搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维Janus原子晶体的电子性质

王盼 宗易昕 文宏玉 夏建白 魏钟鸣

引用本文:
Citation:

二维Janus原子晶体的电子性质

王盼, 宗易昕, 文宏玉, 夏建白, 魏钟鸣

Electronic properties of two-dimensional Janus atomic crystal

Wang Pan, Zong Yi-Xin, Wen Hong-Yu, Xia Jian-Bai, Wei Zhong-Ming
PDF
HTML
导出引用
  • 自从石墨烯问世以来, 具有各种新奇特性的二维材料在光电设备、自旋电子器件和谷电子器件等领域受到越来越多的关注. 其中, 使用各种分子基团对石墨烯进行不对称官能化时出现的优异性质, 引发了人们对其他具有不对称表面特性的Janus二维材料的研究. 作为二维材料的重要衍生物, Janus二维材料(尤其是Janus过渡金属硫化物)已成为近年来的研究热点. 实验和理论上均已证实这类材料由于具有镜面不对称性而拥有新颖的特性, 例如强的Rashba效应和平面外压电极化, 为其在传感器、制动器和其他机电设备中的应用提供了广阔的前景. 本文综述了新兴的Janus二维材料(包括Janus石墨烯, 各种Janus 二维材料以及Janus二维范德瓦耳斯异质结)的最新研究进展, 总结了Janus二维材料独特的电子性质和潜在的应用. 最后, 给出了对Janus二维材料进行下一步探索的结论和展望.
    Since the advent of graphene, two-dimensional materials with various novel properties have received more and more attention in the fields of optoelectronic devices, spintronics and valley electronic devices. Among them, the excellent properties that appear in graphene with various molecular groups for asymmetric functionalization have led to the research of other Janus two-dimensional materials with asymmetric surface characteristics. As an important derivative of two-dimensional materials, Janus two-dimensional materials (especially Janus transition metal chalcogenides) have become a research hotspot in recent years. Both experiment and theory have confirmed that this kind of material has mirror asymmetry and novel characteristics, such as strong Rashba effect and out-of-plane piezoelectric polarization, and thus showing a great prospect for its applications in sensors, actuators, and other electromechanical devices. In this review we introduce the recent research progress of emerging Janus two-dimensional materials (including Janus graphene, various Janus two-dimensional materials and Janus two-dimensional van der Waals heterojunction), and summarize the unique electronic properties and potential applications of Janus two-dimensional materials. Finally, we draw some conclusions and depict a prospect of further exploration of Janus two-dimensional materials.
      通信作者: 魏钟鸣, zmwei@semi.ac.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2018YFB2200501)和国家自然科学基金(批准号: 11904360)资助的课题
      Corresponding author: Wei Zhong-Ming, zmwei@semi.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB2200501) and the National Natural Science Foundation of China (Grant No. 11904360)
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Topsakal M, Aktürk E, Ciraci1 S 2009 Phys. Rev. B 79 115442Google Scholar

    [3]

    Yuan S, Shen C, Deng B, Chen X, Guo Q, Ma Y, Abbas A, Liu B, Haiges R, Ott C 2018 Nano Lett. 18 3172Google Scholar

    [4]

    Zheng J, Zhang H, Dong S, Liu Y, Nai C T, Shin H S, Jeong H Y, Liu B, Loh K P 2014 Nat. Commun. 5 1Google Scholar

    [5]

    刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 物理学报 63 117101Google Scholar

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101Google Scholar

    [6]

    李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱 2019 物理学报 68 134203Google Scholar

    Li J H, Zhang S N, Zhai Y J, Ma J G, Fang W H, Zhang Y 2019 Acta Phys. Sin. 68 134203Google Scholar

    [7]

    吴木生, 徐波, 刘刚, 欧阳楚英 2013 物理学报 62 037103Google Scholar

    Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103Google Scholar

    [8]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [9]

    Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 033305Google Scholar

    [10]

    曹娟, 崔磊, 潘靖 2013 物理学报 62 187102Google Scholar

    Cao J, Cui L, Pan J 2013 Acta Phys. Sin 62 187102Google Scholar

    [11]

    Ni Z, Liu Q, Tang K, et al. 2012 Nano Lett. 12 113Google Scholar

    [12]

    秦志辉 2017 物理学报 66 216802Google Scholar

    Qin Z H 2017 Acta Phys. Sin. 66 216802Google Scholar

    [13]

    Ji X, Kong N, Wang J, Li W, Xiao Y, Gan S T, Zhang Y, Li Y, Song X, Xiong Q 2018 Adv. Mater. 30 1803031Google Scholar

    [14]

    谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301Google Scholar

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar

    [15]

    Gong K, Zhang L, Ji W, Guo H 2014 Phys. Rev. B 90 125441Google Scholar

    [16]

    曾祥明, 鄢慧君, 欧阳楚英 2012 物理学报 61 247101Google Scholar

    Zeng X M, Yan H J, Ouyang C Y 2012 Acta Phys. Sin. 61 247101Google Scholar

    [17]

    Wang Y, Huang P, Ye M, Quhe R, Pan Y, Zhang H, Zhong H, Shi J, Lu J 2017 Chem. Mater. 29 2191Google Scholar

    [18]

    Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W, Ni Z 2016 Nat. Commun. 7 13352Google Scholar

    [19]

    Zhang F, Jiang X, He Z, Liang W, Xu S, Zhang H 2019 Opt. Mater. 95 109209Google Scholar

    [20]

    X. Tang, Hu L, Fan T, Zhang L, Zhu L, Li H, Liu H, Liang J, Wang K, Li Z 2019 Adv. Funct. Mater. 29 1808746Google Scholar

    [21]

    栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡 2019 物理学报 68 026802Google Scholar

    Luan X W, Sun J P, Wang F S, Wei H L, Hu Y F 2019 Acta Phys. Sin. 68 026802Google Scholar

    [22]

    Song Y, Chen Y, Jiang X, Liang W, Wang K, Liang Z, Ge Y, Zhang F, Wu L, Zheng J 2018 Adv. Opt. Mater. 6 1701287Google Scholar

    [23]

    Wang Y, Chen K, Hao H, Yu G, Zeng B, Wang H, Zhang F, Wu L, Li J, Xiao S, He J, Zhang Y, Zhang H 2019 Nanoscale 11 2637Google Scholar

    [24]

    Lu L, Wang W, Wu L, Jiang X, Xiang Y, Li J, Fan D, Zhang H 2017 ACS Photonics 4 2852Google Scholar

    [25]

    Zhu Z, Cai X, Yi S, Chen J, Dai Y, Niu C, Guo Z, Xie M, Liu F, Cho J H, Jia Y, Zhang Z 2017 Phys. Rev. Lett. 119 106101Google Scholar

    [26]

    Xing C, Chen S, Liang X, Liu Q, Qu M, Zou Q, Li J, Tan H, Liu L, Fan D 2018 ACS Appl. Mater. Interfaces 10 27631Google Scholar

    [27]

    Wang C, Peng Q Q, Fan X W, Liang W Y, Zhang F, Liu J, Zhang H 2018 Chin. Phys. B 27 094214Google Scholar

    [28]

    Tuo M, Xu C, Mu H, Bao X, Wang Y, Xiao S, Ma W, Li L, Tang D, Zhang H 2018 ACS Photonics 5 1808Google Scholar

    [29]

    Liu J, Jiang X, Zhang R, Zhang Y, Wu L, Lu W, Li J, Li Y, Zhang H 2019 Adv. Funct. Mater. 29 1807326Google Scholar

    [30]

    Wu Q, Chen S, Wang Y, Wu L, Jiang X, Zhang F, Jin X, Jiang Q, Zheng Z, Li J, Zhang M, Zhang H 2019 Adv. Mater. Technol. 4 1800532Google Scholar

    [31]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [32]

    柴磊, 钟敏 2016 物理学报 65 237902Google Scholar

    Chai L, Zhong M 2016 Acta Phys. Sin. 65 237902Google Scholar

    [33]

    Guo Z, Chen S, Wang Z, Yang Z, Liu F, Xu Y, Wang J, Yi Y, Zhang H, Liao L, Chu P K, Yu X F 2017 Adv. Mater. 29 1703811Google Scholar

    [34]

    Li C, Huang W, Gao L, Wang H, Hu L, Chen T, Zhang H 2020 Nanoscale 12 2201Google Scholar

    [35]

    Lu L, Tang X, Cao R, Wu L, Li Z, Jing G, Dong B, Lu S, Li Y, Xiang Y, Li J, Fan D, Zhang H 2017 Adv. Opt. Mater. 5 1700301Google Scholar

    [36]

    Song Y, You K, Chen Y, Zhao J, Jiang X, Ge Y, Wang Y, Zheng J, Xing C, Zhang H 2019 Nanoscale 11 12595Google Scholar

    [37]

    Li J, Luo H, Zhai B, Lu R, Guo Z, Zhang H, Liu Y 2016 Sci. Rep. 6 30361Google Scholar

    [38]

    Xing C, Xie Z, Liang Z, Liang W, Fan T, Ponraj J S, Dhanabalan S C, Fan D, Zhang H 2017 Adv. Opt. Mater. 5 1700884Google Scholar

    [39]

    Late D J, Huang Y K, Liu B, Acharya J, Shirodkar S N, Luo J, Yan A, Charles D, Waghmare U V, Dravid V P 2013 ACS Nano 7 4879Google Scholar

    [40]

    Wang T, Guo Y, Wan P, Zhang H, Chen X, Sun X 2016 Small 12 3748Google Scholar

    [41]

    Zhou Y, Zhang M, Guo Z, Miao L, Han S T, Wang Z, Zhang X, Zhang H, Peng Z 2017 Mater. Horiz. 4 997Google Scholar

    [42]

    Shao J, Tong L, Tang S, Guo Z, Zhang H, Li P, Wang H, Du C, Yu X F 2015 ACS Appl. Mater. Interfaces 7 5391Google Scholar

    [43]

    Ren X, Zhou J, Qi X, Liu Y, Huang Z, Li Z, Ge Y, Dhanabalan S C, Ponraj J S, Wang S, Zhong J, Zhang H 2017 Adv. Energy Mater. 7 1700396Google Scholar

    [44]

    Han W, Zang C, Huang Z, Zhang H, Ren L, Qi X, Zhong J 2014 Int. J. Hydrogen Energy 39 19502Google Scholar

    [45]

    Jiang Q, Xu L, Chen N, Zhang H, Dai L, Wang S 2016 Angew. Chem. Int. Ed. 55 13849Google Scholar

    [46]

    Wang R, Li X, Wang Z, Zhang H 2017 Nano Energy 34 131Google Scholar

    [47]

    Ma D, Li Y, Mi H, Luo S, Zhang P, Lin Z, Li J, Zhang H 2018 Angew. Chem. Int. Ed. 57 8901Google Scholar

    [48]

    Li Y, Wang R, Guo Z, Xiao Z, Wang H, Luo X, Zhang H 2019 J. Mater. Chem. A 7 25227Google Scholar

    [49]

    Tao W, Kong N, Ji X, Zhang Y, Sharma A, Ouyang J, Qi B, Wang J, Xie N, Kang C 2019 Chem. Soc. Rev. 48 2891Google Scholar

    [50]

    Tao W, Ji X, Xu X, Islam M A, Li Z, Chen S, Saw P E, Zhang H, Bharwani Z, Guo Z 2017 Angew. Chem. Int. Ed. 56 11896Google Scholar

    [51]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [52]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406Google Scholar

    [53]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B 2012 Nat. Commun. 3 887Google Scholar

    [54]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [55]

    Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 16055Google Scholar

    [56]

    Li H, Lu G, Wang Y, Yin Z, Cong C, He Q, Wang L, Ding F, Yu T, Zhang H 2013 Small 9 1974Google Scholar

    [57]

    Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N 2013 Science 340 1226419Google Scholar

    [58]

    Shi Y, Li H, Li L J 2015 Chem. Soc. Rev. 44 2744Google Scholar

    [59]

    Feng Q, Mao N, Wu J, Xu H, Wang C, Zhang J, Xie L 2015 ACS Nano 9 7450Google Scholar

    [60]

    Feng X, Tang Q, Zhou J, Fang J, Ding P, Sun L, Shi L 2013 Cryst. Res. Technol. 48 363Google Scholar

    [61]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951Google Scholar

    [62]

    Wang X R, Li X L, Zhang L, Yoon Y, Weber P K, Wang H L, Guo J, Dai H J 2009 Science 324 768Google Scholar

    [63]

    Bostwick A, Ohta T, Seyller T, Horn K, Rotenberg E 2007 Nat. Phys. 3 36Google Scholar

    [64]

    高潭华, 郑福昌, 王晓春 2018 物理学报 67 167101Google Scholar

    Gao T H, Zheng F C, Wang X C 2018 Acta Phys. Sin. 67 167101Google Scholar

    [65]

    徐雷, 戴振宏, 隋鹏飞, 王伟田, 孙玉明 2014 物理学报 63 186101Google Scholar

    Xu L, Dai Z H, Sui P F, Wang W T, Sun Y M 2014 Acta Phys. Sin. 63 186101Google Scholar

    [66]

    Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867Google Scholar

    [67]

    Yang M, Zhao R, Wang J, Zhang L, Xie Q, Liu Z, Liu Z 2013 J. Appl. Phys. 113 084313Google Scholar

    [68]

    Kolobov A V, Tominaga J 2016 Two-Dimensional Transition-Metal Dichalcogenides (Switzerland: Springer International Publishing) p168

    [69]

    Bychkov Y A, Rashba E I 1984 JETP Lett. 39 78Google Scholar

    [70]

    Ren W, Qiao Z, Wang J, Sun Q, Guo H 2006 Phys. Rev. Lett. 97 066603Google Scholar

    [71]

    Lu A Y, Zhu H, Xiao J, et al. 2017 Nat. Nanotechnol. 12 744Google Scholar

    [72]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [73]

    Cheng Y, Zhu Z, Tahir M, Schwingenschlögl U 2013 Europhys. Lett. 102 57001Google Scholar

    [74]

    Dong L, Lou J, Shenoy V B 2017 ACS Nano 11 8242Google Scholar

    [75]

    Ji Y, Yang M, Lin H, Hou T, Wang L, Li Y, Lee S T 2018 J. Phys. Chem. C 122 3123Google Scholar

    [76]

    Guan Z, Ni S, Hu S 2018 J. Phys. Chem. C 122 6209Google Scholar

    [77]

    Yao Q F, Cai J, Tong W Y, Gong S J, Wang J Q, Wan X, Duan C G, Chu J H 2017 Phys. Rev. B 95 165401Google Scholar

    [78]

    Peng R, Ma Y, Zhang S, Huang B, Dai Y 2018 J. Phys. Chem. Lett. 9 3612Google Scholar

    [79]

    Hu T, Jia F, Zhao G, Wu J, Stroppa A, Ren W 2018 Phys. Rev. B 97 235404Google Scholar

    [80]

    Georgakilas V, Otyepka M, Bourlinos A B, Chandra V, Kim N, Kemp K C, Hobza P, Zboril R, Kim K S 2012 Chem. Rev. 112 6156Google Scholar

    [81]

    Karlický F, Datta K K R, Otyepka M, Zbořil R 2013 ACS Nano 7 6434Google Scholar

    [82]

    Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401Google Scholar

    [83]

    Zhou J, Wu M M, Zhou X, Sun Q 2009 Appl. Phys. Lett. 95 103108Google Scholar

    [84]

    Xiang H J, Kan E J, Wei S H, Gong X G, Whangbo M H 2010 Phys. Rev. B 82 165425Google Scholar

    [85]

    Haberer D, Giusca C E, Wang Y, Sachdev H, et al. 2011 Adv. Mater. 23 4497Google Scholar

    [86]

    Li Y, Chen Z 2012 J. Phys. Chem. C 116 4526Google Scholar

    [87]

    Nair R R, Ren W, Jalil R, Riaz I, Kravets V G, et al. 2010 Small 6 2877Google Scholar

    [88]

    Zbořil R, Karlický F, Bourlinos A B, Steriotis T A, et al. 2010 Small 6 2885Google Scholar

    [89]

    Withers F, Dubois M, Savchenko A K 2010 Phys. Rev. B 82 073403Google Scholar

    [90]

    Leenaerts O, Peelaers H, Hernández-Nieves A D, Partoens B, Peeters F M 2010 Phys. Rev. B 82 195436Google Scholar

    [91]

    Samarakoon D K, Chen Z, Nicolas C, Wang X Q 2011 Small 7 965Google Scholar

    [92]

    Lee W H, Suk J W, Chou H, Lee J, Hao Y, et al. 2012 Nano Lett. 12 2374Google Scholar

    [93]

    Wang Z, Wang J, Li Z, Gong P, Liu X, et al. 2012 Carbon 50 5403

    [94]

    Yang M, Zhou L, Wang J, Liu Z, Liu Z 2012 J. Phys. Chem. C 116 844Google Scholar

    [95]

    Singh R, Bester G 2011 Phys. Rev. B 84 155427Google Scholar

    [96]

    Li F, Li Y 2015 J. Mater. Chem. C 3 3416

    [97]

    Zhang L, Yu J, Yang M, Xie Q, Peng H, Liu Z 2013 Nat. Commun. 4 1443Google Scholar

    [98]

    Ong M T, Reed E J 2012 ACS Nano 6 1387Google Scholar

    [99]

    Ong M T, Duerloo K A N, Reed E J 2013 J. Phys. Chem. C 117 3615Google Scholar

    [100]

    Kim H J, Noor A Alam M, Son J Y, Shin Y H 2014 Chem. Phys. Lett. 603 62Google Scholar

    [101]

    Ng S W, Noor N, Zheng Z 2018 NPG Asia Mater. 10 217Google Scholar

    [102]

    Kandemir A, Sahin H 2018 Phys. Chem. Chem. Phys. 20 17380Google Scholar

    [103]

    Riis-Jensen A C, Deilmann T, Olsen T, Thygesen K S 2019 ACS Nano 13 13354Google Scholar

    [104]

    Sun Y, Shuai Z, Wang D 2018 Nanoscale 10 21629Google Scholar

    [105]

    Guo S D 2018 Phys. Chem. Chem. Phys. 20 7236Google Scholar

    [106]

    Er D, Ye H, Frey N C, Kumar H, Lou J, Shenoy V B 2018 Nano Lett. 18 3943Google Scholar

    [107]

    Hou B, Zhang Y, Zhang H, Shao H, Ma C, Zhang X, Chen Y, Xu K, Ni G, Zhu H 2020 J. Phys. Chem. Lett. 11 3116Google Scholar

    [108]

    Zhao X W, Qiu B, Hua G C, Yue W W, Ren J F, Yuan X B 2019 Appl. Surf. Sci. 490 172Google Scholar

    [109]

    Shi W, Li G, Wang Z 2019 J. Phys. Chem. C 123 12261Google Scholar

    [110]

    Zhou W, Chen J, Yang Z, Liu J, Ouyang F 2019 Phys. Rev. B 99 075160Google Scholar

    [111]

    Xia C, Xiong W, Du J, Wang T, Peng Y, Li J 2018 Phys. Rev. B 98 165424Google Scholar

    [112]

    Chen J, Wu K, Ma H, Hu W, Yang J 2020 RSC Adv. 10 6388Google Scholar

    [113]

    Wang J, Shu H, Zhao T, Liang P, Wang N, Cao D, Chen X 2018 Phys. Chem. Chem. Phys. 20 18571Google Scholar

    [114]

    Kim M R, Ma D 2015 J. Phys. Chem. Lett. 6 85Google Scholar

    [115]

    Ju L, Bie M, Shang J, Tang X, Kou L 2020 J. Phys. Mater. 3 022004Google Scholar

    [116]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424Google Scholar

    [117]

    Ju L, Bie M, Tang X, Shang J, Kou L 2020 ACS Appl. Mater. Interfaces 12 29335

    [118]

    Wei S, Li J, Liao X, Jin H, Wei Y 2019 J. Phys. Chem. C 123 22570Google Scholar

    [119]

    Ma X, Yong X, Jian C, Zhang J 2019 J. Phys. Chem. C 123 18347Google Scholar

    [120]

    Yagmurcukardes M, Sevik C, Peeters F M 2019 Phys. Rev. B 100 045415Google Scholar

    [121]

    Jin C, Tang X, Tan X, Smith S C, Dai Y, Kou L 2019 J. Mater. Chem. A 7 1099Google Scholar

    [122]

    Chaurasiya R, Dixit A 2020 Phys. Chem. Chem. Phys. 22 13903Google Scholar

    [123]

    Tang X, Li S, Ma Y, Du A, Liao T, Gu Y, Kou L 2018 J. Phys. Chem. C 122 19153Google Scholar

    [124]

    Jin H, Wang T, Gong Z R, Long C, Dai Y 2018 Nanoscale 10 19310Google Scholar

    [125]

    Ma Y, Kou L, Huang B, Dai Y, Heine T 2018 Phys. Rev. B 98 085420Google Scholar

    [126]

    Li Lou, Cao H, Xu B, Deng J, Liu J, Liu Y, Ding X, Sun J, Liu J Z 2020 Phys. Rev. Appl. 13 054061Google Scholar

    [127]

    Yagmurcukardes M, Peeters F M 2020 Phys. Rev. B 101 155205

    [128]

    Moujaes E A, Diery W A 2019 J. Phys.: Condens. Matter 31 455502Google Scholar

    [129]

    Yang X, Banerjee A, Ahuja R 2019 Catal. Sci. Technol. 9 4981Google Scholar

    [130]

    Chen Y, Liu J, Yu J, Guo Y, Sun Q 2019 Phys. Chem. Chem. Phys. 21 1207Google Scholar

    [131]

    Zhou J, Wang Q, Sun Q, Jena Puru 2010 Phys. Rev. B 81 085442Google Scholar

    [132]

    Sun M, Ren Q, Wang S, Yu J, Tang W 2016 J. Phys. D: Appl. Phys. 49 445305Google Scholar

    [133]

    Liu F C, Zheng S J, Chaturvedi A, Zólyomi V, Zhou J D, Fu Q D, Zhu C, Yu P, Zeng Q S, Drummond N D, Fan H J, Kloc C, Falko V, He X X, Liu Z 2016 Nanoscale 8 5826Google Scholar

    [134]

    Kandemir A, Sahin H 2018 Phys. Rev. B 97 155410Google Scholar

    [135]

    Huang A, Shi W, Wang Z 2019 J. Phys. Chem. C 123 11388Google Scholar

    [136]

    Bui H D, Jappor H R, Hieu N N 2019 Superlattice. Microst. 125 1Google Scholar

    [137]

    Zhong Q, Dai Z, Liu J, Zhao Y, Meng S 2020 Physica E 115 113683Google Scholar

    [138]

    Silva R, Barbosa R, Mançano R R, Durães N, Pontes R B, Miwa R H, Fazzio A, Padilha J E 2019 ACS Appl. Nano Mater. 2 890Google Scholar

    [139]

    Guo Y, Zhou S, Bai Y, Zhao J 2017 Appl. Phys. Lett. 110 163102Google Scholar

    [140]

    Bai Y, Zhang Q, Xu N, Deng K, Kan E 2019 Appl. Surf. Sci. 478 522Google Scholar

    [141]

    Guo S D, Guo X S, Han R Y, Deng Y 2019 Phys. Chem. Chem. Phys. 21 24620Google Scholar

    [142]

    Zhang X, Cui Y, Sun L, Li M, Du J, Huang Y 2019 J. Mater. Chem. C 7 13203Google Scholar

    [143]

    Nguyen H T T, Tuan V V, Nguyen C V, Phuc H V, Tong H D 2020 Phys. Chem. Chem. Phys. 22 11637Google Scholar

    [144]

    Peng R, Ma Y, Huang B, Dai Y 2019 J. Mater. Chem. A 7 603Google Scholar

    [145]

    Guo S D, Guo X S, Deng Y 2019 J. Appl. Phys. 126 154301Google Scholar

    [146]

    Wu Q, Cao L, Ang Y S, Ang L K 2020 Nano Express 1 010042Google Scholar

    [147]

    Kahraman Z, Kandemir A, Yagmurcukardes M, Sahin H 2019 J. Phys. Chem. C 123 4549Google Scholar

    [148]

    Ersan F, Ataca C 2020 Phys. Rev. Appl. 13 064008Google Scholar

    [149]

    Yang J, Wang A, Zhang S, Liu J, Zhong Z, Chen L 2019 Phys. Chem. Chem. Phys. 21 132Google Scholar

    [150]

    Zhang C, Nie Y, Sanvito S, Du A 2019 Nano Lett. 19 1366Google Scholar

    [151]

    Luo C, Peng X, Qu J, Zhong J 2020 Phys. Rev. B 101 245416Google Scholar

    [152]

    Dey D, Botana A S 2020 Phys. Rev. Mater. 4 074002Google Scholar

    [153]

    Yuan J, Yang Y, Cai Y, Wu Y, Chen Y, et al. 2020 Phys. Rev. B 101 094420Google Scholar

    [154]

    Liang J, Wang W, Du H, et al. 2020 Phys. Rev. B 101 184401Google Scholar

    [155]

    Zhong S, Xu B, Cui A, et al. 2020 ACS Omega 5 864Google Scholar

    [156]

    He J, Lyu P, Sun L Z, García Á M, Nachtigall P 2016 J. Mater. Chem. C 4 6500Google Scholar

    [157]

    Jiao J, Miao N, Li Z, Gan Y, Zhou J, Sun Z 2019 J. Phys. Chem. Lett. 10 3922Google Scholar

    [158]

    Ren Y, Li Q, Wan W, Liu Y, Ge Y 2020 Phys. Rev. B 101 134421Google Scholar

    [159]

    Chuang P, Ho S C, Smith L W, Sfigakis F, Pepper M, Chen C H, Fan J C, Griffiths J P, Farrer I, Beere H E, et al. 2015 Nat. Nanotech. 10 35Google Scholar

    [160]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [161]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152Google Scholar

    [162]

    Huang B, Clark G, Navarro-Moratalla E, et al. 2017 Nature 546 270Google Scholar

    [163]

    Gong C, Li L, Li Z, et al. 2017 Nature 546 265Google Scholar

    [164]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [165]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnology 13 289Google Scholar

    [166]

    O’Hara D J, Zhu T, Trout A H, et al. 2018 Nano Lett. 18 3125Google Scholar

    [167]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241Google Scholar

    [168]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [169]

    Behera A K, Chowdhury S, Das S R 2019 Appl. Phys. Lett. 114 232402Google Scholar

    [170]

    Liu J, Shi M, Lu J, Anantram M P 2018 Phys. Rev. B 97 054416Google Scholar

    [171]

    Xu C, Feng J, Prokhorenko S, Nahas Y, Xiang H, Bellaiche L 2020 Phys. Rev. B 101 060404Google Scholar

    [172]

    Mogulkoc A, Mogulkoc Y, Jahangirov S, Durgun E 2019 J. Phys. Chem. C 123 29922Google Scholar

    [173]

    Vu T V, Tong H D, Tran D P, Binh N T T, Nguyen C V, Phuc H V, Do H M, Hieu N N 2019 RSC Adv. 9 41058Google Scholar

    [174]

    Wang Y, W ei, Wang H, Mao N, Li F P, Huang B B, Dai Y 2019 J. Phys. Chem. Lett. 10 7426Google Scholar

    [175]

    Chen W, Hou X, Shi X, Pan H 2018 ACS Appl. Mater. Interfaces 10 35289Google Scholar

    [176]

    Dimple, Jena N, Rawat A, Ahammed R, Mohanta M K, Sarkar A D 2018 J. Mater. Chem. A 6 24885Google Scholar

    [177]

    Idrees M, Din H U, Ali R, Rehman G, Hussain T, Nguyen C V, Ahmad I, Amin B 2019 Phys. Chem. Chem. Phys. 21 18612Google Scholar

    [178]

    Rawat A, Mohanta M K, Jena N, Dimple, Ahammed R, Sarkar A D 2020 J. Phys. Chem. C 124 10385Google Scholar

    [179]

    Li F, Wei W, Zhao P, Huang B, Dai Y 2017 J. Phys. Chem. Lett. 8 5959Google Scholar

    [180]

    Wang Y, Wei W, Huang B, Dai Y 2019 J. Phys.: Condens. Matter 31 125003Google Scholar

    [181]

    Guo W, Ge X, Sun S, Xie Y, Ye X 2020 Phys. Chem. Chem. Phys. 22 4946Google Scholar

    [182]

    Yu L, Sun S, Ye X 2020 Phys. Chem. Chem. Phys. 22 2498Google Scholar

    [183]

    Abbas H G, Hahn J R, Kang H S 2020 J. Phys. Chem. C 124 3812Google Scholar

    [184]

    Cao L, Ang Y S, Wu Q, Ang L K 2019 Appl. Phys. Lett. 115 241601Google Scholar

    [185]

    Cavalcante L S R, Gjerding, Chaves A, Thygesen K S 2019 J. Phys. Chem. C 123 16373Google Scholar

    [186]

    Palsgaard M, Gunst T, Markussen T, Thygesen K S, Brandbyge M 2018 Nano Lett. 18 7275Google Scholar

    [187]

    Ren K, Wang S, Luo Y, Chou J P, Yu J, et al. 2020 J. Phys. D: Appl. Phys. 53 185504Google Scholar

    [188]

    Xu D, Zhai B, Gao Q, Wang T, Li J, Xia C 2020 J. Phys. D: Appl. Phys. 53 055104Google Scholar

    [189]

    Jing T, Liang D, Hao J, Deng M, Cai S 2019 Phys. Chem. Chem. Phys. 21 5394Google Scholar

    [190]

    Din H U, Idrees M, Albar A, Shafiq M, Ahmad I, Nguyen C V, Amin B 2019 Phys. Rev. B 100 165425Google Scholar

    [191]

    Idrees M, Fawad M, Bilal M, Saeed Y, Nguyen C, Amin B 2020 RSC Adv. 10 25801Google Scholar

    [192]

    Idrees M, Din H U, Rehman S U, Shafiq M, Saeed Y, Bai H D, Nguyen C V, Amin B 2020 Phys. Chem. Chem. Phys. 22 10351Google Scholar

    [193]

    Li X, Wang X, Hao W, Mi C, Zhou H 2019 AIP Adv. 9 115302Google Scholar

    [194]

    Vo D D, Vu T V, Hieu N V, Hieu N N, Phuc H V 2019 Phys. Chem. Chem. Phys. 21 25849Google Scholar

    [195]

    Vo D D, Vu T V, Nguyen T H T, Hieu N N, Phuc H V 2020 RSC Adv. 10 9824Google Scholar

    [196]

    Chen D, Lei X, Wang Y, Zhong S, Liu G, Xu B, Ouyang C 2019 Appl. Surf. Sci. 497 143809Google Scholar

    [197]

    Duan X, Wang C, Fan Z, Hao G, Kou L, Halim U, Li H, Wu X, Wang Y, Jiang J, Pan A P, Huang Y, Yu R, Duan X 2016 Nano Lett. 16 264

    [198]

    Karande S D, Kaushik N, Narang D S, Late D, Lodha S 2016 Appl. Phys. Lett. 109 142101Google Scholar

    [199]

    Cheng H, Zhou Y, Feng Y, Geng W, Liu Q, Guo W, Jiang L 2017 Adv. Mater. 29 1700177Google Scholar

  • 图 1  (a)椅形、船形、锯齿形和扶手椅形等氢/氟化石墨烯的四种不同结构, 不同的颜色(阴影)表示石墨烯平面上方和下方的吸附物(H或F)[90]; (b) HFC-1和HFC-2的俯视图和侧视图[95]; (c)结构优化的石墨烯衍生物HFC-1和HFC-2的电子能带结构和相应的态密度[95]; (d)对于C2HF和C4HF的每种构型, 沿石墨烯片的x方向(定义在顶部插图中)施加单轴应变ε11会引起垂直于平面的极化变化[99]

    Fig. 1.  (a) Four different configurations of hydrogen/fluorine-graphene: Chair, boat, zigzag, and armchair configurations, the different colors (shades) represent adsorbates (H or F) above and below the graphene plane[90]; (b) top and side views of HFC-1 and HFC-2; (c) electronic band structure and corresponding density of states of the optimized structures of graphene derivatives HFC-1 and HFC-2[95]; (d) applying uniaxial strain ε11 along the x-direction (defined in top inset) of the graphene sheet induces a change in polarization normal to the plane for each configuration for C2HF and C4HF[99].

    图 2  (a)优化后的WSSe单层结构和垂直于WSSe单层方向的平均静电势, 插图是差分电荷密度, 其中红色和蓝色分别表示电子的积累和耗尽[110]; (b)通过HSE和SOC方法给出Janus MXY单层的能带结构[111]; (c)当单轴应变ε1在–0.5%—0.5%之间时, MoSTe单层的面内和面外压电极化的线性变化, 给出e11e31值(单位:10–10 C/m)[74]

    Fig. 2.  (a) Optimized structure of the WSSe monolayer, and the average electronic potential energy in the vertical direction of the WSSe monolayer, the inset is the differential charge density, where the red and blue mean accumulation and depletion of electrons, respectively[110]; (b) band structures of monolayer Janus MXY are given by HSE and SOC methods[111]; (c) linear changes of in-plane and out-of-plane piezoelectric polarizations of the MoSTe monolayer occur when subject to a uniaxial strain ε1 between –0.5% and 0.5%, giving its e11 and e31 values (unit: 10–10 C/m)[74].

    图 3  (a)Janus硅的晶体结构(俯视图和侧视图)及其第一布里渊区[132]; (b)单层Janus M2XY单层的俯视图和侧视图以及及其第一布里渊区[138]; (c)Janus III族硫化物单层离子弛豫的压电系数d11d31[139]; (d)b(zigzag)方向上的单轴应变引起的铁弹性转变(上图), 在armchair方向的单轴应变下2H VSSe单层的面内和面外压电极化的线性变化(下图)[150]

    Fig. 3.  (a) Crystal structure of Janus silicene (top and side view) and their first Briliouin zone[132]; (b) top and side view of a single-layer Janus M2XY monolayer, the reciprocal lattice vectors and high-symmetry points are also presented; (c) relaxed-ion piezoelectric coefficients d11 and d31 of Janus group-III chalcogenide monolayers[139]; (d) energy profiles of ferroelastic switching as a function of uniaxial strains in the b (zigzag) direction, linear changes in the in-plane and out-of-plane piezoelectric polarizations of the 2H VSSe monolayer under uniaxial strain (armchair)[150].

    图 4  (a) SPtSe/Gr和SePtS/Gr异质结中的肖特基势垒高度随层间距的变化[184]; (b) SPtSe/Gr和SePtS/Gr异质结中的肖特基势垒高度随外加电场的变化[184]; (c) 在K/K'点的能带偏移的示意图, (I)ΔEV > λV的类别1和(II)ΔEV < λV的类别2, 对于具有界面I2的(III)H相和(IV)R相WSSe/MoSSe vdW异质结构在K/K'点的的谷极化层间激子弛豫通道[180]; (d) GeC, MoSSe, WSSe及其对应的异质结的价带(VB)和导带(CB)边对齐[190]

    Fig. 4.  (a) Schottky barrier height in the SPtSe/Gr and SePtS/Gr heterostructures as a function of the interlayer spacing, respectively; (b) Schottky barrier height in the SPtSe/Gr and SePtS/Gr heterostructures as a function of the external electric field, respectively[184]; (c) schematic diagram for band offset at K/K′ point, (I) category 1 with ΔEV > λV and (II) category 2 with ΔEV < λV, valley polarized interlayer exciton relaxation channels at K/K′point for (III) H-phase and (IV) R-phase WSSe/MoSSe vdW heterostructures with interface I2[180]; (d) valence band (VB) and conduction band (CB) edge alignment of GeC, MoSSe, WSSe and their corresponding heterostructures[190].

  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Topsakal M, Aktürk E, Ciraci1 S 2009 Phys. Rev. B 79 115442Google Scholar

    [3]

    Yuan S, Shen C, Deng B, Chen X, Guo Q, Ma Y, Abbas A, Liu B, Haiges R, Ott C 2018 Nano Lett. 18 3172Google Scholar

    [4]

    Zheng J, Zhang H, Dong S, Liu Y, Nai C T, Shin H S, Jeong H Y, Liu B, Loh K P 2014 Nat. Commun. 5 1Google Scholar

    [5]

    刘俊, 梁培, 舒海波, 沈涛, 邢凇, 吴琼 2014 物理学报 63 117101Google Scholar

    Liu J, Liang P, Shu H B, Shen T, Xing S, Wu Q 2014 Acta Phys. Sin. 63 117101Google Scholar

    [6]

    李金华, 张思楠, 翟英娇, 马剑刚, 房文汇, 张昱 2019 物理学报 68 134203Google Scholar

    Li J H, Zhang S N, Zhai Y J, Ma J G, Fang W H, Zhang Y 2019 Acta Phys. Sin. 68 134203Google Scholar

    [7]

    吴木生, 徐波, 刘刚, 欧阳楚英 2013 物理学报 62 037103Google Scholar

    Wu M S, Xu B, Liu G, Ouyang C Y 2013 Acta Phys. Sin. 62 037103Google Scholar

    [8]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805Google Scholar

    [9]

    Yun W S, Han S W, Hong S C, Kim I G, Lee J D 2012 Phys. Rev. B 85 033305Google Scholar

    [10]

    曹娟, 崔磊, 潘靖 2013 物理学报 62 187102Google Scholar

    Cao J, Cui L, Pan J 2013 Acta Phys. Sin 62 187102Google Scholar

    [11]

    Ni Z, Liu Q, Tang K, et al. 2012 Nano Lett. 12 113Google Scholar

    [12]

    秦志辉 2017 物理学报 66 216802Google Scholar

    Qin Z H 2017 Acta Phys. Sin. 66 216802Google Scholar

    [13]

    Ji X, Kong N, Wang J, Li W, Xiao Y, Gan S T, Zhang Y, Li Y, Song X, Xiong Q 2018 Adv. Mater. 30 1803031Google Scholar

    [14]

    谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301Google Scholar

    Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar

    [15]

    Gong K, Zhang L, Ji W, Guo H 2014 Phys. Rev. B 90 125441Google Scholar

    [16]

    曾祥明, 鄢慧君, 欧阳楚英 2012 物理学报 61 247101Google Scholar

    Zeng X M, Yan H J, Ouyang C Y 2012 Acta Phys. Sin. 61 247101Google Scholar

    [17]

    Wang Y, Huang P, Ye M, Quhe R, Pan Y, Zhang H, Zhong H, Shi J, Lu J 2017 Chem. Mater. 29 2191Google Scholar

    [18]

    Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W, Ni Z 2016 Nat. Commun. 7 13352Google Scholar

    [19]

    Zhang F, Jiang X, He Z, Liang W, Xu S, Zhang H 2019 Opt. Mater. 95 109209Google Scholar

    [20]

    X. Tang, Hu L, Fan T, Zhang L, Zhu L, Li H, Liu H, Liang J, Wang K, Li Z 2019 Adv. Funct. Mater. 29 1808746Google Scholar

    [21]

    栾晓玮, 孙建平, 王凡嵩, 韦慧兰, 胡艺凡 2019 物理学报 68 026802Google Scholar

    Luan X W, Sun J P, Wang F S, Wei H L, Hu Y F 2019 Acta Phys. Sin. 68 026802Google Scholar

    [22]

    Song Y, Chen Y, Jiang X, Liang W, Wang K, Liang Z, Ge Y, Zhang F, Wu L, Zheng J 2018 Adv. Opt. Mater. 6 1701287Google Scholar

    [23]

    Wang Y, Chen K, Hao H, Yu G, Zeng B, Wang H, Zhang F, Wu L, Li J, Xiao S, He J, Zhang Y, Zhang H 2019 Nanoscale 11 2637Google Scholar

    [24]

    Lu L, Wang W, Wu L, Jiang X, Xiang Y, Li J, Fan D, Zhang H 2017 ACS Photonics 4 2852Google Scholar

    [25]

    Zhu Z, Cai X, Yi S, Chen J, Dai Y, Niu C, Guo Z, Xie M, Liu F, Cho J H, Jia Y, Zhang Z 2017 Phys. Rev. Lett. 119 106101Google Scholar

    [26]

    Xing C, Chen S, Liang X, Liu Q, Qu M, Zou Q, Li J, Tan H, Liu L, Fan D 2018 ACS Appl. Mater. Interfaces 10 27631Google Scholar

    [27]

    Wang C, Peng Q Q, Fan X W, Liang W Y, Zhang F, Liu J, Zhang H 2018 Chin. Phys. B 27 094214Google Scholar

    [28]

    Tuo M, Xu C, Mu H, Bao X, Wang Y, Xiao S, Ma W, Li L, Tang D, Zhang H 2018 ACS Photonics 5 1808Google Scholar

    [29]

    Liu J, Jiang X, Zhang R, Zhang Y, Wu L, Lu W, Li J, Li Y, Zhang H 2019 Adv. Funct. Mater. 29 1807326Google Scholar

    [30]

    Wu Q, Chen S, Wang Y, Wu L, Jiang X, Zhang F, Jin X, Jiang Q, Zheng Z, Li J, Zhang M, Zhang H 2019 Adv. Mater. Technol. 4 1800532Google Scholar

    [31]

    姚鑫, 丁艳丽, 张晓丹, 赵颖 2015 物理学报 64 038805Google Scholar

    Yao X, Ding Y L, Zhang X D, Zhao Y 2015 Acta Phys. Sin. 64 038805Google Scholar

    [32]

    柴磊, 钟敏 2016 物理学报 65 237902Google Scholar

    Chai L, Zhong M 2016 Acta Phys. Sin. 65 237902Google Scholar

    [33]

    Guo Z, Chen S, Wang Z, Yang Z, Liu F, Xu Y, Wang J, Yi Y, Zhang H, Liao L, Chu P K, Yu X F 2017 Adv. Mater. 29 1703811Google Scholar

    [34]

    Li C, Huang W, Gao L, Wang H, Hu L, Chen T, Zhang H 2020 Nanoscale 12 2201Google Scholar

    [35]

    Lu L, Tang X, Cao R, Wu L, Li Z, Jing G, Dong B, Lu S, Li Y, Xiang Y, Li J, Fan D, Zhang H 2017 Adv. Opt. Mater. 5 1700301Google Scholar

    [36]

    Song Y, You K, Chen Y, Zhao J, Jiang X, Ge Y, Wang Y, Zheng J, Xing C, Zhang H 2019 Nanoscale 11 12595Google Scholar

    [37]

    Li J, Luo H, Zhai B, Lu R, Guo Z, Zhang H, Liu Y 2016 Sci. Rep. 6 30361Google Scholar

    [38]

    Xing C, Xie Z, Liang Z, Liang W, Fan T, Ponraj J S, Dhanabalan S C, Fan D, Zhang H 2017 Adv. Opt. Mater. 5 1700884Google Scholar

    [39]

    Late D J, Huang Y K, Liu B, Acharya J, Shirodkar S N, Luo J, Yan A, Charles D, Waghmare U V, Dravid V P 2013 ACS Nano 7 4879Google Scholar

    [40]

    Wang T, Guo Y, Wan P, Zhang H, Chen X, Sun X 2016 Small 12 3748Google Scholar

    [41]

    Zhou Y, Zhang M, Guo Z, Miao L, Han S T, Wang Z, Zhang X, Zhang H, Peng Z 2017 Mater. Horiz. 4 997Google Scholar

    [42]

    Shao J, Tong L, Tang S, Guo Z, Zhang H, Li P, Wang H, Du C, Yu X F 2015 ACS Appl. Mater. Interfaces 7 5391Google Scholar

    [43]

    Ren X, Zhou J, Qi X, Liu Y, Huang Z, Li Z, Ge Y, Dhanabalan S C, Ponraj J S, Wang S, Zhong J, Zhang H 2017 Adv. Energy Mater. 7 1700396Google Scholar

    [44]

    Han W, Zang C, Huang Z, Zhang H, Ren L, Qi X, Zhong J 2014 Int. J. Hydrogen Energy 39 19502Google Scholar

    [45]

    Jiang Q, Xu L, Chen N, Zhang H, Dai L, Wang S 2016 Angew. Chem. Int. Ed. 55 13849Google Scholar

    [46]

    Wang R, Li X, Wang Z, Zhang H 2017 Nano Energy 34 131Google Scholar

    [47]

    Ma D, Li Y, Mi H, Luo S, Zhang P, Lin Z, Li J, Zhang H 2018 Angew. Chem. Int. Ed. 57 8901Google Scholar

    [48]

    Li Y, Wang R, Guo Z, Xiao Z, Wang H, Luo X, Zhang H 2019 J. Mater. Chem. A 7 25227Google Scholar

    [49]

    Tao W, Kong N, Ji X, Zhang Y, Sharma A, Ouyang J, Qi B, Wang J, Xie N, Kang C 2019 Chem. Soc. Rev. 48 2891Google Scholar

    [50]

    Tao W, Ji X, Xu X, Islam M A, Li Z, Chen S, Saw P E, Zhang H, Bharwani Z, Guo Z 2017 Angew. Chem. Int. Ed. 56 11896Google Scholar

    [51]

    Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V, Kis A 2017 Nat. Rev. Mater. 2 17033Google Scholar

    [52]

    Yao W, Xiao D, Niu Q 2008 Phys. Rev. B 77 235406Google Scholar

    [53]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B 2012 Nat. Commun. 3 887Google Scholar

    [54]

    Xiao D, Liu G B, Feng W, Xu X, Yao W 2012 Phys. Rev. Lett. 108 196802Google Scholar

    [55]

    Schaibley J R, Yu H, Clark G, Rivera P, Ross J S, Seyler K L, Yao W, Xu X 2016 Nat. Rev. Mater. 1 16055Google Scholar

    [56]

    Li H, Lu G, Wang Y, Yin Z, Cong C, He Q, Wang L, Ding F, Yu T, Zhang H 2013 Small 9 1974Google Scholar

    [57]

    Nicolosi V, Chhowalla M, Kanatzidis M G, Strano M S, Coleman J N 2013 Science 340 1226419Google Scholar

    [58]

    Shi Y, Li H, Li L J 2015 Chem. Soc. Rev. 44 2744Google Scholar

    [59]

    Feng Q, Mao N, Wu J, Xu H, Wang C, Zhang J, Xie L 2015 ACS Nano 9 7450Google Scholar

    [60]

    Feng X, Tang Q, Zhou J, Fang J, Ding P, Sun L, Shi L 2013 Cryst. Res. Technol. 48 363Google Scholar

    [61]

    Ohta T, Bostwick A, Seyller T, Horn K, Rotenberg E 2006 Science 313 951Google Scholar

    [62]

    Wang X R, Li X L, Zhang L, Yoon Y, Weber P K, Wang H L, Guo J, Dai H J 2009 Science 324 768Google Scholar

    [63]

    Bostwick A, Ohta T, Seyller T, Horn K, Rotenberg E 2007 Nat. Phys. 3 36Google Scholar

    [64]

    高潭华, 郑福昌, 王晓春 2018 物理学报 67 167101Google Scholar

    Gao T H, Zheng F C, Wang X C 2018 Acta Phys. Sin. 67 167101Google Scholar

    [65]

    徐雷, 戴振宏, 隋鹏飞, 王伟田, 孙玉明 2014 物理学报 63 186101Google Scholar

    Xu L, Dai Z H, Sui P F, Wang W T, Sun Y M 2014 Acta Phys. Sin. 63 186101Google Scholar

    [66]

    Zhou J, Wang Q, Sun Q, Chen X S, Kawazoe Y, Jena P 2009 Nano Lett. 9 3867Google Scholar

    [67]

    Yang M, Zhao R, Wang J, Zhang L, Xie Q, Liu Z, Liu Z 2013 J. Appl. Phys. 113 084313Google Scholar

    [68]

    Kolobov A V, Tominaga J 2016 Two-Dimensional Transition-Metal Dichalcogenides (Switzerland: Springer International Publishing) p168

    [69]

    Bychkov Y A, Rashba E I 1984 JETP Lett. 39 78Google Scholar

    [70]

    Ren W, Qiao Z, Wang J, Sun Q, Guo H 2006 Phys. Rev. Lett. 97 066603Google Scholar

    [71]

    Lu A Y, Zhu H, Xiao J, et al. 2017 Nat. Nanotechnol. 12 744Google Scholar

    [72]

    Zhang J, Jia S, Kholmanov I, Dong L, Er D, Chen W, Guo H, Jin Z, Shenoy V B, Shi L, Lou J 2017 ACS Nano 11 8192Google Scholar

    [73]

    Cheng Y, Zhu Z, Tahir M, Schwingenschlögl U 2013 Europhys. Lett. 102 57001Google Scholar

    [74]

    Dong L, Lou J, Shenoy V B 2017 ACS Nano 11 8242Google Scholar

    [75]

    Ji Y, Yang M, Lin H, Hou T, Wang L, Li Y, Lee S T 2018 J. Phys. Chem. C 122 3123Google Scholar

    [76]

    Guan Z, Ni S, Hu S 2018 J. Phys. Chem. C 122 6209Google Scholar

    [77]

    Yao Q F, Cai J, Tong W Y, Gong S J, Wang J Q, Wan X, Duan C G, Chu J H 2017 Phys. Rev. B 95 165401Google Scholar

    [78]

    Peng R, Ma Y, Zhang S, Huang B, Dai Y 2018 J. Phys. Chem. Lett. 9 3612Google Scholar

    [79]

    Hu T, Jia F, Zhao G, Wu J, Stroppa A, Ren W 2018 Phys. Rev. B 97 235404Google Scholar

    [80]

    Georgakilas V, Otyepka M, Bourlinos A B, Chandra V, Kim N, Kemp K C, Hobza P, Zboril R, Kim K S 2012 Chem. Rev. 112 6156Google Scholar

    [81]

    Karlický F, Datta K K R, Otyepka M, Zbořil R 2013 ACS Nano 7 6434Google Scholar

    [82]

    Sofo J O, Chaudhari A S, Barber G D 2007 Phys. Rev. B 75 153401Google Scholar

    [83]

    Zhou J, Wu M M, Zhou X, Sun Q 2009 Appl. Phys. Lett. 95 103108Google Scholar

    [84]

    Xiang H J, Kan E J, Wei S H, Gong X G, Whangbo M H 2010 Phys. Rev. B 82 165425Google Scholar

    [85]

    Haberer D, Giusca C E, Wang Y, Sachdev H, et al. 2011 Adv. Mater. 23 4497Google Scholar

    [86]

    Li Y, Chen Z 2012 J. Phys. Chem. C 116 4526Google Scholar

    [87]

    Nair R R, Ren W, Jalil R, Riaz I, Kravets V G, et al. 2010 Small 6 2877Google Scholar

    [88]

    Zbořil R, Karlický F, Bourlinos A B, Steriotis T A, et al. 2010 Small 6 2885Google Scholar

    [89]

    Withers F, Dubois M, Savchenko A K 2010 Phys. Rev. B 82 073403Google Scholar

    [90]

    Leenaerts O, Peelaers H, Hernández-Nieves A D, Partoens B, Peeters F M 2010 Phys. Rev. B 82 195436Google Scholar

    [91]

    Samarakoon D K, Chen Z, Nicolas C, Wang X Q 2011 Small 7 965Google Scholar

    [92]

    Lee W H, Suk J W, Chou H, Lee J, Hao Y, et al. 2012 Nano Lett. 12 2374Google Scholar

    [93]

    Wang Z, Wang J, Li Z, Gong P, Liu X, et al. 2012 Carbon 50 5403

    [94]

    Yang M, Zhou L, Wang J, Liu Z, Liu Z 2012 J. Phys. Chem. C 116 844Google Scholar

    [95]

    Singh R, Bester G 2011 Phys. Rev. B 84 155427Google Scholar

    [96]

    Li F, Li Y 2015 J. Mater. Chem. C 3 3416

    [97]

    Zhang L, Yu J, Yang M, Xie Q, Peng H, Liu Z 2013 Nat. Commun. 4 1443Google Scholar

    [98]

    Ong M T, Reed E J 2012 ACS Nano 6 1387Google Scholar

    [99]

    Ong M T, Duerloo K A N, Reed E J 2013 J. Phys. Chem. C 117 3615Google Scholar

    [100]

    Kim H J, Noor A Alam M, Son J Y, Shin Y H 2014 Chem. Phys. Lett. 603 62Google Scholar

    [101]

    Ng S W, Noor N, Zheng Z 2018 NPG Asia Mater. 10 217Google Scholar

    [102]

    Kandemir A, Sahin H 2018 Phys. Chem. Chem. Phys. 20 17380Google Scholar

    [103]

    Riis-Jensen A C, Deilmann T, Olsen T, Thygesen K S 2019 ACS Nano 13 13354Google Scholar

    [104]

    Sun Y, Shuai Z, Wang D 2018 Nanoscale 10 21629Google Scholar

    [105]

    Guo S D 2018 Phys. Chem. Chem. Phys. 20 7236Google Scholar

    [106]

    Er D, Ye H, Frey N C, Kumar H, Lou J, Shenoy V B 2018 Nano Lett. 18 3943Google Scholar

    [107]

    Hou B, Zhang Y, Zhang H, Shao H, Ma C, Zhang X, Chen Y, Xu K, Ni G, Zhu H 2020 J. Phys. Chem. Lett. 11 3116Google Scholar

    [108]

    Zhao X W, Qiu B, Hua G C, Yue W W, Ren J F, Yuan X B 2019 Appl. Surf. Sci. 490 172Google Scholar

    [109]

    Shi W, Li G, Wang Z 2019 J. Phys. Chem. C 123 12261Google Scholar

    [110]

    Zhou W, Chen J, Yang Z, Liu J, Ouyang F 2019 Phys. Rev. B 99 075160Google Scholar

    [111]

    Xia C, Xiong W, Du J, Wang T, Peng Y, Li J 2018 Phys. Rev. B 98 165424Google Scholar

    [112]

    Chen J, Wu K, Ma H, Hu W, Yang J 2020 RSC Adv. 10 6388Google Scholar

    [113]

    Wang J, Shu H, Zhao T, Liang P, Wang N, Cao D, Chen X 2018 Phys. Chem. Chem. Phys. 20 18571Google Scholar

    [114]

    Kim M R, Ma D 2015 J. Phys. Chem. Lett. 6 85Google Scholar

    [115]

    Ju L, Bie M, Shang J, Tang X, Kou L 2020 J. Phys. Mater. 3 022004Google Scholar

    [116]

    Chakrapani V, Angus J C, Anderson A B, Wolter S D, Stoner B R, Sumanasekera G U 2007 Science 318 1424Google Scholar

    [117]

    Ju L, Bie M, Tang X, Shang J, Kou L 2020 ACS Appl. Mater. Interfaces 12 29335

    [118]

    Wei S, Li J, Liao X, Jin H, Wei Y 2019 J. Phys. Chem. C 123 22570Google Scholar

    [119]

    Ma X, Yong X, Jian C, Zhang J 2019 J. Phys. Chem. C 123 18347Google Scholar

    [120]

    Yagmurcukardes M, Sevik C, Peeters F M 2019 Phys. Rev. B 100 045415Google Scholar

    [121]

    Jin C, Tang X, Tan X, Smith S C, Dai Y, Kou L 2019 J. Mater. Chem. A 7 1099Google Scholar

    [122]

    Chaurasiya R, Dixit A 2020 Phys. Chem. Chem. Phys. 22 13903Google Scholar

    [123]

    Tang X, Li S, Ma Y, Du A, Liao T, Gu Y, Kou L 2018 J. Phys. Chem. C 122 19153Google Scholar

    [124]

    Jin H, Wang T, Gong Z R, Long C, Dai Y 2018 Nanoscale 10 19310Google Scholar

    [125]

    Ma Y, Kou L, Huang B, Dai Y, Heine T 2018 Phys. Rev. B 98 085420Google Scholar

    [126]

    Li Lou, Cao H, Xu B, Deng J, Liu J, Liu Y, Ding X, Sun J, Liu J Z 2020 Phys. Rev. Appl. 13 054061Google Scholar

    [127]

    Yagmurcukardes M, Peeters F M 2020 Phys. Rev. B 101 155205

    [128]

    Moujaes E A, Diery W A 2019 J. Phys.: Condens. Matter 31 455502Google Scholar

    [129]

    Yang X, Banerjee A, Ahuja R 2019 Catal. Sci. Technol. 9 4981Google Scholar

    [130]

    Chen Y, Liu J, Yu J, Guo Y, Sun Q 2019 Phys. Chem. Chem. Phys. 21 1207Google Scholar

    [131]

    Zhou J, Wang Q, Sun Q, Jena Puru 2010 Phys. Rev. B 81 085442Google Scholar

    [132]

    Sun M, Ren Q, Wang S, Yu J, Tang W 2016 J. Phys. D: Appl. Phys. 49 445305Google Scholar

    [133]

    Liu F C, Zheng S J, Chaturvedi A, Zólyomi V, Zhou J D, Fu Q D, Zhu C, Yu P, Zeng Q S, Drummond N D, Fan H J, Kloc C, Falko V, He X X, Liu Z 2016 Nanoscale 8 5826Google Scholar

    [134]

    Kandemir A, Sahin H 2018 Phys. Rev. B 97 155410Google Scholar

    [135]

    Huang A, Shi W, Wang Z 2019 J. Phys. Chem. C 123 11388Google Scholar

    [136]

    Bui H D, Jappor H R, Hieu N N 2019 Superlattice. Microst. 125 1Google Scholar

    [137]

    Zhong Q, Dai Z, Liu J, Zhao Y, Meng S 2020 Physica E 115 113683Google Scholar

    [138]

    Silva R, Barbosa R, Mançano R R, Durães N, Pontes R B, Miwa R H, Fazzio A, Padilha J E 2019 ACS Appl. Nano Mater. 2 890Google Scholar

    [139]

    Guo Y, Zhou S, Bai Y, Zhao J 2017 Appl. Phys. Lett. 110 163102Google Scholar

    [140]

    Bai Y, Zhang Q, Xu N, Deng K, Kan E 2019 Appl. Surf. Sci. 478 522Google Scholar

    [141]

    Guo S D, Guo X S, Han R Y, Deng Y 2019 Phys. Chem. Chem. Phys. 21 24620Google Scholar

    [142]

    Zhang X, Cui Y, Sun L, Li M, Du J, Huang Y 2019 J. Mater. Chem. C 7 13203Google Scholar

    [143]

    Nguyen H T T, Tuan V V, Nguyen C V, Phuc H V, Tong H D 2020 Phys. Chem. Chem. Phys. 22 11637Google Scholar

    [144]

    Peng R, Ma Y, Huang B, Dai Y 2019 J. Mater. Chem. A 7 603Google Scholar

    [145]

    Guo S D, Guo X S, Deng Y 2019 J. Appl. Phys. 126 154301Google Scholar

    [146]

    Wu Q, Cao L, Ang Y S, Ang L K 2020 Nano Express 1 010042Google Scholar

    [147]

    Kahraman Z, Kandemir A, Yagmurcukardes M, Sahin H 2019 J. Phys. Chem. C 123 4549Google Scholar

    [148]

    Ersan F, Ataca C 2020 Phys. Rev. Appl. 13 064008Google Scholar

    [149]

    Yang J, Wang A, Zhang S, Liu J, Zhong Z, Chen L 2019 Phys. Chem. Chem. Phys. 21 132Google Scholar

    [150]

    Zhang C, Nie Y, Sanvito S, Du A 2019 Nano Lett. 19 1366Google Scholar

    [151]

    Luo C, Peng X, Qu J, Zhong J 2020 Phys. Rev. B 101 245416Google Scholar

    [152]

    Dey D, Botana A S 2020 Phys. Rev. Mater. 4 074002Google Scholar

    [153]

    Yuan J, Yang Y, Cai Y, Wu Y, Chen Y, et al. 2020 Phys. Rev. B 101 094420Google Scholar

    [154]

    Liang J, Wang W, Du H, et al. 2020 Phys. Rev. B 101 184401Google Scholar

    [155]

    Zhong S, Xu B, Cui A, et al. 2020 ACS Omega 5 864Google Scholar

    [156]

    He J, Lyu P, Sun L Z, García Á M, Nachtigall P 2016 J. Mater. Chem. C 4 6500Google Scholar

    [157]

    Jiao J, Miao N, Li Z, Gan Y, Zhou J, Sun Z 2019 J. Phys. Chem. Lett. 10 3922Google Scholar

    [158]

    Ren Y, Li Q, Wan W, Liu Y, Ge Y 2020 Phys. Rev. B 101 134421Google Scholar

    [159]

    Chuang P, Ho S C, Smith L W, Sfigakis F, Pepper M, Chen C H, Fan J C, Griffiths J P, Farrer I, Beere H E, et al. 2015 Nat. Nanotech. 10 35Google Scholar

    [160]

    Fert A, Reyren N, Cros V 2017 Nat. Rev. Mater. 2 17031

    [161]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152Google Scholar

    [162]

    Huang B, Clark G, Navarro-Moratalla E, et al. 2017 Nature 546 270Google Scholar

    [163]

    Gong C, Li L, Li Z, et al. 2017 Nature 546 265Google Scholar

    [164]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [165]

    Bonilla M, Kolekar S, Ma Y, Diaz H C, Kalappattil V, Das R, Eggers T, Gutierrez H R, Phan M H, Batzill M 2018 Nat. Nanotechnology 13 289Google Scholar

    [166]

    O’Hara D J, Zhu T, Trout A H, et al. 2018 Nano Lett. 18 3125Google Scholar

    [167]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids 4 241Google Scholar

    [168]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [169]

    Behera A K, Chowdhury S, Das S R 2019 Appl. Phys. Lett. 114 232402Google Scholar

    [170]

    Liu J, Shi M, Lu J, Anantram M P 2018 Phys. Rev. B 97 054416Google Scholar

    [171]

    Xu C, Feng J, Prokhorenko S, Nahas Y, Xiang H, Bellaiche L 2020 Phys. Rev. B 101 060404Google Scholar

    [172]

    Mogulkoc A, Mogulkoc Y, Jahangirov S, Durgun E 2019 J. Phys. Chem. C 123 29922Google Scholar

    [173]

    Vu T V, Tong H D, Tran D P, Binh N T T, Nguyen C V, Phuc H V, Do H M, Hieu N N 2019 RSC Adv. 9 41058Google Scholar

    [174]

    Wang Y, W ei, Wang H, Mao N, Li F P, Huang B B, Dai Y 2019 J. Phys. Chem. Lett. 10 7426Google Scholar

    [175]

    Chen W, Hou X, Shi X, Pan H 2018 ACS Appl. Mater. Interfaces 10 35289Google Scholar

    [176]

    Dimple, Jena N, Rawat A, Ahammed R, Mohanta M K, Sarkar A D 2018 J. Mater. Chem. A 6 24885Google Scholar

    [177]

    Idrees M, Din H U, Ali R, Rehman G, Hussain T, Nguyen C V, Ahmad I, Amin B 2019 Phys. Chem. Chem. Phys. 21 18612Google Scholar

    [178]

    Rawat A, Mohanta M K, Jena N, Dimple, Ahammed R, Sarkar A D 2020 J. Phys. Chem. C 124 10385Google Scholar

    [179]

    Li F, Wei W, Zhao P, Huang B, Dai Y 2017 J. Phys. Chem. Lett. 8 5959Google Scholar

    [180]

    Wang Y, Wei W, Huang B, Dai Y 2019 J. Phys.: Condens. Matter 31 125003Google Scholar

    [181]

    Guo W, Ge X, Sun S, Xie Y, Ye X 2020 Phys. Chem. Chem. Phys. 22 4946Google Scholar

    [182]

    Yu L, Sun S, Ye X 2020 Phys. Chem. Chem. Phys. 22 2498Google Scholar

    [183]

    Abbas H G, Hahn J R, Kang H S 2020 J. Phys. Chem. C 124 3812Google Scholar

    [184]

    Cao L, Ang Y S, Wu Q, Ang L K 2019 Appl. Phys. Lett. 115 241601Google Scholar

    [185]

    Cavalcante L S R, Gjerding, Chaves A, Thygesen K S 2019 J. Phys. Chem. C 123 16373Google Scholar

    [186]

    Palsgaard M, Gunst T, Markussen T, Thygesen K S, Brandbyge M 2018 Nano Lett. 18 7275Google Scholar

    [187]

    Ren K, Wang S, Luo Y, Chou J P, Yu J, et al. 2020 J. Phys. D: Appl. Phys. 53 185504Google Scholar

    [188]

    Xu D, Zhai B, Gao Q, Wang T, Li J, Xia C 2020 J. Phys. D: Appl. Phys. 53 055104Google Scholar

    [189]

    Jing T, Liang D, Hao J, Deng M, Cai S 2019 Phys. Chem. Chem. Phys. 21 5394Google Scholar

    [190]

    Din H U, Idrees M, Albar A, Shafiq M, Ahmad I, Nguyen C V, Amin B 2019 Phys. Rev. B 100 165425Google Scholar

    [191]

    Idrees M, Fawad M, Bilal M, Saeed Y, Nguyen C, Amin B 2020 RSC Adv. 10 25801Google Scholar

    [192]

    Idrees M, Din H U, Rehman S U, Shafiq M, Saeed Y, Bai H D, Nguyen C V, Amin B 2020 Phys. Chem. Chem. Phys. 22 10351Google Scholar

    [193]

    Li X, Wang X, Hao W, Mi C, Zhou H 2019 AIP Adv. 9 115302Google Scholar

    [194]

    Vo D D, Vu T V, Hieu N V, Hieu N N, Phuc H V 2019 Phys. Chem. Chem. Phys. 21 25849Google Scholar

    [195]

    Vo D D, Vu T V, Nguyen T H T, Hieu N N, Phuc H V 2020 RSC Adv. 10 9824Google Scholar

    [196]

    Chen D, Lei X, Wang Y, Zhong S, Liu G, Xu B, Ouyang C 2019 Appl. Surf. Sci. 497 143809Google Scholar

    [197]

    Duan X, Wang C, Fan Z, Hao G, Kou L, Halim U, Li H, Wu X, Wang Y, Jiang J, Pan A P, Huang Y, Yu R, Duan X 2016 Nano Lett. 16 264

    [198]

    Karande S D, Kaushik N, Narang D S, Late D, Lodha S 2016 Appl. Phys. Lett. 109 142101Google Scholar

    [199]

    Cheng H, Zhou Y, Feng Y, Geng W, Liu Q, Guo W, Jiang L 2017 Adv. Mater. 29 1700177Google Scholar

  • [1] 曹胜果, 韩佳凝, 李占海, 张振华. 扶手椅型C3B纳米带: 结构稳定性、电子特性及调控效应. 物理学报, 2023, 72(11): 117101. doi: 10.7498/aps.72.20222434
    [2] 孙海明. Bi2Te3(111)和Al2O3(0001)衬底对Bi(111)双原子层的电子结构及拓扑性质的影响. 物理学报, 2022, 71(13): 137101. doi: 10.7498/aps.71.20220060
    [3] 红兰, 戈君, 双山, 刘达权. Rashba效应和Zeeman效应对各向异性量子点中束缚磁极化子性质的影响. 物理学报, 2022, 71(1): 016301. doi: 10.7498/aps.71.20210803
    [4] 孙海明. 一维螺旋型Se原子链中的Rashba效应和平带性质. 物理学报, 2022, 71(14): 147102. doi: 10.7498/aps.71.20220646
    [5] 张小超, 管美画, 张启瑞, 张长明, 李瑞, 刘建新, 王雅文, 樊彩梅. 单原子Pt吸附于不同原子暴露终端BiOBr{001}面的第一性原理研究. 物理学报, 2021, 70(8): 087101. doi: 10.7498/aps.70.20201572
    [6] 苏欣, 黄天烨, 王军转, 刘媛, 郑有炓, 施毅, 王肖沐. 圆偏振光伏效应. 物理学报, 2021, 70(13): 138501. doi: 10.7498/aps.70.20210498
    [7] 红兰, 戈君. Rashba效应和Zeeman效应对各向异性量子点中束缚磁极化子性质的影响. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210803
    [8] 高明, 邓永和, 文大东, 田泽安, 赵鹤平, 彭平. 快凝Pd82Si18合金原子团簇的演化特性及遗传机制. 物理学报, 2020, 69(4): 046401. doi: 10.7498/aps.69.20190970
    [9] 魏晓薇, 陶红, 赵纯林, 吴家刚. 高性能铌酸钾钠基无铅陶瓷的压电和电卡性能. 物理学报, 2020, 69(21): 217705. doi: 10.7498/aps.69.20200540
    [10] 李飞, 张树君, 徐卓. 压电效应—百岁铁电的守护者. 物理学报, 2020, 69(21): 217703. doi: 10.7498/aps.69.20200980
    [11] 邓长发, 燕少安, 王冬, 彭金峰, 郑学军. 基于导电原子力显微镜的单根GaN纳米带光调控力电耦合性能. 物理学报, 2019, 68(23): 237304. doi: 10.7498/aps.68.20191097
    [12] 陈璐, 李烨飞, 郑巧玲, 刘庆坤, 高义民, 李博, 周长猛. B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究. 物理学报, 2019, 68(5): 053101. doi: 10.7498/aps.68.20181944
    [13] 魏应强, 徐磊, 彭其明, 王建浦. 钙钛矿的Rashba效应及其对载流子复合的影响. 物理学报, 2019, 68(15): 158506. doi: 10.7498/aps.68.20190675
    [14] 洪元婷, 马江平, 武峥, 应静诗, 尤慧琳, 贾艳敏. AgNbO3压电纳米材料压-电-化学耦合研究. 物理学报, 2018, 67(10): 107702. doi: 10.7498/aps.67.20180287
    [15] 李明, 姚宁, 冯志波, 韩红培, 赵正印. 外加电场和Al组分对纤锌矿AlGaN/GaN量子阱中的电子g因子的影响. 物理学报, 2018, 67(5): 057101. doi: 10.7498/aps.67.20172213
    [16] 廖涛, 孙小伟, 宋婷, 田俊红, 康太凤, 孙伟彬. 新型二维压电声子晶体板带隙可调性研究. 物理学报, 2018, 67(21): 214208. doi: 10.7498/aps.67.20180611
    [17] 周勇, 李纯健, 潘昱融. 磁致伸缩/压电层叠复合材料磁电效应分析. 物理学报, 2018, 67(7): 077702. doi: 10.7498/aps.67.20172307
    [18] 张添乐, 黄曦, 郑凯, 张欣梧, 王宇杰, 武丽明, 张晓青, 郑洁, 朱彪. 极化电压对聚丙烯压电驻极体膜压电性能的影响. 物理学报, 2014, 63(15): 157703. doi: 10.7498/aps.63.157703
    [19] 徐天宁, 吴惠桢, 隋成华. PbTe/PbSrTe半导体非对称量子阱中的Rashba效应. 物理学报, 2008, 57(12): 7865-7871. doi: 10.7498/aps.57.7865
    [20] 陈钢进, 夏钟福. 多孔聚四氟乙烯/氟代乙烯丙烯共聚物复合驻极体材料的压电效应研究. 物理学报, 2004, 53(8): 2715-2719. doi: 10.7498/aps.53.2715
计量
  • 文章访问数:  15664
  • PDF下载量:  909
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-26
  • 修回日期:  2020-10-04
  • 上网日期:  2021-01-15
  • 刊出日期:  2021-01-20

/

返回文章
返回