搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能质子在散裂靶中的能量沉积计算与实验验证

周斌 于全芝 胡志良 陈亮 张雪荧 梁天骄

引用本文:
Citation:

高能质子在散裂靶中的能量沉积计算与实验验证

周斌, 于全芝, 胡志良, 陈亮, 张雪荧, 梁天骄

Calculation and verification for energetic proton energy deposition in spallation target

Zhou Bin, Yu Quan-Zhi, Hu Zhi-Liang, Chen Liang, Zhang Xue-Ying, Liang Tian-Jiao
PDF
HTML
导出引用
  • 高能质子在散裂靶中的能量沉积是散裂靶中子学研究的重要内容之一, 准确掌握高能质子在散裂靶中引起的能量沉积分布与瞬态变化是开展散裂靶热工流体设计的重要前提. 本文采用MCNPX, PHITS与FLUKA三种蒙特卡罗模拟程序, 计算并比较了高能质子入射重金属铅靶、钨靶的能量沉积分布及不同粒子对总能量沉积的占比贡献; 针对高能质子入射金属钨靶的能量沉积实验数据空白, 采用热释光探测器阵列测量了250 MeV质子束入射厚钨靶的能量沉积分布, 实验结果表明蒙特卡罗模拟程序在散裂靶中能量沉积的计算结果具有较高的可靠性.
    Energy deposition in spallation target induced by energetic protons is the foundation and the premise of the spallation target research. In this paper, several intra-nuclear cascade models including BERTINI, ISABEL, CEM2K and INCL4 contained in MCNPX package, together with FLUKA and PHITS Monte Carlo codes are used to calculate the energy deposition in lead (Pb) and tungsten (W) spallation target impinged by 800, 1000, and 1200 MeV protons. The contributions of different particles to the total energy deposition in the Pb target are obtained and compared with each other as well. The energy deposition distribution caused by 250 MeV protons in the W target is measured with thermoluminescence detectors (TLDs). The results indicate that the calculations from the MCNPX accord with experimental data, verifying that the Monte Carlo code has a high reliability for energy deposition simulation.
      通信作者: 于全芝, qzhyu@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 91226107, 11575289)和中国科学院关键技术人才项目资助的课题
      Corresponding author: Yu Quan-Zhi, qzhyu@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91226107, 11575289) and the Chinese Academy of Sciences Key Technology Talent Program
    [1]

    Wang F W, Liang T J, Yin W, Yu Q Z, He L H, Tao J Z, Zhu T, Jia X J, Zhang S Y 2013 Sci. China Phys. Mech. Astron. 56 2410Google Scholar

    [2]

    詹文龙, 徐瑚珊 2012 中国科学院院刊 27 375Google Scholar

    Zhan W L, Xu H S 2012 Bul. Ch. Acad. Sci. 27 375Google Scholar

    [3]

    于全芝, 殷雯, 梁天骄 2011 物理学报 60 052501Google Scholar

    Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501Google Scholar

    [4]

    Pelowitz D B 2005 MCNPX User’s Manual version 2.5.0 (Los Alamos: Los Alamos National Laboratory)

    [5]

    Tatsuhiko S, Koji N, Norihiro M, Shintaro H, Yosuke I, Shusaku N, Tatsuhiko O, Hiroshi I, Hiroshi N, Tokio F, Keisuke O, Tetsuya K, Satoshi C 2013 J. Nucl. Sci. Technol. 50 913Google Scholar

    [6]

    Alfredo F, Paola R S, Alberto F, Johannes R FLUKA: A Multi-particle Transport Code (Italian National Institute for Nuclear Physics (INFN) and European Organization for Nuclear Research (CERN))

    [7]

    Belyakov-Bodin V I, Kazaritsky V D, Povarov A L, Chuvilo I V, Sherstnev V A 1990 Nucl. Instr. Meth. A 295 140Google Scholar

    [8]

    Belyakov-Bodin V I, Andreev A M, Dubinsky V D, Kazaritsky V D, Povarov A L, Chuvilo I V, Sherstnev V A 1992 Nucl. Instr. Meth. A 314 508Google Scholar

    [9]

    Belyakov-Bodin V I, Andreev A M, Dubinsky V D, Chuvilo I V, Sherstnev V A 1993 Nucl. Instr. Meth. A 335 30Google Scholar

    [10]

    Belyakov-Bodin V I, Azhgirey I L, Degtyarev I I 2007 Nucl. Instr. Meth. A 572 935Google Scholar

    [11]

    Bauer G S, Spitzer H, Holzen G V, Ni L, Hastings J 1998 14th Meeting of the Int. Collaboration on Advanced Neutron Sources, Uitica I L USA, June 14–19, 1998 p229

    [12]

    Filges D, Neef R D, Schaal H 1998 Proc. of the Fourth Workshop on Simulating Accelerator Radiation Environments, Konxville TN USA, September 14–16, 1998 p221

    [13]

    Tietze A 2001 Ph. D. Dissertation (Wuppertal: University of Wuppertal)

    [14]

    Xia J W, Zhan W L, Wei B W, Yuan Y J, Song M T, Zhang W Z, Yang X D, Yuan P, Gao D Q, Zhao H W, Yang X T, Xiao G Q, Man K T, Dang J R, Cai X H, Wang Y F, Tang J Y, Qiao W M, Rao Y N, He Y, Mao L Z, Zhou Z Z 2002 Nucl. Instr. Meth. A 488 11Google Scholar

    [15]

    Detlef F, Frank G 2009 Handbook of Spallation Research: Theory, Experiments and Applications (Weinheim: WILEY-VCH)

    [16]

    奥伯霍弗, 沙尔曼著 (张彤译) 1988 应用热释光剂量学(北京: 中国计量出版社)

    Oberhofer M, Scharmann A (translated by Zhang T) 1988 The Applied Thermoluminescence Dosimetry (Beijing: China Metrology Press)(in Chinese)

    [17]

    赵建兴, 王峰, 唐开勇, 李海俊, 刘大海, 肖无云, 崔辉 2011 核技术 34 103

    Zhao J X, Wang F, Tang K Y, Li H J, Liu D H, Xiao W Y, Cui H 2011 J. Nucl. Tech. 34 103

    [18]

    Massillon-JL G, Gamboa-deBuen I, Brandan M E 2007 J. Phys. D: Appl. Phys. 40 2584Google Scholar

    [19]

    Bilski P, Berger T, Hajek M, Reitz G 2011 Radi Meas. 46 1728Google Scholar

    [20]

    James F Z, http://www.srim.org [2009]

  • 图 1  (a)不同模拟程序对铅靶总能量沉积计算的对比; (b) 铅靶中能量沉积线性密度的轴向分布

    Fig. 1.  (a) Comparison of total energy deposition in lead target calculated by different Monte Carlo codes; (b) axial distribution of linear density of energy deposition in lead target.

    图 2  (a)不同模拟程序对钨靶总能量沉积计算的对比; (b)钨靶中能量沉积线性密度分布

    Fig. 2.  (a) Comparison of total energy deposition in tungsten target calculated by different Monte Carlo code; (b) axial distribution of linear density of energy deposition in tungsten target.

    图 3  质子在钨靶中的能量沉积测量示意图

    Fig. 3.  Schematic of the energy deposition measurement in a tungsten target incident by protons.

    图 4  第一层TLD的剂量读出值

    Fig. 4.  TLD dose readouts at the first layer.

    图 5  不同深度的钨靶中质子的平均能量与水等效LET值

    Fig. 5.  Average proton energy in the tungsten target and equivalent LET in water.

    图 6  钨靶中TLD的能量沉积测量值与计算值

    Fig. 6.  Energy deposition comparison between measurement and calculation of TLD in tungsten target.

    表 1  CEM2K级联模型计算质子入射铅靶产生的不同粒子对总能量沉积的占比贡献

    Table 1.  The calculated contribution of different particles to the total energy deposition in lead target by CEM2K-Cascade-Mode

    粒子800 MeV1000 MeV1200 MeV
    沉积能
    量/MeV
    对总能量沉积值
    的占比/%
    沉积能
    量/MeV
    对总能量沉积值
    的占比/%
    沉积能
    量/MeV
    对总能量沉积值
    的占比/%
    全部粒子497.9100572.0100648.7100
    质子413.983.13435.676.15455.070.15
    光子47.59.5474.813.08104.016.03
    π00.20.040.40.060.50.08
    带电π介子(± π)6.61.3313.72.3921.93.37
    13.72.7521.23.7129.04.47
    5.01.018.51.4812.31.90
    氦–32.80.575.10.908.01.23
    α粒子6.11.2310.11.7714.62.26
    中子2.00.402.70.473.30.51
    初级质子
    电离作用
    268.852.73247.948.63233.145.72
    下载: 导出CSV

    表 2  BERTINI, ISABEL, CEM2K与INCL4级联模型计算1000 MeV质子入射铅靶产生的不同粒子对总能量沉积值的占比贡献

    Table 2.  The calculated contribution of different particles to the total energy deposition in lead target by 1000 MeV protons with BERTINI, ISABEL, CEM2K, and INCL4 cascade mode.

    粒子BERTINIISABELCEM2 KINCL4
    沉积能
    量/MeV
    对总能量沉积值
    的占比/%
    沉积能
    量/MeV
    对总能量沉积值
    的占比/%
    沉积能
    量/MeV
    对总能量沉积值
    的占比/%
    沉积能
    量/MeV
    对总能量沉积值
    的占比/%
    全部粒子580.3100603.0100572.0100.00594.5100
    质子474.081.67493.081.76435.676.15500.684.20
    光子63.710.9876.212.6474.813.0860.710.21
    π00.30.050.30.050.30.060.30.04
    带电π介
    子(± π)
    14.92.5613.92.3113.72.3915.52.60
    6.41.103.70.6221.23.714.00.67
    3.00.521.90.328.51.481.80.30
    氦–30.40.060.10.025.10.900.20.03
    α粒子14.82.5611.81.9610.11.779.11.53
    中子2.90.491.90.322.70.472.50.42
    初级质子电
    离作用
    245.148.06243.647.79247.948.63245.048.06
    下载: 导出CSV
  • [1]

    Wang F W, Liang T J, Yin W, Yu Q Z, He L H, Tao J Z, Zhu T, Jia X J, Zhang S Y 2013 Sci. China Phys. Mech. Astron. 56 2410Google Scholar

    [2]

    詹文龙, 徐瑚珊 2012 中国科学院院刊 27 375Google Scholar

    Zhan W L, Xu H S 2012 Bul. Ch. Acad. Sci. 27 375Google Scholar

    [3]

    于全芝, 殷雯, 梁天骄 2011 物理学报 60 052501Google Scholar

    Yu Q Z, Yin W, Liang T J 2011 Acta Phys. Sin. 60 052501Google Scholar

    [4]

    Pelowitz D B 2005 MCNPX User’s Manual version 2.5.0 (Los Alamos: Los Alamos National Laboratory)

    [5]

    Tatsuhiko S, Koji N, Norihiro M, Shintaro H, Yosuke I, Shusaku N, Tatsuhiko O, Hiroshi I, Hiroshi N, Tokio F, Keisuke O, Tetsuya K, Satoshi C 2013 J. Nucl. Sci. Technol. 50 913Google Scholar

    [6]

    Alfredo F, Paola R S, Alberto F, Johannes R FLUKA: A Multi-particle Transport Code (Italian National Institute for Nuclear Physics (INFN) and European Organization for Nuclear Research (CERN))

    [7]

    Belyakov-Bodin V I, Kazaritsky V D, Povarov A L, Chuvilo I V, Sherstnev V A 1990 Nucl. Instr. Meth. A 295 140Google Scholar

    [8]

    Belyakov-Bodin V I, Andreev A M, Dubinsky V D, Kazaritsky V D, Povarov A L, Chuvilo I V, Sherstnev V A 1992 Nucl. Instr. Meth. A 314 508Google Scholar

    [9]

    Belyakov-Bodin V I, Andreev A M, Dubinsky V D, Chuvilo I V, Sherstnev V A 1993 Nucl. Instr. Meth. A 335 30Google Scholar

    [10]

    Belyakov-Bodin V I, Azhgirey I L, Degtyarev I I 2007 Nucl. Instr. Meth. A 572 935Google Scholar

    [11]

    Bauer G S, Spitzer H, Holzen G V, Ni L, Hastings J 1998 14th Meeting of the Int. Collaboration on Advanced Neutron Sources, Uitica I L USA, June 14–19, 1998 p229

    [12]

    Filges D, Neef R D, Schaal H 1998 Proc. of the Fourth Workshop on Simulating Accelerator Radiation Environments, Konxville TN USA, September 14–16, 1998 p221

    [13]

    Tietze A 2001 Ph. D. Dissertation (Wuppertal: University of Wuppertal)

    [14]

    Xia J W, Zhan W L, Wei B W, Yuan Y J, Song M T, Zhang W Z, Yang X D, Yuan P, Gao D Q, Zhao H W, Yang X T, Xiao G Q, Man K T, Dang J R, Cai X H, Wang Y F, Tang J Y, Qiao W M, Rao Y N, He Y, Mao L Z, Zhou Z Z 2002 Nucl. Instr. Meth. A 488 11Google Scholar

    [15]

    Detlef F, Frank G 2009 Handbook of Spallation Research: Theory, Experiments and Applications (Weinheim: WILEY-VCH)

    [16]

    奥伯霍弗, 沙尔曼著 (张彤译) 1988 应用热释光剂量学(北京: 中国计量出版社)

    Oberhofer M, Scharmann A (translated by Zhang T) 1988 The Applied Thermoluminescence Dosimetry (Beijing: China Metrology Press)(in Chinese)

    [17]

    赵建兴, 王峰, 唐开勇, 李海俊, 刘大海, 肖无云, 崔辉 2011 核技术 34 103

    Zhao J X, Wang F, Tang K Y, Li H J, Liu D H, Xiao W Y, Cui H 2011 J. Nucl. Tech. 34 103

    [18]

    Massillon-JL G, Gamboa-deBuen I, Brandan M E 2007 J. Phys. D: Appl. Phys. 40 2584Google Scholar

    [19]

    Bilski P, Berger T, Hajek M, Reitz G 2011 Radi Meas. 46 1728Google Scholar

    [20]

    James F Z, http://www.srim.org [2009]

  • [1] 何民卿, 张华, 李明强, 彭力, 周沧涛. 快点火中质子的能量沉积和神光II升级装置上的质子束的产生. 物理学报, 2023, 72(9): 095201. doi: 10.7498/aps.72.20222005
    [2] 王凯, 孙靖雅, 潘昌基, 王飞飞, 张可, 陈治成. 飞秒激光辐照二硫化钨的超快动态响应及时域整形调制. 物理学报, 2021, 70(20): 205201. doi: 10.7498/aps.70.20210737
    [3] 张世健, 喻晓, 钟昊玟, 梁国营, 许莫非, 张楠, 任建慧, 匡仕成, 颜莎, GennadyEfimovich Remnev, 乐小云. 烧蚀对强脉冲离子束在高分子材料中能量沉积的影响. 物理学报, 2020, 69(11): 115202. doi: 10.7498/aps.69.20200212
    [4] 盛亮, 李阳, 吴坚, 袁媛, 赵吉祯, 张美, 彭博栋, 黑东炜. 双绞铝丝纳秒电爆炸实验研究. 物理学报, 2014, 63(20): 205203. doi: 10.7498/aps.63.205203
    [5] 石桓通, 邹晓兵, 赵屾, 朱鑫磊, 王新新. 并联金属丝提高电爆炸丝沉积能量的数值模拟. 物理学报, 2014, 63(14): 145206. doi: 10.7498/aps.63.145206
    [6] 刘腊群, 刘大刚, 王学琼, 杨超, 夏蒙重, 彭凯. 磁绝缘传输线中心汇流区电子能量沉积及温度变化的数值模拟研究. 物理学报, 2012, 61(16): 162902. doi: 10.7498/aps.61.162902
    [7] 许慎跃, 马新文, 任雪光, T. Pflüger, A. Dorn, J. Ullrich. 甲烷分子电子碰撞电离和解离的实验研究. 物理学报, 2011, 60(9): 093401. doi: 10.7498/aps.60.093401
    [8] 鞠志萍, 曹午飞, 刘小伟. 蒙特卡罗模拟单阻止柱双散射体质子束流扩展方法. 物理学报, 2010, 59(1): 199-202. doi: 10.7498/aps.59.199
    [9] 鞠志萍, 曹午飞, 刘小伟. 质子散射角分布的蒙特卡罗模拟. 物理学报, 2009, 58(1): 174-177. doi: 10.7498/aps.58.174
    [10] 方美华, 魏志勇, 杨 浩, 程金星. 高能铁离子在水介质中核反应过程所导致的能量沉积. 物理学报, 2008, 57(10): 6196-6201. doi: 10.7498/aps.57.6196
    [11] 宫 野, 张建红, 王晓东, 吴 迪, 刘金远, 刘 悦, 王晓钢, 马腾才. 强流脉冲离子束辐照双层靶能量沉积的数值模拟. 物理学报, 2008, 57(8): 5095-5099. doi: 10.7498/aps.57.5095
    [12] 赵宗清, 丁永坤, 谷渝秋, 王向贤, 洪 伟, 王 剑, 郝轶聃, 袁永腾, 蒲以康. 超短超强激光与铜靶相互作用产生Kα源的蒙特卡罗模拟. 物理学报, 2007, 56(12): 7127-7131. doi: 10.7498/aps.56.7127
    [13] 施研博, 应阳君, 李金鸿. α粒子的慢化过程对D-T等离子体聚变燃烧的影响. 物理学报, 2007, 56(12): 6911-6917. doi: 10.7498/aps.56.6911
    [14] 李雪梅, 沈百飞, 查学军, 方宗豹, 张晓梅, 金张英, 王凤超. 高能离子在稠密等离子体中的传输和能量沉积. 物理学报, 2006, 55(5): 2313-2321. doi: 10.7498/aps.55.2313
    [15] 李 华. 静态随机存储器单粒子翻转的Monte Carlo模拟. 物理学报, 2006, 55(7): 3540-3545. doi: 10.7498/aps.55.3540
    [16] 任黎明, 陈宝钦, 谭震宇. Monte Carlo方法研究低能电子束曝光沉积能分布规律. 物理学报, 2002, 51(3): 512-518. doi: 10.7498/aps.51.512
    [17] 王营冠, 罗正明. 非弹性核反应对质子束能量沉积的影响. 物理学报, 2000, 49(8): 1639-1643. doi: 10.7498/aps.49.1639
    [18] 王德真, 马腾才, 宫野. 等离子体源离子注入球形靶的蒙特-卡罗模拟. 物理学报, 1995, 44(6): 877-884. doi: 10.7498/aps.44.877
    [19] 潘正瑛, 陈建新, 吴士明, 霍裕昆. 多成分靶优先溅射的蒙特-卡罗计算. 物理学报, 1990, 39(2): 319-324. doi: 10.7498/aps.39.319
    [20] 王樨德, 潘正瑛, 黄发泱, 夏荣. 用蒙特-卡罗方法模拟质子X荧光分析中的荧光增强因子. 物理学报, 1989, 38(5): 776-783. doi: 10.7498/aps.38.776
计量
  • 文章访问数:  7133
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 修回日期:  2020-10-27
  • 上网日期:  2021-02-21
  • 刊出日期:  2021-03-05

/

返回文章
返回