搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

浅海周期起伏海底环境下的声传播

刘代 李整林 刘若芸

引用本文:
Citation:

浅海周期起伏海底环境下的声传播

刘代, 李整林, 刘若芸

Sound propagation in shallow water with periodic rough bottom

Liu Dai, Li Zheng-Lin, Liu Ruo-Yun
PDF
HTML
导出引用
  • 海底粗糙对水下声传播及水声探测等应用具有重要影响. 利用黄海夏季典型海洋环境, 分析了同时存在海底周期起伏和强温跃层条件下的声传播特性, 结果表明: 由于海底周期起伏的存在, 对于低频(< 1 kHz)、近程(10 km)的声信号, 传播损失可增大5—30 dB. 总结了声传播损失及脉冲到达结构随声源深度、海底起伏周期及起伏高度等因素变化的规律. 当海底起伏周期不变时, 起伏高度越大引起的异常声传播的影响随之变大; 当起伏高度不变时, 随着起伏周期变大, 其对声传播的影响逐渐变小. 用射线理论分析了其影响机理, 由于海底周期起伏改变了声波与海底的入射和反射角度, 使得原本小掠射角入射到海底的声线变为大掠射角, 导致海底的反射损失增大; 另一方面, 声线反射角度的改变会使得原本可以到达接收点的声能量, 由于与海底作用次数增加或变为反向传播而大幅度衰减. 在浅海负跃层环境下, 声源位于跃层上比位于跃层下对声传播影响更大. 周期起伏海底对脉冲声传播的影响表现在引起不同角度的声线(或简正波号数)之间的能量发生转化, 一些大角度声线能量衰减加大, 多途结构变少. 多途结构到达时间及相对幅度的变化进而影响声场的频谱, 会使得基于匹配场定位的方法性能受到影响. 所以, 声呐在实际浅海环境中应用时, 应对起伏海底的影响予以重视. 此外, 研究结果对海底地形测绘空间精度的提高也具有重要参考意义.
    The rough sea bottom has a large effect on underwater acoustic propagation and underwater acoustic detection applications. By using the typical shallow water environment from the Yellow Sea, the acoustic propagation characteristics under the condition of both periodic rough sea bottom and strong negative thermocline layer are systematically analyzed by using the parabolic equation model RAM (where RAM stands for range-dependent acoustic model) and ray theory. For a low-frequency and short-range acoustic source, the transmission loss (TL) increases up to about 5–30 dB due to the existence of the periodic rough bottom. Abnormal TLs and pulse arrival structures with different source depths, different periods and heights of the rough bottom are analyzed and summarized. Specifically, when the period of the rough bottom is constant, TL increases with the height of the rough bottom increasing. When the height of the rough bottom is constant, the effect of the rough bottom on the sound propagation becomes smaller with the increase of the period. The mechanism of the TL difference caused by rough bottom is explained by using the ray theory. The incidence and reflection angle of the sound ray on the sea bottom are changed due to the periodic rough bottom, which makes small grazing angles of some of the rays incident at sea bottom become large grazing angles, and the bottom loss increases. On the other hand, the change of the reflection angle increases the number of ray interaction with the sea bottom, causing the reversion propagation. Therefore, the energy of the sound field will attenuate with range increasing. The influence of the periodic rough bottom on the sound pulse propagation is mainly reflected in the energy conversion between sound rays (or normal modes) with different angles, the increasing of energy attenuation of some sound rays with large angles, and the decreasing of multipath structure. The change of the arrival time and relative amplitude of the multipath structure affect the frequency spectrum of the sound field, which will affect the performance of the method based on matching field localization. Most of existing studies focus on the influence of the change in large scale sea bottom topography on the sound field, but there are few studies on small scale periodic sea bottom fluctuations, and the relevant summary of the law of sound propagation is lacking. When sonar is used in the actual shallow water environment, more attention should be paid to the influence of the periodic rough bottom. In addition, the present research results also have important reference significance for the spatial accuracy of surveying and mapping of sea bottom topography.
      通信作者: 李整林, lzhl@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11874061, 11674349)资助的课题
      Corresponding author: Li Zheng-Lin, lzhl@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874061, 11674349)
    [1]

    鲍里斯·卡茨内尔松, 瓦莱里·佩提尼科夫, 詹姆斯·林奇 著 (程广利, 张亚蕾 译) 2012 浅海声学原理 (北京: 电子工业出版社)第7页

    Katsnelson B, Petnikov V, Lynch J (translated by Cheng G L, Zhang Y L) 2012 Fundamentals of Shallow Water Acoustics (Beijing: Electronic Industry Press) p7 (in Chinese)

    [2]

    艾特P C 著 (蔡志明 译) 2005 水声建模与仿真 (北京: 电子工业出版社) 第44页

    Etter P C (translated by Cai Z M) 2005 Underwater Acoustic Modeling and Simulation (Beijing: Electronic Industry Press) p44 (in Chinese)

    [3]

    Urick R J 1954 J. Acoust. Soc. Am. 26 231Google Scholar

    [4]

    McKinney C M, Anderson C 1964 J. Acoust. Soc. Am. 36 158Google Scholar

    [5]

    Jackson D R, Baird A M, Crisp J J, Thomson P A G 1986 J. Acoust. Soc. Am. 80 1188Google Scholar

    [6]

    Lyons A P, Anderson A L, Dwan F S 1995 J. Acoust. Soc. Am. 95 2441Google Scholar

    [7]

    李整林 2002 博士学位论文 (北京: 中国科学院声学研究所)

    Li Z L 2002 Ph. D. Dissertation (Beijing: The institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [8]

    Chiu L Y, Chang A Y 2014 J. Acoust. Soc. Am. 136 EL376Google Scholar

    [9]

    Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302Google Scholar

    [10]

    胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303Google Scholar

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta. Phys. Sin. 65 014303Google Scholar

    [11]

    梁民帅, 郁高坤, 彭临慧 2019 全国声学大会 中国深圳 9月20—23日, 1999 p123

    Liang M S, Yu G K, Peng L H 2019 Acoustical Society of China Shenzhen, China, September 20-23, 2019 p123 (in Chinese)

    [12]

    董阳, 朴胜春, 龚李佳 2020 哈尔滨工程大学学报 10 1Google Scholar

    Dong Y, Piao S C, Gong L J 2020 J. Harbin Eng. Univ. 10 1Google Scholar

    [13]

    Dacol D K 1990 J. Acoust. Soc. Am. 88 978Google Scholar

    [14]

    Broschat S L, Thorsos E I 1997 J. Acoust. Soc. Am. 101 2615Google Scholar

    [15]

    Jackson D 2013 J. Acoust. Soc. Am. 133 3251Google Scholar

    [16]

    彭朝晖, 周纪浔, 张仁和 2004 中国科学: 物理学 力学 天文学 34 304Google Scholar

    Peng Z H, Zhou J X, Zhang R H 2004 Sci. Sin.: Phys. Mech. Astron. 34 304Google Scholar

    [17]

    Ivakin A N, Lysanov Y P 1981 Sov Phys Acoust 27 212

    [18]

    Liu R Y, Li Z L 2019 Chin. Phys. B 28 014302Google Scholar

    [19]

    Li Z L, Zhang R H 2004 Chin. Phys. Lett. 21 1100Google Scholar

    [20]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) pp463, 458

    [21]

    Collins M D, Westwood E K 1991 J. Acoust. Soc. Am. 89 1068Google Scholar

    [22]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736Google Scholar

    [23]

    Collins M D 1994 J. Acoust. Soc. Am. 96 382Google Scholar

    [24]

    李整林, 张仁和, Mohsen Badiey, Luo Jing 2011 声学学报 36 559Google Scholar

    Li Z L, Zhang R H, Mohsen Badiey, Luo J 2011 Acta. Acust. 36 559Google Scholar

  • 图 1  黄海夏季负跃层环境及周期海底起伏示意图

    Fig. 1.  Shallow water environment with a negative thermocline in the Yellow Sea and the diagram of the periodic rough bottom.

    图 2  周期起伏海底与平坦海底情况下的TL比较, 其中接收深度为40 m, 声源深度分别为(a) 7 m和(b) 40 m

    Fig. 2.  Comparison of the TLs between rough bottom and flat bottom at two different source depths: (a) 7 m; (b) 40 m

    图 3  不同声源深度下传播损失差值$\Delta TL$随海底起伏周期的变化, 其中接收深度40 m, 声源频率分别为(a) 300 Hz和(b) 1000 Hz

    Fig. 3.  Statistical diagram of $\Delta TL$ with different source depths, periods and heights of the rough bottom at the receiver depth of 40 m, where the frequency of the source is (a) 300 Hz and (b) 1000 Hz.

    图 4  不同声源深度下传播损失差值$\Delta TL$随海底起伏周期及起伏高度二维变化结果 (a) 7 m; (b) 40 m

    Fig. 4.  The $\Delta TL$ with different periods and heights of the rough bottom at two different source depths: (a) 7 m; (b) 40 m.

    图 5  声源深度7 m时声线图 (a) 平坦海底; (b) 起伏周期为50 m (10λ)、起伏高度为3 m; (c) 起伏周期为50 m (10λ)、起伏高度为5 m; (d) 起伏周期为100 m (20λ)、起伏高度为5 m

    Fig. 5.  Rays for source above the thermocline (7 m) with different periodic rough bottom: (a) Flat sea bottom; (b) L = 50 m (10λ), ΔH = 3 m; (c) L = 50 m (10λ), ΔH = 5 m; (d) L = 100 m (20λ), ΔH = 5 m.

    图 6  声源深度40 m时声线图 (a) 平坦海底; (b) 起伏周期为50 m (10λ)、起伏高度为3 m; (c) 起伏周期为50 m (10λ)、起伏高度为5 m; (d) 起伏周期为100 m (20λ)、起伏高度为5 m

    Fig. 6.  Rays for source below the thermocline (40 m) with different periodic rough bottom: (a) Flat sea bottom; (b) L = 50 m (10λ), ΔH = 3 m; (c) L = 50 m (10λ), ΔH = 5 m; (d) L = 100 m (20λ), ΔH = 5 m.

    图 7  一个起伏周期声线传播示意图 (a) 海底起伏周期不变; (b) 海底起伏高度不变

    Fig. 7.  Diagram of ray propagation in one fluctuation period: (a) For constant L; (b) for constant $\Delta H$.

    图 8  声源位于跃层上(7 m)时脉冲到达结构随深度变化(收发距离为10 km) (a)平坦海底; (b) 起伏周期为50 m (10λ)、起伏高度为3 m; (c) 起伏周期为50 m (10λ)、起伏高度为5 m; (d) 起伏周期为100 m (20λ)、起伏高度为5 m

    Fig. 8.  Arrival pulses at different receiver depths for the source above the thermocline (7 m): (a) Flat sea bottom; (b) L = 50 m (10λ), ΔH = 3 m; (c) L = 50 m (10λ), ΔH = 5 m; (d) L = 100 m (20λ), ΔH = 5 m.

    图 9  声源位于跃层下(40 m)时脉冲到达结构随深度变化(收发距离为10 km) (a) 平坦海底; (b) 起伏周期为50 m (10λ)、起伏高度为3 m; (c) 起伏周期为50 m (10λ)、起伏高度为5 m; (d) 起伏周期为100 m (20λ)、起伏高度为5 m

    Fig. 9.  Arrival pulses at different receiver depths for the source below the thermocline (40 m): (a) Flat sea bottom; (b) L = 50 m (10λ), ΔH = 3 m; (c) L = 50 m (10λ), ΔH = 5 m; (d) L = 100 m (20λ), ΔH = 5 m.

    图 10  声源位于跃层上(7 m)时各接收深度频谱图(收发距离为10 km) (a) 平坦海底; (b)起伏周期为50 m (10λ)、起伏高度为3 m; (c) 起伏周期为50 m (10λ)、起伏高度为5 m; (d) 起伏周期为100 m (20λ)、起伏高度为5 m

    Fig. 10.  Spectrogram at different receiver depths for the source above the thermocline (7 m): (a) Flat sea bottom; (b) L = 50 m (10λ), ΔH = 3 m; (c) L = 50 m (10λ), ΔH = 5 m; (d) L = 100 m (20λ), ΔH = 5 m.

    图 11  声源位于跃层下(40 m)时各接收深度频谱图(收发距离为10 km) (a) 平坦海底; (b) 起伏周期为50 m (10λ)、起伏高度为3 m; (c) 起伏周期为50 m (10λ)、起伏高度为5 m; (d) 起伏周期为100 m (20λ)、起伏高度为5 m

    Fig. 11.  Spectrogram at different receiver depths for the source below the thermocline (40 m): (a) Flat sea bottom; (b) L = 50 m (10λ), ΔH = 3 m; (c) L = 50 m (10λ), ΔH = 5 m; (d) L = 100 m (20λ), ΔH = 5 m.

  • [1]

    鲍里斯·卡茨内尔松, 瓦莱里·佩提尼科夫, 詹姆斯·林奇 著 (程广利, 张亚蕾 译) 2012 浅海声学原理 (北京: 电子工业出版社)第7页

    Katsnelson B, Petnikov V, Lynch J (translated by Cheng G L, Zhang Y L) 2012 Fundamentals of Shallow Water Acoustics (Beijing: Electronic Industry Press) p7 (in Chinese)

    [2]

    艾特P C 著 (蔡志明 译) 2005 水声建模与仿真 (北京: 电子工业出版社) 第44页

    Etter P C (translated by Cai Z M) 2005 Underwater Acoustic Modeling and Simulation (Beijing: Electronic Industry Press) p44 (in Chinese)

    [3]

    Urick R J 1954 J. Acoust. Soc. Am. 26 231Google Scholar

    [4]

    McKinney C M, Anderson C 1964 J. Acoust. Soc. Am. 36 158Google Scholar

    [5]

    Jackson D R, Baird A M, Crisp J J, Thomson P A G 1986 J. Acoust. Soc. Am. 80 1188Google Scholar

    [6]

    Lyons A P, Anderson A L, Dwan F S 1995 J. Acoust. Soc. Am. 95 2441Google Scholar

    [7]

    李整林 2002 博士学位论文 (北京: 中国科学院声学研究所)

    Li Z L 2002 Ph. D. Dissertation (Beijing: The institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [8]

    Chiu L Y, Chang A Y 2014 J. Acoust. Soc. Am. 136 EL376Google Scholar

    [9]

    Li W, Li Z L, Zhang R H, Qin J X, Li J, Nan M X 2015 Chin. Phys. Lett. 32 064302Google Scholar

    [10]

    胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303Google Scholar

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta. Phys. Sin. 65 014303Google Scholar

    [11]

    梁民帅, 郁高坤, 彭临慧 2019 全国声学大会 中国深圳 9月20—23日, 1999 p123

    Liang M S, Yu G K, Peng L H 2019 Acoustical Society of China Shenzhen, China, September 20-23, 2019 p123 (in Chinese)

    [12]

    董阳, 朴胜春, 龚李佳 2020 哈尔滨工程大学学报 10 1Google Scholar

    Dong Y, Piao S C, Gong L J 2020 J. Harbin Eng. Univ. 10 1Google Scholar

    [13]

    Dacol D K 1990 J. Acoust. Soc. Am. 88 978Google Scholar

    [14]

    Broschat S L, Thorsos E I 1997 J. Acoust. Soc. Am. 101 2615Google Scholar

    [15]

    Jackson D 2013 J. Acoust. Soc. Am. 133 3251Google Scholar

    [16]

    彭朝晖, 周纪浔, 张仁和 2004 中国科学: 物理学 力学 天文学 34 304Google Scholar

    Peng Z H, Zhou J X, Zhang R H 2004 Sci. Sin.: Phys. Mech. Astron. 34 304Google Scholar

    [17]

    Ivakin A N, Lysanov Y P 1981 Sov Phys Acoust 27 212

    [18]

    Liu R Y, Li Z L 2019 Chin. Phys. B 28 014302Google Scholar

    [19]

    Li Z L, Zhang R H 2004 Chin. Phys. Lett. 21 1100Google Scholar

    [20]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) pp463, 458

    [21]

    Collins M D, Westwood E K 1991 J. Acoust. Soc. Am. 89 1068Google Scholar

    [22]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736Google Scholar

    [23]

    Collins M D 1994 J. Acoust. Soc. Am. 96 382Google Scholar

    [24]

    李整林, 张仁和, Mohsen Badiey, Luo Jing 2011 声学学报 36 559Google Scholar

    Li Z L, Zhang R H, Mohsen Badiey, Luo J 2011 Acta. Acust. 36 559Google Scholar

  • [1] 汪磊, 黄益旺, 郭霖, 任超. 浅海粗糙海底声散射建模及声场特性. 物理学报, 2024, 73(3): 034301. doi: 10.7498/aps.73.20231472
    [2] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120220566
    [3] 毕思昭, 彭朝晖, 王光旭, 谢志敏, 张灵珊. 西太平洋远距离声传播特性. 物理学报, 2022, 71(21): 214302. doi: 10.7498/aps.71.20220566
    [4] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律. 物理学报, 2022, 71(2): 024302. doi: 10.7498/aps.71.20211132
    [5] 高飞, 徐芳华, 李整林, 秦继兴. 大陆坡内波环境中声传播模态耦合及强度起伏特征. 物理学报, 2022, 71(20): 204301. doi: 10.7498/aps.71.20220634
    [6] 李晓彬, 孙超, 刘雄厚. 浅海负跃层中利用互相关输出峰值迁移曲线的声源深度判别. 物理学报, 2022, 71(13): 134302. doi: 10.7498/aps.71.20211987
    [7] 李沁然, 孙超, 谢磊. 浅海内孤立波动态传播过程中声波模态强度起伏规律研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211132
    [8] 刘今, 彭朝晖, 张灵珊, 刘若芸, 李整林. 浅海涌浪对表面声道声传播的影响. 物理学报, 2021, 70(5): 054302. doi: 10.7498/aps.70.20201549
    [9] 姚美娟, 鹿力成, 孙炳文, 郭圣明, 马力. 浅海起伏海面下气泡层对声传播的影响. 物理学报, 2020, 69(2): 024303. doi: 10.7498/aps.69.20191208
    [10] 侯倩男, 吴金荣. 浅海小掠射角的海底界面声反向散射模型的简化. 物理学报, 2019, 68(4): 044301. doi: 10.7498/aps.68.20181475
    [11] 乔厚, 何锃, 张恒堃, 彭伟才, 江雯. 二维含多孔介质周期复合结构声传播分析. 物理学报, 2019, 68(12): 128101. doi: 10.7498/aps.68.20190164
    [12] 李赫, 郭新毅, 马力. 利用海洋环境噪声空间特性估计浅海海底分层结构及地声参数. 物理学报, 2019, 68(21): 214303. doi: 10.7498/aps.68.20190824
    [13] 张鹏, 李整林, 吴立新, 张仁和, 秦继兴. 深海海底反射会聚区声传播特性. 物理学报, 2019, 68(1): 014301. doi: 10.7498/aps.68.20181761
    [14] 李晟昊, 李整林, 李文, 秦继兴. 深海海底山环境下声传播水平折射效应研究. 物理学报, 2018, 67(22): 224302. doi: 10.7498/aps.67.20181480
    [15] 胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利. 深海海底斜坡环境下的声传播. 物理学报, 2016, 65(1): 014303. doi: 10.7498/aps.65.014303
    [16] 周振凯, 韦利明, 丰杰. ZnO/Diamond/Si结构中声表面波传播特性分析. 物理学报, 2013, 62(10): 104601. doi: 10.7498/aps.62.104601
    [17] 赵德双, 岳文君, 余敏, 张升学. 时间反演脉冲电磁波在双负材料中传播特性研究. 物理学报, 2012, 61(7): 074102. doi: 10.7498/aps.61.074102
    [18] 李琴, 郭红. 宽频脉冲光的传播特性. 物理学报, 2011, 60(5): 054204. doi: 10.7498/aps.60.054204
    [19] 张民, 吴振森, 张延冬, 杨廷高. 脉冲波在强起伏湍流介质中的传播特征分析. 物理学报, 2001, 50(6): 1052-1057. doi: 10.7498/aps.50.1052
    [20] 朱家珍, 王耕国. 离子声孤子在不均匀等离子体中的传播特性. 物理学报, 1990, 39(11): 1764-1771. doi: 10.7498/aps.39.1764
计量
  • 文章访问数:  8173
  • PDF下载量:  218
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-30
  • 修回日期:  2020-09-21
  • 上网日期:  2021-01-22
  • 刊出日期:  2021-02-05

/

返回文章
返回