搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

气相沉积技术在原子制造领域的发展与应用

郭秦敏 秦志辉

引用本文:
Citation:

气相沉积技术在原子制造领域的发展与应用

郭秦敏, 秦志辉

Development and application of vapor deposition technology in atomic manufacturing

Guo Qin-Min, Qin Zhi-Hui
PDF
HTML
导出引用
  • 随着未来信息器件朝着更小尺寸、更低功耗和更高性能方向的发展, 构建器件的材料尺寸将进一步缩小. 传统的“自上而下”技术在信息器件发展到纳米量级时遇到瓶颈, 而气相沉积技术由于其能在原子尺度构筑纳米结构引起极大关注, 被认为是最有潜力突破现有制造极限进而在原子尺度构造、搭建物质形态的“自下而上”方法. 本文重点讨论适用于低维材料的原子尺度制造的分子束外延技术和原子层沉积/刻蚀技术. 简要介绍相关技术中蕴含的科学原理及其在纳米信息器件加工和制造领域的应用, 并探讨如何在原子尺度实现对低维功能材料厚度和微观形貌的精密控制.
    With the development of future information devices towards smaller size, lower power consumption and higher performance, the size of materials used to build devices will be further reduced. Traditional “top-down” technology has encountered a bottleneck in the development of information devices on a nanoscale, while the vapor deposition technology has attracted great attention due to its ability to construct nanostructures on an atomic scale, and is considered to have the most potential to break through the existing manufacturing limits and build nano-structures directly with atoms as a “bottom-up” method. During molecular beam epitaxy, atoms and molecules of materials are deposited on the surface in an “atomic spray painting” way. By such a method, some graphene-like two-dimensional materials (e.g., silicene, germanene, stanene, borophene) have been fabricated with high quality and show many novel electronic properties, and the ultrathin films (several atomic layers) of other materials have been grown to achieve certain purposes, such as NaCl ultrathin layers for decoupling the interaction of metal substrate with the adsorbate. In an atomic layer deposition process, which can be regarded as a special modification of chemical vapor deposition, the film growth takes place in a cyclic manner. The self- limited chemical reactions are employed to insure that only one monolayer of precursor (A) molecules is adsorbed on the surface, and the subsequent self- limited reaction with the other precursor (B) allows only one monolayer of AB materials to be built. And the self- assembled monolayers composed of usually long- chain molecules can be introduced as the active or inactive layer for area- selective atomic layer deposition growth, which is very useful in fabricating nano- patterned structures. As the reverse process of atomic layer deposition, atomic-layer etching processes can remove certain materials in atomic precision. In this paper we briefly introduce the principles of the related technologies and their applications in the field of nano- electronic device processing and manufacturing, and find how to realize the precise control of the thickness and microstructure of functional materials on an atomic scale.
      通信作者: 秦志辉, zhqin@hnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51772087)和中国科学院战略性先导科技专项(B类)(批准号: XDB30000000)资助的课题
      Corresponding author: Qin Zhi-Hui, zhqin@hnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51772087) and the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB30000000)
    [1]

    冯黎, 朱雷 2020 功能材料与器件学报 26 191

    Feng L, Zhu L 2020 J. Funct. Mater. Devices 26 191

    [2]

    庞玉莲, 邹应全 2015 信息记录材料 16 36Google Scholar

    Pang Y L, Zou Y Q 2015 Info. Rec. Mater. 16 36Google Scholar

    [3]

    Striccoli M 2017 Science 357 353Google Scholar

    [4]

    Okazaki S 2015 Microelectron. Eng. 133 23Google Scholar

    [5]

    Hong F, Blaikie R 2019 Adv. Opt. Mater. 7 1801653Google Scholar

    [6]

    王霞, 吕浩, 赵秋玲, 张帅一, 谭永炎 2016 光谱学与光谱分析 36 3461

    Wang X, Lü H, Zhao Q L, Zhang S Y, Tan Y Y 2016 Spectrosc. Spect. Anal. 36 3461

    [7]

    Fang F Z 2016 Front. Mech. Eng. Chin. 11 325Google Scholar

    [8]

    Luo C, Li J F, Yang X, Wu X, Zhong S Y, Wang C L, Sun L T 2020 ACS Appl. Nano Mater. 3 4747

    [9]

    Martín-Palma R J, Lakhtakia A 2013 Engineered Biomimicry (Boston: Elsevier) pp383−398

    [10]

    LaPedus M 2018 工艺与制造 35 39

    LaPedus M 2018 Prog. Fabri. 35 39

    [11]

    Ashurbekova K, Ashurbekova K, Botta G, Yurkevich O, Knez M 2020 Nanotechnology 31 342001Google Scholar

    [12]

    Kulkarni A K 1994 B. Mater. Sci. 17 1379Google Scholar

    [13]

    Mattox D M 1992 Plat. Surf. Finish. 79 60

    [14]

    Mattox D M 1998 Plat. Surf. Finish. 85 49

    [15]

    Zhu D M, Miller R A, Nagaraj B A, Bruce R W 2001 Surf. Coat. Technol. 138 1Google Scholar

    [16]

    Muratore C, Walton S G, Leonhardt D, Fernsler R F 2006 J. Vac. Sci. Technol., A 24 25

    [17]

    Kumar T S, Prabu S B, Manivasagam G 2014 J. Mater. Eng. Perform. 23 2877Google Scholar

    [18]

    Yang R B, Bachmann J, Pippel E, Berger A, Woltersdorf J, Gösele U, Nielsch K 2009 Adv. Mater. 21 3170Google Scholar

    [19]

    Bao Q H, Chen C Z, Wang D G, Ji Q M, Lei T Q 2005 Appl. Surf. Sci. 252 1538Google Scholar

    [20]

    Cho A Y, Arthur J R 1975 Prog. Solid State Chem. 10 157Google Scholar

    [21]

    Hong M 1995 J. Cryst. Growth 150 277Google Scholar

    [22]

    Spirkoska D, Colombo C, Heiss M, Abstreiter G, Morral A F I 2008 J. Phys. Condens. Matter 20 454225Google Scholar

    [23]

    Wang X Q, Yoshika A 2011 Thin Film Growth (Sawston Cambridge: Woodhead Publishing) pp288−316

    [24]

    Howson R P, Spencer A G, Lewin R W 1988 Vacuum 38 947

    [25]

    Kelly P J, Arnell R D 2000 Vacuum 56 159Google Scholar

    [26]

    Shi J Z, Chen C Z, Yu H J, Zhang S J 2008 B. Mater. Sci. 31 877Google Scholar

    [27]

    Brauer G, Szyszka B, Vergohl M, Bandorf R 2010 Vacuum 84 1354Google Scholar

    [28]

    Kopecky D, Vrnata M, Kopecka J 2015 Chem. Listy 109 183

    [29]

    von Wenckstern H, Kneiss M, Hassa A, Storm P, Splith D, Grundmann M 2020 Phys. Status Solidi B 257 1900626Google Scholar

    [30]

    Dabrowska-Szata M 2003 Mater. Chem.Phys. 81 257Google Scholar

    [31]

    Ichimiya A 2005 J. Jpn. Soc. Tribologis. 50 731

    [32]

    Wood C 1981 Surf. Sci. 108 L441

    [33]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [34]

    Zhang J S, Chang C Z, Tang P Z, Zhang Z C, Feng X, Li K, Wang L L, Chen X, Liu C X, Duan W H, He K, Xue Q K, Ma X C, Wang Y Y 2013 Science 339 1582Google Scholar

    [35]

    Fei F, Zhang S, Zhang M, Shah S A, Song F, Wang X, Wang B 2019 Adv. Mater. 32 1904593

    [36]

    Guo Q M, Qin Z H, Liu C D, Zang K, Yu Y H, Cao G Y 2010 Surf. Sci. 604 1820Google Scholar

    [37]

    Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X, Gao H J 2014 Adv. Mater. 26 4820Google Scholar

    [38]

    Qin Z H, Pan J B, Lu S Z, Yan S, Wang Y L, Du S X, Gao H J, Cao G Y 2017 Adv. Mater. 29 1606046Google Scholar

    [39]

    Liao M H, Zang Y Y, Guan Z Y, Li H W, Gong Y, Zhu K J, Hu X P, Zhang D, Xu Y, Wang Y Y, He K, Ma X C, Zhang S C, Xue Q K 2018 Nat. Phys. 14 344Google Scholar

    [40]

    秦志辉 2017 物理学报 66 216802Google Scholar

    Qin Z H 2017 Acta Phys. Sin. 66 216802Google Scholar

    [41]

    Qin Z 2013 Chin. Phys. B 22 098108Google Scholar

    [42]

    Cahangirov S, Topsakal M, Aktürk E, Şahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [43]

    Liu C C, Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [44]

    Le Lay G 2015 Nat. Nanotechnol. 10 202Google Scholar

    [45]

    Dávila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002Google Scholar

    [46]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510Google Scholar

    [47]

    Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar

    [48]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 564

    [49]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563Google Scholar

    [50]

    Penev E S, Kutana A, Yakobson B I 2016 Nano Lett. 16 2522Google Scholar

    [51]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671Google Scholar

    [52]

    Guo Q, Zhong Y, Huang M, Lu S, Yu Y 2020 Thin Solid Films 693 137709Google Scholar

    [53]

    Guo Q M, Qin Z H, Huang M, Mantsevich V N, Cao G Y 2016 Chin. Phys. B 25 036801Google Scholar

    [54]

    Beinik I, Barth C, Hanbucken M, Masson L 2015 Sci. Rep. 5 8223Google Scholar

    [55]

    Kwong P, Seidel S, Gupta M 2015 J. Vac. Sci. Technol., A 33 031504Google Scholar

    [56]

    McGinn P J 2019 ACS Comb. Sci. 21 501Google Scholar

    [57]

    Nie Z, Shi Y, Qin S, Wang Y, Jiang H, Zheng Q, Cui Y, Meng Y, Song F, Wang X, Turcu I C E, Wang X, Xu Y, Shi Y, Zhao J, Zhang R, Wang F 2019 Commun. Phys. 2 103Google Scholar

    [58]

    Triboulet R 2014 Prog. Cryst. Growth Charact. Matter. 60 1Google Scholar

    [59]

    Wang X R, Yushin G 2015 Energy Environ. Sci. 8 1889Google Scholar

    [60]

    Yu S J, Pak K, Kwak M J, Joo M, Kim B J, Oh M S, Baek J, Park H, Choi G, Kim D H, Choi J, Choi Y, Shin J, Moon H, Lee E, Im S G 2018 Adv. Eng. Mater. 20 1700622Google Scholar

    [61]

    Keyshar K, Gong Y J, Ye G L, Brunetto G, Zhou W, Cole D P, Hackenberg K, He Y M, Machado L, Kabbani M, Hart A H C, Li B, Galvao D S, George A, Vajtai R, Tiwary C S, Ajayan P M 2015 Adv. Mater. 27 4640Google Scholar

    [62]

    Matsuda T, Sato J, Ishikawa T, Ogino A, Nagatsu M 2009 Diam. Relat. Mater. 18 548Google Scholar

    [63]

    Shukla B, Saito T, Yumura M, Iijima S 2009 Chem. Commun. 342 2

    [64]

    Chen H C, Su W R, Yeh Y C 2020 ACS Appl. Mater. Interfaces 12 32905Google Scholar

    [65]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [66]

    Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125Google Scholar

    [67]

    Kim Y, Choi D S, Kim H J, Kim H, Kim T Y, Rhyu S H, Lee K S, Yoon D H, Yang W S 2014 J. Ceram. Process. Res. 15 269

    [68]

    Fang W J, Hsu A L, Song Y, Kong J 2015 Nanoscale 7 20335Google Scholar

    [69]

    Sun H, Xu J, Wang C, Ge G, Jia Y, Liu J, Song F, Wan J 2016 Carbon 108 356Google Scholar

    [70]

    Sun H, Fu C, Shen X, Yang W, Guo P, Lu Y, Luo Y, Yu B, Wang X, Wang C, Xu J, Liu J, Song F, Wang G, Wan J 2017 Nanotechnology 28 245604Google Scholar

    [71]

    Tan H, Wang D G, Guo Y B 2018 Coatings 8 40Google Scholar

    [72]

    Jessen B S, Gammelgaard L, Thomsen M R, Mackenzie D M A, Thomsen J D, Caridad J M, Duegaard E, Watanabe K, Taniguchi T, Booth T J, Pedersen T G, Jauho A P, Boggild P 2019 Nat. Nanotechnol. 14 340Google Scholar

    [73]

    Wu J, Li Y, Pan D, Jiang C, Jin C, Song F, Wang G, Wan J 2019 Carbon 147 434Google Scholar

    [74]

    Jia K, Ci H, Zhang J, Sun Z, Ma Z, Zhu Y, Liu S, Liu J, Sun L, Liu X, Sun J, Yin W, Peng H, Lin L, Liu Z 2020 Angew. Chem. Int. Ed. 59 17214Google Scholar

    [75]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268Google Scholar

    [76]

    Puurunen R L 2005 J. Appl. Phys. 97 121301Google Scholar

    [77]

    Kol'tsov S I, Aleskovskii V B 1967 Zh. Prikl. Khim. 40 907

    [78]

    Kol'tsov S I, Aleskovskii V B 1969 Zh. Prikl. Khim. 42 1023

    [79]

    Suntola T, Antson J U.S. Patent 4058430 [1977-11-15]

    [80]

    Longo E, Mantovan R, Cecchini R, Overbeek M D, Longo M, Trevisi G, Lazzarini L, Tallarida G, Fanciulli M, Winter C H, Wiemer C 2020 Nano Res. 13 570Google Scholar

    [81]

    Ahvenniemi E, Karppinen M 2016 Dalton Trans. 45 10730Google Scholar

    [82]

    Leskelä M, Ritala M 2003 Angew. Chem. Int. Ed. 42 5548Google Scholar

    [83]

    Yang H C, Waldman R Z, Chen Z W, Darling S B 2018 Nanoscale 10 20505Google Scholar

    [84]

    Griffiths M B E, Pallister P J, Mandia D J, Barry S T 2016 Chem. Mater. 28 44Google Scholar

    [85]

    Ahn J, Ahn C, Jeon S, Park J 2019 Appl. Sci. 9 1990Google Scholar

    [86]

    Marichy C, Bechelany M, Pinna N 2012 Adv. Mater. 24 1017Google Scholar

    [87]

    Ovanesyan R A, Filatova E A, Elliott S D, Hausmann D M, Smith D C, Agarwal S 2019 J. Vac. Sci. Technol., A 37 060904Google Scholar

    [88]

    Solanki R, Huo J, Freeouf J L, Miner B 2002 Appl. Phys. Lett. 81 3864Google Scholar

    [89]

    Andou Y, Nishida H, Endo T 2006 Chem. Commun. 501 8

    [90]

    Amitonova L V, de Boer J F 2020 Light-Sci. Appl. 9 81Google Scholar

    [91]

    Clary J, Norman S, Funke H, Su D, Musgrave C, Weimer A 2020 Nanotechnology 31 175703Google Scholar

    [92]

    Cao K, Cai J, Chen R 2020 Chem. Mater. 32 2195Google Scholar

    [93]

    Shimamura H, Nakamura T 2010 Polym. Degrad. Stab. 95 21Google Scholar

    [94]

    Klesko J P, Kerrigan M M, Winter C H 2016 Chem. Mater. 28 700Google Scholar

    [95]

    Kerrigan M M, Klesko J P, Winter C H 2017 Chem. Mater. 29 7458Google Scholar

    [96]

    Knisley T J, Kalutarage L C, Winter C H 2013 Coord. Chem. Rev. 257 3222Google Scholar

    [97]

    Eigenfeld N T, Gray J M, Brown J J, Skidmore G D, George S M, Bright V M 2014 Adv. Mater. 26 3962Google Scholar

    [98]

    Knisley T J, Saly M J, Heeg M J, Roberts J L, Winter C H 2011 Organometallics 30 5010Google Scholar

    [99]

    Krozer A, Rodahl M 1997 J. Vac. Sci. Technol., A 15 1704Google Scholar

    [100]

    Chen R, Bent S F 2006 Adv. Mater. 18 1086Google Scholar

    [101]

    Wojtecki R, Mettry M, Fine Nathel N F, Friz A, De Silva A, Arellano N, Shobha H 2018 ACS Appl. Mater. Interfaces 10 38630Google Scholar

    [102]

    Koenig M, Lahann J 2017 Beilstein J. Nanotechnol. 8 1250Google Scholar

    [103]

    Chang Y H, Liu C M, Tseng Y C, Chen C, Chen C C, Cheng H E 2010 Nanotechnology 21 225602Google Scholar

    [104]

    Kim S W, Han T H, Kim J, Gwon H, Moon H S, Kang S W, Kim S O, Kang K 2009 ACS Nano 3 1085Google Scholar

    [105]

    Ban C M, George S M 2016 Adv. Mater. Interfaces 3 1600762Google Scholar

    [106]

    Liu L, Karuturi S K, Su L T, Tok A I Y 2011 Energy Environ. Sci. 4 209Google Scholar

    [107]

    Mackus A J M, Bol A A, Kessels W M M 2014 Nanoscale 6 10941Google Scholar

    [108]

    Skoog S A, Elam J W, Narayan R J 2013 Int. Mater. Rev. 58 113Google Scholar

    [109]

    Szilagyi I M, Teucher G, Harkonen E, Farm E, Hatanpaa T, Nikitin T, Khriachtchev L, Rasanen M, Ritala M, Leskela M 2013 Nanotechnology 24 245701Google Scholar

    [110]

    Gebhard M, Mitschker F, Hoppe C, Aghaee M, Rogalla D, Creatore M, Grundmeier G, Awakowicz P, Devi A 2018 Plasma Process. Polym. 15 e1700209Google Scholar

    [111]

    Kim K M, Jang J S, Yoon S G, Yun J Y, Chung N K 2020 Materials 13 2008Google Scholar

    [112]

    Choudhury D, Sarkar S K 2014 Chem. Vapor Depos. 20 130Google Scholar

    [113]

    Yoshimura T 2016 Macromol. Symp. 361 141Google Scholar

    [114]

    Poodt P, Cameron D C, Dickey E, George S M, Kuznetsov V, Parsons G N, Roozeboom F, Sundaram G, Vermeer A 2012 J. Vac. Sci. Technol., A 30 010802Google Scholar

    [115]

    Poodt P, van Lieshout J, Illiberi A, Knaapen R, Roozeboom F, van Asten A 2013 J. Vac. Sci. Technol., A 31 01A108

    [116]

    Sharma K, Hall R A, George S M 2015 J. Vac. Sci. Technol., A 33 01A132Google Scholar

    [117]

    Mousa M B M, Ovental J S, Brozena A H, Oldham C J, Parsons G N 2018 J. Vac. Sci. Technol., A 36 031517Google Scholar

    [118]

    Satpati A K, Arroyo-Curras N, Ji L, Yu E T, Bard A J 2013 Chem. Mater. 25 4165Google Scholar

    [119]

    Venkatraman K, Gusley R, Lesak A, Akolkar R 2019 J. Vac. Sci. Technol., A 37 020901Google Scholar

    [120]

    Elam J W 2012 Atomic Layer Deposition of Nanostructured Materials (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp227−249

    [121]

    Chen R, Kim H, McIntyre P C, Porter D W, Bent S F 2005 Appl. Phys. Lett. 86 191910Google Scholar

    [122]

    Lee H B R, Bent S F 2012 Atomic Layer Deposition of Nanostructured Materials (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp193−225

    [123]

    Hashemi F S M, Prasittichai C, Bent S F 2014 J. Phys. Chem. C 118 10957Google Scholar

    [124]

    Minaye Hashemi F S, Prasittichai C, Bent S F 2015 ACS Nano 9 8710Google Scholar

    [125]

    Hashemi F S M, Bent S F 2016 Adv. Mater. Interfaces 3 1600464Google Scholar

    [126]

    Seo S, Yeo B C, Han S S, Yoon C M, Yang J Y, Yoon J, Yoo C, Kim H J, Lee Y B, Lee S J, Myoung J M, Lee H B R, Kim W H, Oh I K, Kim H 2017 ACS Appl. Mater. Interfaces 9 41607Google Scholar

    [127]

    Farm E, Kemell M, Santala E, Ritala M, Leskela M 2010 J. Electrochem. Soc. 157 K10Google Scholar

    [128]

    Lee W, Prinz F B 2009 J. Electrochem. Soc. 156 G125Google Scholar

    [129]

    Horiike Y, Tanaka T, Nakano M, Iseda S, Sakaue H, Nagata A, Shindo H, Miyazaki S, Hirose M 1990 J. Vac. Sci. Technol., A 8 1844Google Scholar

    [130]

    Athavale S D 1996 J. Vac. Sci. Technol., B 14 3702Google Scholar

    [131]

    Dimiev A, Kosynkin D V, Sinitskii A, Slesarev A, Sun Z, Tour J M 2011 Science 331 1168Google Scholar

    [132]

    Faraz T, Roozeboom F, Knoops H, Kessels W M M 2015 ECS J. Solid State SC 4 N5023

    [133]

    Lee Y, DuMont J W, George S M 2015 Chem. Mater. 27 3648Google Scholar

    [134]

    Oehrlein G, Metzler D, Li C 2015 ECS J. Solid State SC 4 N5041

    [135]

    Kauppinen C, Khan S A, Sundqvist J, Suyatin D B, Suihkonen S, Kauppinen E I, Sopanen M 2017 J. Vac. Sci. Technol., A 35 060603Google Scholar

    [136]

    Kim K S, Ji Y J, Nam Y, Kim K H, Singh E, Lee J Y, Yeom G Y 2017 Sci. Rep. 7 2462Google Scholar

    [137]

    Kim K S, Kim K H, Nam Y, Jeon J, Yim S, Singh E, Lee J Y, Lee S J, Jung Y S, Yeom G Y, Kim D W 2017 ACS Appl. Mater. Interfaces 9 11967Google Scholar

    [138]

    Park J W, Kim D S, Mun M K, Lee W O, Kim K S, Yeom G Y 2017 J. Phys. D: Appl. Phys. 50 254007Google Scholar

    [139]

    Shinoda K, Miyoshi N, Kobayashi H, Kurihara M, Izawa M, Ishikawa K, Hori M 2017 ECS Trans. 80 3

    [140]

    Abdulagatov A I, George S M 2018 Chem. Mater. 30 8465Google Scholar

    [141]

    Cheng Y, Wang K, Qi Y, Liu Z 2020 Acta Phys.-Chim. Sin. 2021 37

    [142]

    Wang M, Fu L, Gan L, Zhang C, Rummeli M, Bachmatiuk A, Huang K, Fang Y, Liu Z 2013 Sci. Rep. 3 1238Google Scholar

  • 图 1  MBE系统结构示意图

    Fig. 1.  Schematic diagram of MBE system.

    图 2  RHEED系统示意图和漫反射现象随着薄膜生长的关系示意图

    Fig. 2.  Schematic diagram of RHEED, and the relationship between diffuse reflection and film coverage during growth.

    图 3  (a) Pt(111)表面锗烯的理论计算结构; (b)−(g) 不同位置的Ge原子对以及Ge单原子与最近邻基底Pt原子间电子局域函数的计算模拟; (h)−(j) 锗烯的实验结果(LEED, STM图像及表观高度)[37]

    Fig. 3.  (a) Theoretical model of germanene on Pt (111) surface, and the electron localization functions of the cross-sections between the germanium pairs (b)−(f) and between one germanium atom and its nearest Pt neighbor (g). (h)−(j) The experimental results of LEED pattern, STM image and the apparent height along the indicated line in the STM image, respectively[37].

    图 4  (a) Cu(111)表面制备的锗烯; (b), (c) Cu(111)基底和锗烯的原子分辨图像; (d) 双层锗烯的吸附结构模型; (e) 相应的STM图像模拟, 与实验结果(c)吻合; (f) 单层(红色)和双层(黑色)锗烯的电子结构(STS谱), 插图为Cu(111)基底STS谱用于标定针尖状态[38]

    Fig. 4.  (a) STM image of germanene on Cu(111); (b), (c) the atomic-resolved STM images of Cu (111) substrate and germanene, respectively; (d) the adsorption model of bilayer germanene; (e) the simulated STM image with the features fitting very well with the experimental observations; (f) the STS of monolayer (red) and bilayer (black) germanene, and inset is STS taken on the bare Cu(111) to verify the condition of the tip[38].

    图 5  (a)−(c) 在Cu(111)表面MBE生长的不同取向的硒化铜蜂窝状结构的STM图像; (d) 用于标定针尖状态的Cu(111)表面标准STS谱; (e) CuSe结构的STS谱[52]

    Fig. 5.  (a)−(c) The STM images of honeycomb structures with equivalent orientations on Cu(111) by means of MBE growth; (d) the standard STS of Cu(111) for checking tip status; (e) electronic structure (STS) of CuSe structures[52].

    图 6  (a) 在Cu(100)上外延生长的NaCl薄膜[36], 以及在其上的CoPc分子轨道的实验(b)和理论(c)图像[53]

    Fig. 6.  (a) MBE growth of NaCl layers on Cu(100)[36], on top of which the quasi-free molecular orbital of adsorbed CoPc can be observed. (b) and (c) are the STM image and theoretical simulation of molecular orbital, respectively[53].

    图 7  两种主要的石墨烯的CVD生长机制[75] (a) 偏析机制; (b) 表面化学反应机制

    Fig. 7.  Two main mechanisms of CVD growth of graphene[75] (a) Segregation mechanism; (b) surface reaction mechanism.

    图 8  原子层沉积系统示意图

    Fig. 8.  Schematic diagram of atomic layer deposition system.

    图 9  Al2O3层的ALD制备过程[76]

    Fig. 9.  The ALD process of Al2O3[76].

    图 10  (a) ALD与其他方式镀膜效果比较; (b) 在深高宽比Si结构上原子沉积Cu2S薄膜的SEM照片[120]

    Fig. 10.  (a) The coating effects of ALD and other methods; (b) cross-sectional SEM images of ALD Cu2S film on silicon trench structure[120].

    图 11  气体前驱体暴露量和沉积温度对原子层沉积镀膜速率的影响

    Fig. 11.  Effects of gaseous precursor exposure and deposition temperature on deposition rate of atomic layers.

    图 12  在SiO2/H-Si表面选区ALD沉积High-k氧化铪制作MOSFET原型[121]

    Fig. 12.  The area-selective ALD of high-k hafnium oxide on SiO2/H-Si surface to fabricate MOSFET prototype.[121]

    图 13  (a) 左边选区ALD的原理示意图, 右边为自组装钝化层的单体分子结构; (b) 自组装薄膜的缺陷(pinhole)影响ALD沉积过程的选择性; (c) 自组装分子的光聚合官能团(二炔基)在光诱导下聚合有效抑制缺陷产生; (d) 通过选区ALD沉积ZnO掩膜刻蚀后的微结构, 结构最窄宽度约为15 nm[101]

    Fig. 13.  (a) Schematic diagram of area-selective ALD growth (left), and the monomer molecular structures forming inactive SAMs (right); (b) the pinhole defect affects the selectivity of ALD deposition; (c) photopolymeric functional groups (diacetylenyl) of SAMs can effectively inhibit defect formation in terms of photo-induced polymerization; (d) SEM micrograph of the microstructure obtained by etching with ZnO mask of area-selective ALD, and the width of narrowest structure reaches 15 nm[101].

    图 14  ALE和ALD过程对比示意图[132]

    Fig. 14.  Schematic diagram of ALE process compared with ALD[132].

    图 15  双层石墨烯ALE刻蚀前后的光学显微图像(a), (b)以及相应的AFM图像(c), (d)和在各位点的拉曼谱(e)[136]

    Fig. 15.  Optical microscopic images (a), (b) and AFM images (c), (d) of bilayer graphene before and after one cycle of ALE etching. (e) Raman spectrum of graphene taken at twelve points indicated in (a), (b) before and after etching[136].

    图 16  单层石墨烯经过一个循环的ALE刻蚀前后的拉曼光谱[136]

    Fig. 16.  Raman spectrum of monolayer graphene before and after one cycle of ALE[136].

    图 17  (a)−(f) 经过PS纳米球掩膜的石墨烯加工过程; (g) 铜箔表面具有纳米模板的石墨烯[142]

    Fig. 17.  (a)−(f) The growth and etching processes of graphene via PS nanoparticle mask; (g) the nano-patterned template graphene on Cu foil[142].

  • [1]

    冯黎, 朱雷 2020 功能材料与器件学报 26 191

    Feng L, Zhu L 2020 J. Funct. Mater. Devices 26 191

    [2]

    庞玉莲, 邹应全 2015 信息记录材料 16 36Google Scholar

    Pang Y L, Zou Y Q 2015 Info. Rec. Mater. 16 36Google Scholar

    [3]

    Striccoli M 2017 Science 357 353Google Scholar

    [4]

    Okazaki S 2015 Microelectron. Eng. 133 23Google Scholar

    [5]

    Hong F, Blaikie R 2019 Adv. Opt. Mater. 7 1801653Google Scholar

    [6]

    王霞, 吕浩, 赵秋玲, 张帅一, 谭永炎 2016 光谱学与光谱分析 36 3461

    Wang X, Lü H, Zhao Q L, Zhang S Y, Tan Y Y 2016 Spectrosc. Spect. Anal. 36 3461

    [7]

    Fang F Z 2016 Front. Mech. Eng. Chin. 11 325Google Scholar

    [8]

    Luo C, Li J F, Yang X, Wu X, Zhong S Y, Wang C L, Sun L T 2020 ACS Appl. Nano Mater. 3 4747

    [9]

    Martín-Palma R J, Lakhtakia A 2013 Engineered Biomimicry (Boston: Elsevier) pp383−398

    [10]

    LaPedus M 2018 工艺与制造 35 39

    LaPedus M 2018 Prog. Fabri. 35 39

    [11]

    Ashurbekova K, Ashurbekova K, Botta G, Yurkevich O, Knez M 2020 Nanotechnology 31 342001Google Scholar

    [12]

    Kulkarni A K 1994 B. Mater. Sci. 17 1379Google Scholar

    [13]

    Mattox D M 1992 Plat. Surf. Finish. 79 60

    [14]

    Mattox D M 1998 Plat. Surf. Finish. 85 49

    [15]

    Zhu D M, Miller R A, Nagaraj B A, Bruce R W 2001 Surf. Coat. Technol. 138 1Google Scholar

    [16]

    Muratore C, Walton S G, Leonhardt D, Fernsler R F 2006 J. Vac. Sci. Technol., A 24 25

    [17]

    Kumar T S, Prabu S B, Manivasagam G 2014 J. Mater. Eng. Perform. 23 2877Google Scholar

    [18]

    Yang R B, Bachmann J, Pippel E, Berger A, Woltersdorf J, Gösele U, Nielsch K 2009 Adv. Mater. 21 3170Google Scholar

    [19]

    Bao Q H, Chen C Z, Wang D G, Ji Q M, Lei T Q 2005 Appl. Surf. Sci. 252 1538Google Scholar

    [20]

    Cho A Y, Arthur J R 1975 Prog. Solid State Chem. 10 157Google Scholar

    [21]

    Hong M 1995 J. Cryst. Growth 150 277Google Scholar

    [22]

    Spirkoska D, Colombo C, Heiss M, Abstreiter G, Morral A F I 2008 J. Phys. Condens. Matter 20 454225Google Scholar

    [23]

    Wang X Q, Yoshika A 2011 Thin Film Growth (Sawston Cambridge: Woodhead Publishing) pp288−316

    [24]

    Howson R P, Spencer A G, Lewin R W 1988 Vacuum 38 947

    [25]

    Kelly P J, Arnell R D 2000 Vacuum 56 159Google Scholar

    [26]

    Shi J Z, Chen C Z, Yu H J, Zhang S J 2008 B. Mater. Sci. 31 877Google Scholar

    [27]

    Brauer G, Szyszka B, Vergohl M, Bandorf R 2010 Vacuum 84 1354Google Scholar

    [28]

    Kopecky D, Vrnata M, Kopecka J 2015 Chem. Listy 109 183

    [29]

    von Wenckstern H, Kneiss M, Hassa A, Storm P, Splith D, Grundmann M 2020 Phys. Status Solidi B 257 1900626Google Scholar

    [30]

    Dabrowska-Szata M 2003 Mater. Chem.Phys. 81 257Google Scholar

    [31]

    Ichimiya A 2005 J. Jpn. Soc. Tribologis. 50 731

    [32]

    Wood C 1981 Surf. Sci. 108 L441

    [33]

    Chang C Z, Zhang J S, Feng X, Shen J, Zhang Z C, Guo M H, Li K, Ou Y B, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S H, Chen X, Jia J F, Dai X, Fang Z, Zhang S C, He K, Wang Y Y, Lu L, Ma X C, Xue Q K 2013 Science 340 167Google Scholar

    [34]

    Zhang J S, Chang C Z, Tang P Z, Zhang Z C, Feng X, Li K, Wang L L, Chen X, Liu C X, Duan W H, He K, Xue Q K, Ma X C, Wang Y Y 2013 Science 339 1582Google Scholar

    [35]

    Fei F, Zhang S, Zhang M, Shah S A, Song F, Wang X, Wang B 2019 Adv. Mater. 32 1904593

    [36]

    Guo Q M, Qin Z H, Liu C D, Zang K, Yu Y H, Cao G Y 2010 Surf. Sci. 604 1820Google Scholar

    [37]

    Li L F, Lu S Z, Pan J B, Qin Z H, Wang Y Q, Wang Y L, Cao G Y, Du S X, Gao H J 2014 Adv. Mater. 26 4820Google Scholar

    [38]

    Qin Z H, Pan J B, Lu S Z, Yan S, Wang Y L, Du S X, Gao H J, Cao G Y 2017 Adv. Mater. 29 1606046Google Scholar

    [39]

    Liao M H, Zang Y Y, Guan Z Y, Li H W, Gong Y, Zhu K J, Hu X P, Zhang D, Xu Y, Wang Y Y, He K, Ma X C, Zhang S C, Xue Q K 2018 Nat. Phys. 14 344Google Scholar

    [40]

    秦志辉 2017 物理学报 66 216802Google Scholar

    Qin Z H 2017 Acta Phys. Sin. 66 216802Google Scholar

    [41]

    Qin Z 2013 Chin. Phys. B 22 098108Google Scholar

    [42]

    Cahangirov S, Topsakal M, Aktürk E, Şahin H, Ciraci S 2009 Phys. Rev. Lett. 102 236804Google Scholar

    [43]

    Liu C C, Feng W X, Yao Y G 2011 Phys. Rev. Lett. 107 076802Google Scholar

    [44]

    Le Lay G 2015 Nat. Nanotechnol. 10 202Google Scholar

    [45]

    Dávila M E, Xian L, Cahangirov S, Rubio A, Le Lay G 2014 New J. Phys. 16 095002Google Scholar

    [46]

    Derivaz M, Dentel D, Stephan R, Hanf M C, Mehdaoui A, Sonnet P, Pirri C 2015 Nano Lett. 15 2510Google Scholar

    [47]

    Meng L, Wang Y L, Zhang L Z, Du S X, Wu R T, Li L F, Zhang Y, Li G, Zhou H T, Hofer W A, Gao H J 2013 Nano Lett. 13 685Google Scholar

    [48]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 564

    [49]

    Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563Google Scholar

    [50]

    Penev E S, Kutana A, Yakobson B I 2016 Nano Lett. 16 2522Google Scholar

    [51]

    Li L F, Wang Y L, Xie S Y, Li X B, Wang Y Q, Wu R T, Sun H B, Zhang S B, Gao H J 2013 Nano Lett. 13 4671Google Scholar

    [52]

    Guo Q, Zhong Y, Huang M, Lu S, Yu Y 2020 Thin Solid Films 693 137709Google Scholar

    [53]

    Guo Q M, Qin Z H, Huang M, Mantsevich V N, Cao G Y 2016 Chin. Phys. B 25 036801Google Scholar

    [54]

    Beinik I, Barth C, Hanbucken M, Masson L 2015 Sci. Rep. 5 8223Google Scholar

    [55]

    Kwong P, Seidel S, Gupta M 2015 J. Vac. Sci. Technol., A 33 031504Google Scholar

    [56]

    McGinn P J 2019 ACS Comb. Sci. 21 501Google Scholar

    [57]

    Nie Z, Shi Y, Qin S, Wang Y, Jiang H, Zheng Q, Cui Y, Meng Y, Song F, Wang X, Turcu I C E, Wang X, Xu Y, Shi Y, Zhao J, Zhang R, Wang F 2019 Commun. Phys. 2 103Google Scholar

    [58]

    Triboulet R 2014 Prog. Cryst. Growth Charact. Matter. 60 1Google Scholar

    [59]

    Wang X R, Yushin G 2015 Energy Environ. Sci. 8 1889Google Scholar

    [60]

    Yu S J, Pak K, Kwak M J, Joo M, Kim B J, Oh M S, Baek J, Park H, Choi G, Kim D H, Choi J, Choi Y, Shin J, Moon H, Lee E, Im S G 2018 Adv. Eng. Mater. 20 1700622Google Scholar

    [61]

    Keyshar K, Gong Y J, Ye G L, Brunetto G, Zhou W, Cole D P, Hackenberg K, He Y M, Machado L, Kabbani M, Hart A H C, Li B, Galvao D S, George A, Vajtai R, Tiwary C S, Ajayan P M 2015 Adv. Mater. 27 4640Google Scholar

    [62]

    Matsuda T, Sato J, Ishikawa T, Ogino A, Nagatsu M 2009 Diam. Relat. Mater. 18 548Google Scholar

    [63]

    Shukla B, Saito T, Yumura M, Iijima S 2009 Chem. Commun. 342 2

    [64]

    Chen H C, Su W R, Yeh Y C 2020 ACS Appl. Mater. Interfaces 12 32905Google Scholar

    [65]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [66]

    Kim M, Safron N S, Han E, Arnold M S, Gopalan P 2010 Nano Lett. 10 1125Google Scholar

    [67]

    Kim Y, Choi D S, Kim H J, Kim H, Kim T Y, Rhyu S H, Lee K S, Yoon D H, Yang W S 2014 J. Ceram. Process. Res. 15 269

    [68]

    Fang W J, Hsu A L, Song Y, Kong J 2015 Nanoscale 7 20335Google Scholar

    [69]

    Sun H, Xu J, Wang C, Ge G, Jia Y, Liu J, Song F, Wan J 2016 Carbon 108 356Google Scholar

    [70]

    Sun H, Fu C, Shen X, Yang W, Guo P, Lu Y, Luo Y, Yu B, Wang X, Wang C, Xu J, Liu J, Song F, Wang G, Wan J 2017 Nanotechnology 28 245604Google Scholar

    [71]

    Tan H, Wang D G, Guo Y B 2018 Coatings 8 40Google Scholar

    [72]

    Jessen B S, Gammelgaard L, Thomsen M R, Mackenzie D M A, Thomsen J D, Caridad J M, Duegaard E, Watanabe K, Taniguchi T, Booth T J, Pedersen T G, Jauho A P, Boggild P 2019 Nat. Nanotechnol. 14 340Google Scholar

    [73]

    Wu J, Li Y, Pan D, Jiang C, Jin C, Song F, Wang G, Wan J 2019 Carbon 147 434Google Scholar

    [74]

    Jia K, Ci H, Zhang J, Sun Z, Ma Z, Zhu Y, Liu S, Liu J, Sun L, Liu X, Sun J, Yin W, Peng H, Lin L, Liu Z 2020 Angew. Chem. Int. Ed. 59 17214Google Scholar

    [75]

    Li X, Cai W, Colombo L, Ruoff R S 2009 Nano Lett. 9 4268Google Scholar

    [76]

    Puurunen R L 2005 J. Appl. Phys. 97 121301Google Scholar

    [77]

    Kol'tsov S I, Aleskovskii V B 1967 Zh. Prikl. Khim. 40 907

    [78]

    Kol'tsov S I, Aleskovskii V B 1969 Zh. Prikl. Khim. 42 1023

    [79]

    Suntola T, Antson J U.S. Patent 4058430 [1977-11-15]

    [80]

    Longo E, Mantovan R, Cecchini R, Overbeek M D, Longo M, Trevisi G, Lazzarini L, Tallarida G, Fanciulli M, Winter C H, Wiemer C 2020 Nano Res. 13 570Google Scholar

    [81]

    Ahvenniemi E, Karppinen M 2016 Dalton Trans. 45 10730Google Scholar

    [82]

    Leskelä M, Ritala M 2003 Angew. Chem. Int. Ed. 42 5548Google Scholar

    [83]

    Yang H C, Waldman R Z, Chen Z W, Darling S B 2018 Nanoscale 10 20505Google Scholar

    [84]

    Griffiths M B E, Pallister P J, Mandia D J, Barry S T 2016 Chem. Mater. 28 44Google Scholar

    [85]

    Ahn J, Ahn C, Jeon S, Park J 2019 Appl. Sci. 9 1990Google Scholar

    [86]

    Marichy C, Bechelany M, Pinna N 2012 Adv. Mater. 24 1017Google Scholar

    [87]

    Ovanesyan R A, Filatova E A, Elliott S D, Hausmann D M, Smith D C, Agarwal S 2019 J. Vac. Sci. Technol., A 37 060904Google Scholar

    [88]

    Solanki R, Huo J, Freeouf J L, Miner B 2002 Appl. Phys. Lett. 81 3864Google Scholar

    [89]

    Andou Y, Nishida H, Endo T 2006 Chem. Commun. 501 8

    [90]

    Amitonova L V, de Boer J F 2020 Light-Sci. Appl. 9 81Google Scholar

    [91]

    Clary J, Norman S, Funke H, Su D, Musgrave C, Weimer A 2020 Nanotechnology 31 175703Google Scholar

    [92]

    Cao K, Cai J, Chen R 2020 Chem. Mater. 32 2195Google Scholar

    [93]

    Shimamura H, Nakamura T 2010 Polym. Degrad. Stab. 95 21Google Scholar

    [94]

    Klesko J P, Kerrigan M M, Winter C H 2016 Chem. Mater. 28 700Google Scholar

    [95]

    Kerrigan M M, Klesko J P, Winter C H 2017 Chem. Mater. 29 7458Google Scholar

    [96]

    Knisley T J, Kalutarage L C, Winter C H 2013 Coord. Chem. Rev. 257 3222Google Scholar

    [97]

    Eigenfeld N T, Gray J M, Brown J J, Skidmore G D, George S M, Bright V M 2014 Adv. Mater. 26 3962Google Scholar

    [98]

    Knisley T J, Saly M J, Heeg M J, Roberts J L, Winter C H 2011 Organometallics 30 5010Google Scholar

    [99]

    Krozer A, Rodahl M 1997 J. Vac. Sci. Technol., A 15 1704Google Scholar

    [100]

    Chen R, Bent S F 2006 Adv. Mater. 18 1086Google Scholar

    [101]

    Wojtecki R, Mettry M, Fine Nathel N F, Friz A, De Silva A, Arellano N, Shobha H 2018 ACS Appl. Mater. Interfaces 10 38630Google Scholar

    [102]

    Koenig M, Lahann J 2017 Beilstein J. Nanotechnol. 8 1250Google Scholar

    [103]

    Chang Y H, Liu C M, Tseng Y C, Chen C, Chen C C, Cheng H E 2010 Nanotechnology 21 225602Google Scholar

    [104]

    Kim S W, Han T H, Kim J, Gwon H, Moon H S, Kang S W, Kim S O, Kang K 2009 ACS Nano 3 1085Google Scholar

    [105]

    Ban C M, George S M 2016 Adv. Mater. Interfaces 3 1600762Google Scholar

    [106]

    Liu L, Karuturi S K, Su L T, Tok A I Y 2011 Energy Environ. Sci. 4 209Google Scholar

    [107]

    Mackus A J M, Bol A A, Kessels W M M 2014 Nanoscale 6 10941Google Scholar

    [108]

    Skoog S A, Elam J W, Narayan R J 2013 Int. Mater. Rev. 58 113Google Scholar

    [109]

    Szilagyi I M, Teucher G, Harkonen E, Farm E, Hatanpaa T, Nikitin T, Khriachtchev L, Rasanen M, Ritala M, Leskela M 2013 Nanotechnology 24 245701Google Scholar

    [110]

    Gebhard M, Mitschker F, Hoppe C, Aghaee M, Rogalla D, Creatore M, Grundmeier G, Awakowicz P, Devi A 2018 Plasma Process. Polym. 15 e1700209Google Scholar

    [111]

    Kim K M, Jang J S, Yoon S G, Yun J Y, Chung N K 2020 Materials 13 2008Google Scholar

    [112]

    Choudhury D, Sarkar S K 2014 Chem. Vapor Depos. 20 130Google Scholar

    [113]

    Yoshimura T 2016 Macromol. Symp. 361 141Google Scholar

    [114]

    Poodt P, Cameron D C, Dickey E, George S M, Kuznetsov V, Parsons G N, Roozeboom F, Sundaram G, Vermeer A 2012 J. Vac. Sci. Technol., A 30 010802Google Scholar

    [115]

    Poodt P, van Lieshout J, Illiberi A, Knaapen R, Roozeboom F, van Asten A 2013 J. Vac. Sci. Technol., A 31 01A108

    [116]

    Sharma K, Hall R A, George S M 2015 J. Vac. Sci. Technol., A 33 01A132Google Scholar

    [117]

    Mousa M B M, Ovental J S, Brozena A H, Oldham C J, Parsons G N 2018 J. Vac. Sci. Technol., A 36 031517Google Scholar

    [118]

    Satpati A K, Arroyo-Curras N, Ji L, Yu E T, Bard A J 2013 Chem. Mater. 25 4165Google Scholar

    [119]

    Venkatraman K, Gusley R, Lesak A, Akolkar R 2019 J. Vac. Sci. Technol., A 37 020901Google Scholar

    [120]

    Elam J W 2012 Atomic Layer Deposition of Nanostructured Materials (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp227−249

    [121]

    Chen R, Kim H, McIntyre P C, Porter D W, Bent S F 2005 Appl. Phys. Lett. 86 191910Google Scholar

    [122]

    Lee H B R, Bent S F 2012 Atomic Layer Deposition of Nanostructured Materials (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA) pp193−225

    [123]

    Hashemi F S M, Prasittichai C, Bent S F 2014 J. Phys. Chem. C 118 10957Google Scholar

    [124]

    Minaye Hashemi F S, Prasittichai C, Bent S F 2015 ACS Nano 9 8710Google Scholar

    [125]

    Hashemi F S M, Bent S F 2016 Adv. Mater. Interfaces 3 1600464Google Scholar

    [126]

    Seo S, Yeo B C, Han S S, Yoon C M, Yang J Y, Yoon J, Yoo C, Kim H J, Lee Y B, Lee S J, Myoung J M, Lee H B R, Kim W H, Oh I K, Kim H 2017 ACS Appl. Mater. Interfaces 9 41607Google Scholar

    [127]

    Farm E, Kemell M, Santala E, Ritala M, Leskela M 2010 J. Electrochem. Soc. 157 K10Google Scholar

    [128]

    Lee W, Prinz F B 2009 J. Electrochem. Soc. 156 G125Google Scholar

    [129]

    Horiike Y, Tanaka T, Nakano M, Iseda S, Sakaue H, Nagata A, Shindo H, Miyazaki S, Hirose M 1990 J. Vac. Sci. Technol., A 8 1844Google Scholar

    [130]

    Athavale S D 1996 J. Vac. Sci. Technol., B 14 3702Google Scholar

    [131]

    Dimiev A, Kosynkin D V, Sinitskii A, Slesarev A, Sun Z, Tour J M 2011 Science 331 1168Google Scholar

    [132]

    Faraz T, Roozeboom F, Knoops H, Kessels W M M 2015 ECS J. Solid State SC 4 N5023

    [133]

    Lee Y, DuMont J W, George S M 2015 Chem. Mater. 27 3648Google Scholar

    [134]

    Oehrlein G, Metzler D, Li C 2015 ECS J. Solid State SC 4 N5041

    [135]

    Kauppinen C, Khan S A, Sundqvist J, Suyatin D B, Suihkonen S, Kauppinen E I, Sopanen M 2017 J. Vac. Sci. Technol., A 35 060603Google Scholar

    [136]

    Kim K S, Ji Y J, Nam Y, Kim K H, Singh E, Lee J Y, Yeom G Y 2017 Sci. Rep. 7 2462Google Scholar

    [137]

    Kim K S, Kim K H, Nam Y, Jeon J, Yim S, Singh E, Lee J Y, Lee S J, Jung Y S, Yeom G Y, Kim D W 2017 ACS Appl. Mater. Interfaces 9 11967Google Scholar

    [138]

    Park J W, Kim D S, Mun M K, Lee W O, Kim K S, Yeom G Y 2017 J. Phys. D: Appl. Phys. 50 254007Google Scholar

    [139]

    Shinoda K, Miyoshi N, Kobayashi H, Kurihara M, Izawa M, Ishikawa K, Hori M 2017 ECS Trans. 80 3

    [140]

    Abdulagatov A I, George S M 2018 Chem. Mater. 30 8465Google Scholar

    [141]

    Cheng Y, Wang K, Qi Y, Liu Z 2020 Acta Phys.-Chim. Sin. 2021 37

    [142]

    Wang M, Fu L, Gan L, Zhang C, Rummeli M, Bachmatiuk A, Huang K, Fang Y, Liu Z 2013 Sci. Rep. 3 1238Google Scholar

  • [1] 仇鹏, 刘恒, 朱晓丽, 田丰, 杜梦超, 邱洪宇, 陈冠良, 胡玉玉, 孔德林, 杨晋, 卫会云, 彭铭曾, 郑新和. III族氮化物半导体及其合金的原子层沉积和应用. 物理学报, 2024, 73(3): 038102. doi: 10.7498/aps.73.20230832
    [2] 瞿子涵, 赵洋, 马飞, 游经碧. 原子层沉积金属氧化物缓冲层制备高性能大面积钙钛矿太阳电池. 物理学报, 2024, 73(9): 098802. doi: 10.7498/aps.73.20240218
    [3] 李中祥, 王淑亚, 黄自强, 王晨, 穆清. 原子级控制的约瑟夫森结中Al2O3势垒层制备工艺. 物理学报, 2022, 71(21): 218102. doi: 10.7498/aps.71.20220820
    [4] 戴李知, 胡晓雪, 刘鹏, 田野. DNA折纸结构介导的多尺度纳米结构精准制造. 物理学报, 2021, 70(6): 068201. doi: 10.7498/aps.70.20201689
    [5] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [6] 钟虓䶮, 李卓. 原子尺度材料三维结构、磁性及动态演变的透射电子显微学表征. 物理学报, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [7] 战海洋, 邢飞, 张利. 面向近原子尺度制造的光学测量精度极限分析. 物理学报, 2021, 70(6): 060703. doi: 10.7498/aps.70.20201924
    [8] 李圣凯, 郝卿, 彭天欢, 陈卓, 谭蔚泓. 核酸-金属复合物及其在原子制造领域的应用. 物理学报, 2021, 70(2): 028102. doi: 10.7498/aps.70.20201430
    [9] 杨蓓, 李茜, 柳华杰, 樊春海. 面向原子制造的框架核酸研究进展. 物理学报, 2021, 70(2): 026201. doi: 10.7498/aps.70.20201437
    [10] 李晔, 王茜茜, 卫会云, 仇鹏, 何荧峰, 宋祎萌, 段彰, 申诚涛, 彭铭曾, 郑新和. 原子层沉积的超薄InN强化量子点太阳能电池的界面输运. 物理学报, 2021, 70(18): 187702. doi: 10.7498/aps.70.20210554
    [11] 王兴悦, 张辉, 阮子林, 郝振亮, 杨孝天, 蔡金明, 卢建臣. 超高真空条件下分子束外延生长的单层二维原子晶体材料的研究进展. 物理学报, 2020, 69(11): 118101. doi: 10.7498/aps.69.20200174
    [12] 刘珂, 马文全, 黄建亮, 张艳华, 曹玉莲, 黄文军, 赵成城. 含有AlGaAs插入层的InAs/GaAs三色量子点红外探测器. 物理学报, 2016, 65(10): 108502. doi: 10.7498/aps.65.108502
    [13] 祝梦遥, 鲁军, 马佳淋, 李利霞, 王海龙, 潘东, 赵建华. 高质量稀磁半导体(Ga, Mn)Sb单晶薄膜分子束外延生长. 物理学报, 2015, 64(7): 077501. doi: 10.7498/aps.64.077501
    [14] 王萌, 欧云波, 李坊森, 张文号, 汤辰佳, 王立莉, 薛其坤, 马旭村. SrTiO3(001)衬底上单层FeSe超导薄膜的分子束外延生长. 物理学报, 2014, 63(2): 027401. doi: 10.7498/aps.63.027401
    [15] 李勇, 李惠琪, 夏洋, 刘邦武. 原子层沉积方法制备核-壳型纳米材料研究. 物理学报, 2013, 62(19): 198102. doi: 10.7498/aps.62.198102
    [16] 董亚斌, 夏洋, 李超波, 卢维尔, 饶志鹏, 张阳, 张祥, 叶甜春. 原子层沉积法 生长ZnO的性质与前驱体源量的关系研究. 物理学报, 2013, 62(14): 147306. doi: 10.7498/aps.62.147306
    [17] 闫大为, 李丽莎, 焦晋平, 黄红娟, 任舰, 顾晓峰. 原子层沉积Al2O3/n-GaN MOS结构的电容特性. 物理学报, 2013, 62(19): 197203. doi: 10.7498/aps.62.197203
    [18] 苏少坚, 汪巍, 张广泽, 胡炜玄, 白安琪, 薛春来, 左玉华, 成步文, 王启明. Si(001)衬底上分子束外延生长Ge0.975Sn0.025合金薄膜. 物理学报, 2011, 60(2): 028101. doi: 10.7498/aps.60.028101
    [19] 张燕辉, 陈平平, 李天信, 殷豪. GaAs(001)衬底上分子束外延生长InNSb单晶薄膜. 物理学报, 2010, 59(11): 8026-8030. doi: 10.7498/aps.59.8026
    [20] 敬 超, 金晓峰, 董国胜, 龚小燕, 郁黎明, 郑卫民. 分子束外延生长Fe/Fe50Mn50双层膜的交换偏置. 物理学报, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
计量
  • 文章访问数:  14165
  • PDF下载量:  438
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-31
  • 修回日期:  2020-09-20
  • 上网日期:  2021-01-15
  • 刊出日期:  2021-01-20

/

返回文章
返回