搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于苯并二噻吩聚合物所制备的三元光电探测器的特性

安涛 薛佳伟 王永强

引用本文:
Citation:

基于苯并二噻吩聚合物所制备的三元光电探测器的特性

安涛, 薛佳伟, 王永强

Characteristics of ternary photodetectors based on benzodithiophene polymers

An Tao, Xue Jia-Wei, Wang Yong-Qiang
PDF
HTML
导出引用
  • 本文采用P3HT∶PTB7∶PC61BM为活性层, 制备了覆盖可见光范围的三元体异质结有机光电探测器(organic photodetectors, OPDs). 利用原子力显微镜、 紫外可见吸收光谱和荧光光谱等手段研究了PTB7添加到P3HT∶PC61BM体系中对OPDs光学和电学性质的影响, 发现当P3HT∶PTB7∶PC61BM的质量比为8∶2∶10时, 三元混合层的响应光谱扩展到780 nm, OPDs的响应度R在630, 530, 460 nm的光照和–1 V偏压下分别达到178, 291, 241 mA/W, 比探测率D*达到1012 Jones, 并与课题组之前成果P3HT∶PBDT-TT-C∶PC61BM为活性层的三元有机光电探测器做了对比. 分析了两种基于苯并[1,2-b∶4,5-b]二噻吩(BDT)单元的聚合物PTB7与PBDT-TT-C分别添加到同一体系P3HT∶PC61BM中产生的器件性能差距的现象, 解释了PTB7由于氟原子的引入, 对混合薄膜微观形貌的影响和对薄膜中光生载流子迁移率的提升的原因. 这为制备性能更好的有机光电探测器提供了理论依据和方法.
    In this paper, P3HT∶PTB7∶PC61BM is used as an active layer to prepare a ternary heterojunction organic photodetector covering the visible light range. The effects of PTB7 added to P3HT∶PC61BM system on the optical and electrical properties of organic photodetectors (OPDs) are studied by atomic force microscopy, ultraviolet-visible absorption spectroscopy and fluorescence spectroscopy. It is found that when the mass ratio of P3HT∶PTB7∶PC61BM is 8∶2∶10, the response spectrum of the ternary mixed layer extends to 780 nm, and the responsivity (R) of OPDs reaches 178, 291, and 241 mA/W respectively under 630, 530, and 460 nm light and –1 V bias, and the specific detection rate (D*) reaches 1012 Jones, and the above results are compared with the research group’s previous results about P3HT∶PBDT-TT-C∶PC61BM as the active layer of ternary organic photodetector. The phenomenon of the device performance gap caused by adding two polymers PTB7 and PBDT-TT-C based on benzo[1, 2-b∶4, 5-b]dithiophene (BDT) units into the same system P3HT∶PC61BM is analyzed. The effect of PTB7 on the micro-morphology of the mixed film due to the introduction of fluorine atoms and the reason for the increase in the mobility of photogenerated carriers in the film are explained. This OPD with better preparation performance provides a theoretical basis and method.
      通信作者: 安涛, antao@xaut.edu.cn
    • 基金项目: 陕西省自然科学基础研究计划项目(批准号: 2019JM-251)资助的课题.
      Corresponding author: An Tao, antao@xaut.edu.cn
    • Funds: Project supported by Natural Science Basic Research Project of Shaanxi, China(Grant No. 2019JM-251).
    [1]

    Lochner C M, Khan Y, Pierre A, Arias A C 2014 Nat. Commun. 5 5745Google Scholar

    [2]

    Ross D, Ardalan A, Ajay K P, Paul L M, Paul M 2016 Adv. Mater. 28 4766Google Scholar

    [3]

    Wang W, Zhang F, Li L, Zhang M, An Q, Wang J, Sun Q 2015 J. Mater. Chem. C 3 7386Google Scholar

    [4]

    Wang W, Zhang F, Du M, Li L, Zhang M, Wang K, Wang Y, Hu B, Fang Y, Huang J 2017 Nano Lett. 17 1995Google Scholar

    [5]

    Gong X, Tong M, Xia Y, Cai W, Moon J, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J 2009 Science 325 1665Google Scholar

    [6]

    Yoo J, Jeong S, Kim S, Je J H 2015 Adv. Mater. 27 1712Google Scholar

    [7]

    Hou J, Park M H, Zhang S, Yao Y, Chen L M, Li J H, Yang Y 2008 Macromolecules 41 6012Google Scholar

    [8]

    Zhang S, Ye L, Zhao W, Liu D, Yao H, Hou J 2014 Macromolecules 47 4653Google Scholar

    [9]

    Xu X, Li Z, Zhang W, Zou X, Di Carlo Rasi D, Ma W, Yartsev A, Andersson M R, Janssen R J, Wang E 2017 Adv. Energy Mater. 2018 8

    [10]

    Liang Y, Feng D, Wu Y, Tsai S T, Li G, Ray C, Yu L 2009 J. Am. Chem. Soc. 131 7792Google Scholar

    [11]

    Liang Y, Wu Y, Feng D, Tsai S T, Son H J, Li G, Yu L 2009 J. Am. Chem. Soc. 131 56Google Scholar

    [12]

    安涛, 王永强, 张俊 2019 光子学报 48 1004001Google Scholar

    An T, Wang Y Q, Zhang J, 2019 Acta Photon. Sin. 48 1004001Google Scholar

    [13]

    Shin H, Kim J, Lee C 2017 J. Korean Phys. Soc. 71 196Google Scholar

    [14]

    Arranz-Andres J, Blau W J 2008 Carbon 46 2067Google Scholar

    [15]

    Bhatia R, Kumar L 2017 J. Saudi Chem. Soc. 21 366Google Scholar

    [16]

    Robb M J, Ku S Y, Brunetti F G, Hawker C J 2013 J. Polym. Sci. Pol. Chem. 51 1263

    [17]

    Noriega R, Rivnay J, Vandewal K, Koch F P V, Stingelin N, Smith P, Toney M F, Salleo A 2013 Nat. Mater. 12 1037

    [18]

    Xiao M, Zhang K, Jin Y, Yin Q, Zhong W, Huang F, Cao Y 2018 Nano Energy 48 53Google Scholar

    [19]

    Ma X, Zhang F, An Q, Sun Q, Zhang M, Miao J, Hu Z, Zhang J 2017 J. Mater. Chem. A 5 13145Google Scholar

    [20]

    Meng H, Sun F, Goldfinger M B, Jaycox G D, Li Z, Marshall W J, Blackman G S 2005 J. Am. Chem. Soc. 127 2406Google Scholar

    [21]

    Geng Y, Wei Q, Hashimoto K, Tajima K 2011 Chem. Mater. 23 4257Google Scholar

    [22]

    Yuan J, Ford M J, Zhang Y, Dong H, Li Z, Li Y, Ma W 2017 Chem. Mate. 29 1758Google Scholar

    [23]

    Nam S, Seo J, Han H, Kim H, Bradley D D C, Kim Y 2017 Acs Appl. Mater. Inter. 9 14983Google Scholar

    [24]

    Jo J W, Jung J W, Jung E H, Ahn H, Shin T J, Jo W H 2015 Energ. Environ. Sci. 8 2427Google Scholar

    [25]

    Zhang D, Liu C, Li K, Guo W, Gao F, Zhou J, Zhang X, Ruan S 2018 Adv. Opt. Mater. 6 1701189Google Scholar

    [26]

    朱方云 2018 硕士学位论文 (成都: 电子科技大学)

    Zhu F Y 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [27]

    Thompson B C, Fréchet J M J 2008 Angew. Chem. Int. Edit. 39 58

    [28]

    Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photonics 8 716Google Scholar

    [29]

    赵旭生 2017 硕士学位论文 (重庆: 西南大学)

    Zhao X S 2017 M. S. Thesis (Chongqing: Southwest University) (in Chinese)

  • 图 1  材料能级示意图结构图和器件结构图 (a)能级图; (b)结构图

    Fig. 1.  Schematic diagram of material energy level structure diagram and device structure diagram: (a) Energy level diagram; (b) structure diagram.

    图 2  (a) 聚合物分子结构; (b) 聚合物能级图; (c) 聚合物吸收光谱图

    Fig. 2.  Molecular structure (a), energy diagram (b), and absorption spectrum (c) of two polymers.

    图 3  两种聚合物对应的不同质量比的三元活性层薄膜对应的吸收光谱图

    Fig. 3.  Absorption spectra of ternary active layer films with different mass ratios.

    图 4  不同P3HT∶PTB7∶PC61BM质量比的三元混合活性层薄膜的2D和3D AFM图像 (a), (A) 质量比为10∶0∶10, Rq = 4.32; (b), (B) 质量比为9∶1∶10, Rq = 5.40; (c), (C) 质量比为8∶2∶10, Rq = 6.95; (d), (D) 质量比为7∶3∶10, Rq = 10.93

    Fig. 4.  2D and 3D AFM images of ternary mixed active layer films with different mass ratios of P3HT∶ PTB7∶ PC61BM∶ (a), (A) 质量比为10∶0∶10, Rq = 4.32; (b), (B) 质量比为9∶1∶10, Rq = 5.40; (c), (C) 质量比为8∶2∶10, Rq = 6.95; (d), (D) 质量比为7∶3∶10, Rq = 10.93.

    图 5  P3HT∶PTB7∶PC61BM器件在三基色光照下的J-V曲线 (a)红光; (b)绿光; (c)蓝光; (d)暗光

    Fig. 5.  The J-V curve of P3HT∶PTB7∶PCBM device under three primary colors: (a) Red light; (b) green light; (c) blue light; (d) dark light.

    图 6  单空穴器件的ln(Jd3/V2)-(V/d)0.5曲线

    Fig. 6.  ln(Jd3/V2)-(V/d)0.5 curve of single hole device.

    图 7  不同质量比的三元活性层薄膜中的空穴迁移率

    Fig. 7.  Hole mobility in ternary active layer films with different mass ratios.

    图 8  525 nm激发光下不同质量比的三元薄膜的PL光谱

    Fig. 8.  PL spectra of ternary thin films with different mass ratios under 525 nm excitation light.

    图 9  –1 V偏压下, 三元OPD不同质量比的EQE光谱

    Fig. 9.  EQE spectra of ternary OPDs at difffferent mass ratios at –1 V bias.

    图 10  P3HT和PTB7薄膜的吸收光谱和PL光谱

    Fig. 10.  Absorption spectrum and PL spectrum of P3HT and PTB7 films.

    图 11  不同质量比的P3HT∶PTB7薄膜的PL光谱

    Fig. 11.  PL spectra of P3HT∶PTB7 films with different mass ratios.

    图 12  不同质量比的P3HT∶PTB7的OPDs的J-V曲线

    Fig. 12.  J-V curves of P3HT∶PTB7 OPDs with different mass ratios.

    图 13  –1 V偏压下器件P3HT∶PTB7∶PC61BM (8∶2∶10)的光电流与光功率的关系

    Fig. 13.  Photocurrent-light intensity curves at –1 V bias for P3HT∶PTB7∶PC61 BM (8∶2∶10) devices.

    图 14  在三基色的光脉冲以及偏压为–1 V下, P3HT∶PTB7∶PC61BM的质量比为8∶2∶10探测器的三基色瞬态响应曲线

    Fig. 14.  The mass ratio of P3HT∶PTB7∶PC61BM is 8∶2∶10 in the three optical lights with the bias voltage is –1 V primary color transient response curve.

    表 1  –1 V偏压以及三基色光照下P3HT∶PTB7∶PC61BM质量比为8∶2∶10的OPDs特性参数

    Table 1.  –1 V bias voltage and OPDs characteristic parameters of P3HT∶PTB7∶PC61BM with a mass ratio of 8∶2∶10 under the illumination of three primary colors.

    活性层偏压/V光波长λ/nm响应度R/mA·W–1比探测率D*/Jones外量子效率EQE/%
    P3HT∶PTB7∶PC61BM–16301781.75 × 101235
    5302912.86 × 101268
    4602412.37 × 101265
    下载: 导出CSV
  • [1]

    Lochner C M, Khan Y, Pierre A, Arias A C 2014 Nat. Commun. 5 5745Google Scholar

    [2]

    Ross D, Ardalan A, Ajay K P, Paul L M, Paul M 2016 Adv. Mater. 28 4766Google Scholar

    [3]

    Wang W, Zhang F, Li L, Zhang M, An Q, Wang J, Sun Q 2015 J. Mater. Chem. C 3 7386Google Scholar

    [4]

    Wang W, Zhang F, Du M, Li L, Zhang M, Wang K, Wang Y, Hu B, Fang Y, Huang J 2017 Nano Lett. 17 1995Google Scholar

    [5]

    Gong X, Tong M, Xia Y, Cai W, Moon J, Cao Y, Yu G, Shieh C L, Nilsson B, Heeger A J 2009 Science 325 1665Google Scholar

    [6]

    Yoo J, Jeong S, Kim S, Je J H 2015 Adv. Mater. 27 1712Google Scholar

    [7]

    Hou J, Park M H, Zhang S, Yao Y, Chen L M, Li J H, Yang Y 2008 Macromolecules 41 6012Google Scholar

    [8]

    Zhang S, Ye L, Zhao W, Liu D, Yao H, Hou J 2014 Macromolecules 47 4653Google Scholar

    [9]

    Xu X, Li Z, Zhang W, Zou X, Di Carlo Rasi D, Ma W, Yartsev A, Andersson M R, Janssen R J, Wang E 2017 Adv. Energy Mater. 2018 8

    [10]

    Liang Y, Feng D, Wu Y, Tsai S T, Li G, Ray C, Yu L 2009 J. Am. Chem. Soc. 131 7792Google Scholar

    [11]

    Liang Y, Wu Y, Feng D, Tsai S T, Son H J, Li G, Yu L 2009 J. Am. Chem. Soc. 131 56Google Scholar

    [12]

    安涛, 王永强, 张俊 2019 光子学报 48 1004001Google Scholar

    An T, Wang Y Q, Zhang J, 2019 Acta Photon. Sin. 48 1004001Google Scholar

    [13]

    Shin H, Kim J, Lee C 2017 J. Korean Phys. Soc. 71 196Google Scholar

    [14]

    Arranz-Andres J, Blau W J 2008 Carbon 46 2067Google Scholar

    [15]

    Bhatia R, Kumar L 2017 J. Saudi Chem. Soc. 21 366Google Scholar

    [16]

    Robb M J, Ku S Y, Brunetti F G, Hawker C J 2013 J. Polym. Sci. Pol. Chem. 51 1263

    [17]

    Noriega R, Rivnay J, Vandewal K, Koch F P V, Stingelin N, Smith P, Toney M F, Salleo A 2013 Nat. Mater. 12 1037

    [18]

    Xiao M, Zhang K, Jin Y, Yin Q, Zhong W, Huang F, Cao Y 2018 Nano Energy 48 53Google Scholar

    [19]

    Ma X, Zhang F, An Q, Sun Q, Zhang M, Miao J, Hu Z, Zhang J 2017 J. Mater. Chem. A 5 13145Google Scholar

    [20]

    Meng H, Sun F, Goldfinger M B, Jaycox G D, Li Z, Marshall W J, Blackman G S 2005 J. Am. Chem. Soc. 127 2406Google Scholar

    [21]

    Geng Y, Wei Q, Hashimoto K, Tajima K 2011 Chem. Mater. 23 4257Google Scholar

    [22]

    Yuan J, Ford M J, Zhang Y, Dong H, Li Z, Li Y, Ma W 2017 Chem. Mate. 29 1758Google Scholar

    [23]

    Nam S, Seo J, Han H, Kim H, Bradley D D C, Kim Y 2017 Acs Appl. Mater. Inter. 9 14983Google Scholar

    [24]

    Jo J W, Jung J W, Jung E H, Ahn H, Shin T J, Jo W H 2015 Energ. Environ. Sci. 8 2427Google Scholar

    [25]

    Zhang D, Liu C, Li K, Guo W, Gao F, Zhou J, Zhang X, Ruan S 2018 Adv. Opt. Mater. 6 1701189Google Scholar

    [26]

    朱方云 2018 硕士学位论文 (成都: 电子科技大学)

    Zhu F Y 2018 M. S. Thesis (Chengdu: University of Electronic Science and Technology of China) (in Chinese)

    [27]

    Thompson B C, Fréchet J M J 2008 Angew. Chem. Int. Edit. 39 58

    [28]

    Lu L, Xu T, Chen W, Landry E S, Yu L 2014 Nat. Photonics 8 716Google Scholar

    [29]

    赵旭生 2017 硕士学位论文 (重庆: 西南大学)

    Zhao X S 2017 M. S. Thesis (Chongqing: Southwest University) (in Chinese)

  • [1] 宜子琪, 王彦明, 王硕, 隋雪, 石佳辉, 杨壹涵, 王德煜, 冯秋菊, 孙景昌, 梁红伟. 基于机械剥离制备的PEDOT:PSS/β-Ga2O3微米片异质结紫外光电探测器研究. 物理学报, 2024, 73(15): 157102. doi: 10.7498/aps.73.20240630
    [2] 宿冉, 奚昭颖, 李山, 张嘉汉, 姜明明, 刘增, 唐为华. 基于GaSe/Ga2O3异质结的自供电日盲紫外光电探测器. 物理学报, 2024, 73(11): 118502. doi: 10.7498/aps.73.20240267
    [3] 王爱伟, 祝鲁平, 单衍苏, 刘鹏, 曹学蕾, 曹丙强. 利用脉冲激光沉积外延制备CsSnBr3/Si异质结高性能光电探测器. 物理学报, 2024, 73(5): 058503. doi: 10.7498/aps.73.20231645
    [4] 张茂林, 马万煜, 王磊, 刘增, 杨莉莉, 李山, 唐为华, 郭宇锋. WO3/β-Ga2O3异质结深紫外光电探测器的高温性能. 物理学报, 2023, 72(16): 160201. doi: 10.7498/aps.72.20230638
    [5] 保希, 关云霞, 李万娇, 宋家一, 陈丽佳, 徐爽, 彭柯敖, 牛连斌. 载流子阶梯效应调控有机发光二极管三线态激子的解离和散射. 物理学报, 2023, 72(21): 217101. doi: 10.7498/aps.72.20230851
    [6] 郭越, 孙一鸣, 宋伟东. 多孔GaN/CuZnS异质结窄带近紫外光电探测器. 物理学报, 2022, 71(21): 218501. doi: 10.7498/aps.71.20220990
    [7] 舒衍涛, 张有为, 王顺. 基于过渡金属硫族化合物同质结的光电探测器. 物理学报, 2021, 70(17): 177301. doi: 10.7498/aps.70.20210859
    [8] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌. 基于三元非富勒烯体系的高效有机太阳能电池. 物理学报, 2020, 69(19): 198801. doi: 10.7498/aps.69.20200624
    [9] 安涛, 涂传宝, 龚伟. 具有光电倍增的宽光谱三相体异质结有机彩色探测器. 物理学报, 2018, 67(19): 198503. doi: 10.7498/aps.67.20180502
    [10] 王妙, 邬华春, 杨万民, 杨芃焘, 王小梅, 郝大鹏, 党文佳, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响(二). 物理学报, 2017, 66(16): 167401. doi: 10.7498/aps.66.167401
    [11] 贾琳, 王理林, 申洁楠, 张忠明, 李俊杰, 王锦程, 王志军. 聚乙烯醇水溶液二维定向凝固的微观组织演化. 物理学报, 2017, 66(19): 196402. doi: 10.7498/aps.66.196402
    [12] 刘珂, 马文全, 黄建亮, 张艳华, 曹玉莲, 黄文军, 赵成城. 含有AlGaAs插入层的InAs/GaAs三色量子点红外探测器. 物理学报, 2016, 65(10): 108502. doi: 10.7498/aps.65.108502
    [13] 金士琪, 徐征, 赵谡玲, 赵蛟, 李杨, 邓丽娟. 基于PTB7,Bis-PC70BM,PC70BM的高效率有机三元太阳能电池. 物理学报, 2016, 65(2): 028801. doi: 10.7498/aps.65.028801
    [14] 邓丽娟, 赵谡玲, 徐征, 赵玲, 王林. 三元P3HT:PTB7-Th:PCBM聚合物太阳能电池性能的研究. 物理学报, 2016, 65(7): 078801. doi: 10.7498/aps.65.078801
    [15] 杨丹, 张丽, 杨盛谊, 邹炳锁. 基于垂直晶体管结构的低电压并五苯光电探测器. 物理学报, 2015, 64(10): 108503. doi: 10.7498/aps.64.108503
    [16] 胡海帆, 王颖, 陈杰, 赵士斌. 全三维电离粒子有源像素探测器优化仿真. 物理学报, 2014, 63(10): 100702. doi: 10.7498/aps.63.100702
    [17] 李东梅, 王观勇, 张巧明, 游胤涛, 熊祖洪. 激子复合区厚度对有机磁效应的影响. 物理学报, 2013, 62(6): 067801. doi: 10.7498/aps.62.067801
    [18] 王鹏, 郭闰达, 陈宇, 岳守振, 赵毅, 刘式墉. 梯度掺杂体异质结对有机太阳能电池光电转换效率的影响. 物理学报, 2013, 62(8): 088801. doi: 10.7498/aps.62.088801
    [19] 李宏建, 彭景翠, 许雪梅, 瞿述, 夏辉. 聚合物发光器件中激子的解离与复合效率. 物理学报, 2001, 50(11): 2247-2251. doi: 10.7498/aps.50.2247
    [20] 李 蕾, 饶雪松, 孙 鑫, 傅柔励, 褚君浩, 张志林. 电场中高分子的发光和激子的解离. 物理学报, 1998, 47(9): 1536-1541. doi: 10.7498/aps.47.1536
计量
  • 文章访问数:  6312
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-23
  • 修回日期:  2020-09-08
  • 上网日期:  2021-02-18
  • 刊出日期:  2021-03-05

/

返回文章
返回