.  The reflection coefficient of the absorber varies with incidence angle (a) TE wave; (b) TM wave

    图 6  理论计算结果与TE波照射下R = 4000 Ω, C = 1.5 pF和TM波照射下R = 1200 Ω, C = 1.5 pF的仿真结果对比

    Fig. 6.  Comparison of theoretical results and simulation results when R = 4000 Ω, C = 1.5 pF under TE wave and R = 1200 Ω, C = 1.5 pF under TM wave.

    图 7  测量系统

    Fig. 7.  Measurement system.

    图 8  实物和实测场景 (a)样品; (b)测试场景

    Fig. 8.  Sample and Measurement scene: (a) Sample; (b) measurement scene.

    图 9  测量结果 (a) TE波照射; (b) TM波照射

    Fig. 9.  Measurement results: (a) TE wave; (b) TM wave.

    图 10  不同容值下的宽角吸波效果 (a) TE波照射; (b) TM波照射

    Fig. 10.  Performance of wide-angle absorber with different capacitance: (a) TE wave; (b) TM wave.

    图 11  频率可调超材料吸波结构

    Fig. 11.  Frequency-tunable metamaterial absorber.

    图 12  频率可调超材料吸波结构不同电容值下的反射系数 (a) TE波; (b) TM波

    Fig. 12.  Reflection coefficient of frequency-tunable metamaterial absorber with different capacitance capacitors: (a) TE wave; (b) TM wave.

    表 1  文献工作性能比较

    Table 1.  Performance comparison among this work and other literatures.

    参考文献中心频率/ GHz单元尺寸剖面高度θ = 70°时的吸收率
    [17]9.260.31λ × 0.31λ0.025λ92%(TE)95%(TM)
    [18]11.30.3λ × 0.3λ0.013λ70%(TE)99%(TM)
    [20]5.170.31λ × 0.31λ0.028λ85%(TE)92%(TM)
    [25]3.880.174λ × 0.174λ0.0134λ68%(TE)94%(TM)
    [28]1.740.024λ × 0.024λ0.011λ93%(TM)
    本文工作1.590.024λ × 0.024λ0.0148λ91%(TE)95%(TM)
    下载: 导出CSV
  • [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [2]

    Wang B X, Zhai X, Wang G Z, Huang W Q, Wang L L 2015 IEEE Photonics J. 7 4600108Google Scholar

    [3]

    Ding F, Cui X, Ge C, Jin Y, He S L 2012 Appl. Phys. Lett. 100 103506Google Scholar

    [4]

    Lin X Q, Mei P, Zhang P C, Chen Z Z D, Fan Y 2016 IEEE Trans. Antennas Propag. 64 4910Google Scholar

    [5]

    Hao J P, Lheurette E, Burgnies L, Okada E, Lippens D 2014 Appl. Phys. Lett. 105 081102Google Scholar

    [6]

    Deng T W, Li Z W, Chen Z N 2017 IEEE Trans. Antennas Propag. 65 5886Google Scholar

    [7]

    Shang Y P, Shen Z X, Xiao S Q 2013 IEEE Trans. Antennas Propag. 61 6022Google Scholar

    [8]

    Rozanov K N 2000 IEEE Trans. Antennas Propag. 48 1230Google Scholar

    [9]

    Chen H T 2012 Opt. Express 20 7165Google Scholar

    [10]

    顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华 2011 物理学报 60 087802Google Scholar

    Gu C, Qu S B, Pei Z B, Xu Z, Lin B Q, Zhou H, Bai P, Gu W, Peng W D, Ma H 2011 Acta Phys. Sin. 60 087802Google Scholar

    [11]

    程用志, 聂彦, 龚荣洲, 王鲜 2013 物理学报 62 044103Google Scholar

    Chen Y Z, Nie Y, Gong R Z, Wang X 2013 Acta Phys. Sin. 62 044103Google Scholar

    [12]

    熊益军, 王岩, 王强, 王春齐, 黄小忠, 张芬, 周丁 2018 物理学报 67 084202Google Scholar

    Xiong Y J, Wang Y, Wang Q, Wang C Q, Huang X Z, Zhang F, Zhou D 2018 Acta Phys. Sin. 67 084202Google Scholar

    [13]

    李宇涵, 邓联文, 罗衡, 贺龙辉, 贺君, 徐运超, 黄生祥 2019 物理学报 68 095201Google Scholar

    Li YH, Deng L W, Luo H, He L H, He J, Xu Y C, Huang S X 2019 Acta Phys. Sin. 68 095201Google Scholar

    [14]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer, Landy N I, Fan K, Zhang X, Padilla, Averitt 2008 Phys. Rev. B 78 241103Google Scholar

    [15]

    Wang B N, Koschny T, Soukouli Costa M 2009 Phys. Rev. B 80 033108Google Scholar

    [16]

    Lee D, Hwang J G, Lim D, Hara T, Lim S 2016 Sci. Rep. 6 27155Google Scholar

    [17]

    Nguyen T T, Lim S 2017 Sci. Rep. 7 3204Google Scholar

    [18]

    Lim D, Lee D, Lim S 2016 Sci. Rep. 6 39686Google Scholar

    [19]

    Wang J Y, Yang R C, Tian J P, Wei C X, Zhang W M 2018 IEEE Antennas Wirel. Propag. Lett. 17 1242Google Scholar

    [20]

    Amiri M, Tofigh F, Shariati N, Lipman J, Abolhasan M 2020 Sci. Rep. 10 13638Google Scholar

    [21]

    Assimonis S D, Fusco V 2019 Sci. Rep. 9 2082Google Scholar

    [22]

    Huang X T, Lu C H, Rong C C, Liu M H 2018 Opt. Mater. Exp. 8 2520Google Scholar

    [23]

    Singh H S 2020 Microwave Opt. Technol. Lett. 62 718Google Scholar

    [24]

    Abdulkarim Y, Deng L W, Luo H, Huang S X, He L H, Han L Y, Muhammadsharif F F, Altintas O, Sabah C, Karaaslan M 2020 Bull. Mater. Sci. 43 116Google Scholar

    [25]

    Ji S J, Jiang C X, Zhao J, Yang J L, Wang J L, Dai H D 2019 Curr. Appl. Phys. 19 1164Google Scholar

    [26]

    Jin Y, Xiao S S, Mortensen N A, He S L 2011 Opt. Express 19 11114Google Scholar

    [27]

    Feng S M, Halterman K 2012 Phys. Rev. B 86 165103Google Scholar

    [28]

    Zhong S M, He S L 2013 Sci. Rep. 3 2083Google Scholar

    [29]

    吴雨明, 丁霄, 王任, 王秉中 2020 物理学报 69 054202Google Scholar

    Wu Y M, Ding X, Wang R, Wang B Z 2020 Acta Phys. Sin. 69 054202Google Scholar

    [30]

    Chen X D, Grzegorczyk T M, Wu B I, Pacheco J, Kong J A 2004 Phys. Rev. E 70 016608Google Scholar

  • [1] 王超, 李绣峰, 张生俊, 王如志. 基于遗传算法的宽带渐变电阻膜超材料吸波器设计. 物理学报, 2024, 73(7): 074101. doi: 10.7498/aps.73.20231781
    [2] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [3] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计*. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201448
    [4] 李文强, 曹祥玉, 高军, 赵一, 杨欢欢, 刘涛. 基于超材料吸波体的低雷达散射截面波导缝隙阵列天线. 物理学报, 2015, 64(9): 094102. doi: 10.7498/aps.64.094102
    [5] 郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅. 基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备. 物理学报, 2015, 64(7): 077801. doi: 10.7498/aps.64.077801
    [6] 刘桐君, 习翔, 令永红, 孙雅丽, 李志伟, 黄黎蓉. 宽入射角度偏振不敏感高效异常反射梯度超表面. 物理学报, 2015, 64(23): 237802. doi: 10.7498/aps.64.237802
    [7] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [8] 王雯洁, 王甲富, 闫明宝, 鲁磊, 马华, 屈绍波, 陈红雅, 徐翠莲. 基于多阶等离激元谐振的超薄多频带超材料吸波体. 物理学报, 2014, 63(17): 174101. doi: 10.7498/aps.63.174101
    [9] 鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏. 基于电磁谐振的极化无关透射吸收超材料吸波体. 物理学报, 2013, 62(10): 104102. doi: 10.7498/aps.62.104102
    [10] 杨欢欢, 曹祥玉, 高军, 刘涛, 马嘉俊, 姚旭, 李文强. 基于超材料吸波体的低雷达散射截面微带天线设计. 物理学报, 2013, 62(6): 064103. doi: 10.7498/aps.62.064103
    [11] 鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐. 极化无关双向吸收超材料吸波体的仿真与实验验证. 物理学报, 2013, 62(1): 013701. doi: 10.7498/aps.62.013701
    [12] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [13] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [14] 刘立国, 吴微微, 吴礼林, 莫锦军, 付云起, 袁乃昌. 等效环路有限差分算法及其在人工复合材料设计中的应用. 物理学报, 2013, 62(13): 130203. doi: 10.7498/aps.62.130203
    [15] 鲁磊, 屈绍波, 苏兮, 尚耀波, 张介秋, 柏鹏. 极薄宽角度平面超材料吸波体仿真与实验验证. 物理学报, 2013, 62(20): 208103. doi: 10.7498/aps.62.208103
    [16] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜. 基于电阻型频率选择表面的低频宽带超材料吸波体的设计. 物理学报, 2012, 61(13): 134102. doi: 10.7498/aps.61.134102
    [17] 顾超, 屈绍波, 裴志斌, 徐卓, 林宝勤, 周航, 柏鹏, 顾巍, 彭卫东, 马华. 基于电阻膜的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087802. doi: 10.7498/aps.60.087802
    [18] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [19] 顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东. 一种极化不敏感和双面吸波的手性超材料吸波体. 物理学报, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
    [20] 顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍. 准全向平板超材料吸波体的设计. 物理学报, 2011, 60(3): 037801. doi: 10.7498/aps.60.037801
计量
  • 文章访问数:  7045
  • PDF下载量:  167
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-01
  • 修回日期:  2020-09-29
  • 上网日期:  2020-11-17
  • 刊出日期:  2020-11-20

/

返回文章
返回