搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于氧化镁晶体中级联四波混频过程的紫外飞秒光脉冲产生

陈忠 华林强 张津 龚成 柳晓军

引用本文:
Citation:

基于氧化镁晶体中级联四波混频过程的紫外飞秒光脉冲产生

陈忠, 华林强, 张津, 龚成, 柳晓军

Generation of tunable ultraviolet femtosecond pulse in MgO crystal by cascaded four wave mixing

Chen Zhong, Hua Lin-Qiang, Zhang Jin, Gong Cheng, Liu Xiao-Jun
PDF
HTML
导出引用
  • 紫外波段飞秒激光脉冲是研究超快化学和超快物理相关过程的重要工具, 实现波长可调谐的宽带紫外飞秒光脉冲将有助于推动超快动力学及相关领域的研究. 本文报道了以两束400 nm的飞秒光脉冲作为级联四波混频的抽运源, 在氧化镁晶体中产生9阶频率上转换和5阶频率下转换边带信号的实验结果. 边带波长范围从350 nm到450 nm连续可调谐, 这些边带信号的发散角和波长与级联四波混频理论预测结果吻合. 紫外边带相对于入射光的整体转化效率约为1.2%. 同时, 高阶边带的光谱形状呈现高斯型, 其谱宽理论上支持傅里叶转换极限脉宽为20—50 fs. 本文展示了一种高效产生波长可连续调谐的紫外飞秒光脉冲的便捷方法, 为基于紫外超短脉冲的相关研究提供了有效工具.
    Ultraviolet femtosecond laser pulse is an important tool in studying ultrafast chemical and physical processes. Realizing broadband ultraviolet laser pluses with a wide tunable range would significantly facilitate the study of ultrafast processes. As an effective and convenient method, the cascaded four-wave mixing (CFWM) has been widely adopted to generate broadband and tunable ultraviolet femtosecond laser pulses. In this work, we carry out CFWM in MgO crystal by using two 400-nm pulses to generate tunable ultraviolet femtosecond pulse. The MgO crystal is chosen due to its high third-order nonlinear susceptibility, large band gap and high transmittance in the ultraviolet region. In the experiment, nine frequency up-converted and five frequency down-converted sidebands are observed. The measured wavelength and scattering angle of each sideband are consistent with the CFWM theory predictions. The wavelength range of the sidebands covers 350–450 nm. The total conversion efficiency of the ultraviolet sidebands is 1.2%, which is higher than the reported values with visible/near infrared driven lasers. Meanwhile, the spectra of the high-order sidebands present a Gaussian profile and can support a Fourier-transform-limited pulse duration of less than 50 fs. Besides, the central wavelengths of the sidebands can be effectively tuned by adjusting the time-delay between the two pre-chirped pump pulses. Our study provides an efficient and convenient scheme to generate short ultraviolet femtosecond pulses with a wide tunable range.
      通信作者: 华林强, hualq@wipm.ac.cn ; 柳晓军, xjliu@wipm.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11674356, 11527807)和中国科学院战略性先导科技专项(B类)(批准号: XDB21010400)资助的课题
      Corresponding author: Hua Lin-Qiang, hualq@wipm.ac.cn ; Liu Xiao-Jun, xjliu@wipm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674356, 11527807) and the Strategic Priority Research Program (B) of the Chinese Academy of Sciences, China (Grant No. XDB21010400)
    [1]

    戴姆特瑞德W 著 (姬扬 译) 2012 激光光谱学(第2卷): 实验技术 (北京: 科学出版社) 第466—468页

    Demtroder W (translated by Ji Y) 2012 Laser Spectroscopy (Vol.2): Experimental Techniques (Beijing: Science Press) pp466–468 (in Chinese)

    [2]

    Bruder L, Bangert U, Binz M, Uhl D, Vexiau R, Bouloufa M N, Dulieu O, Stienkemeier F 2018 Nat. Commun. 9 2519Google Scholar

    [3]

    姚建铨 1995 非线性光学频率变换及激光调谐技术 (北京: 科学出版社) 第146—148页

    Yao J Q 1995 Nonlinear Optical Frequency Conversion and Tunable Lasers (Beijing: Science Press) pp146–148 (in Chinese)

    [4]

    叶佩弦 2007 非线性光学物理 (北京: 北京大学出版社) 第99—103页

    Ye P X 2007 Nonlinear Optical Physics (Beijing: Peking University Press) pp99–103 (in Chinese)

    [5]

    He J P, Liu J, Kobayashi T 2014 Appl. Sci. 4 444Google Scholar

    [6]

    Weigand R, Crespo H M 2015 Appl. Sci. 5 485Google Scholar

    [7]

    Liu J, Kobayashi T 2010 Sensors 10 4296Google Scholar

    [8]

    Crespo H M, Mendonça J T, Dos S A 2000 Opt. Lett. 25 829Google Scholar

    [9]

    Weigand R, Mendon J T, Crespo H M 2009 Phys. Rev. A 79 063838Google Scholar

    [10]

    Liu J, Zhang J, Kobayashi T 2008 Opt. Lett. 33 1494Google Scholar

    [11]

    Wang P, Shen X, Zeng Z N, Liu J, Li R X, Xu Z Z 2019 Opt. Lett. 44 3952Google Scholar

    [12]

    Liu J, Kobayashi T 2008 Opt. Express 16 22119Google Scholar

    [13]

    Liu J, Kobayashi T, Wang Z 2009 Opt. Express 17 9226Google Scholar

    [14]

    Wang P, Liu J, Li F J, Shen X, Li R X 2014 Appl. Phys. Lett. 105 201901Google Scholar

    [15]

    Liu J, Kobayashi T 2010 Opt. Commun. 283 1114Google Scholar

    [16]

    Wang P, Liu J, Li F J, Shen X, Li R X 2015 Photon. Res. 3 210Google Scholar

    [17]

    刘奇福, 李方家, 刘军 2014 物理学报 63 094209Google Scholar

    Liu Q F, Li F J, Liu J 2014 Acta Phys. Sin. 63 094209Google Scholar

    [18]

    Liu W M, Zhu L D, Fang C 2012 Opt. Lett. 37 3783Google Scholar

    [19]

    Liu W M, Zhu L D, Wang L, Fang C 2013 Opt. Lett. 38 1772Google Scholar

    [20]

    Zhi M C, Sokolov A V 2008 New J. Phys. 10 025032Google Scholar

    [21]

    Zhi M C, Sokolov A V 2007 Opt. Lett. 32 2251Google Scholar

    [22]

    Wang K, Zhi M C, Hua X, Strohaber J, Sokolov A V 2014 Appl. Opt. 53 2866Google Scholar

    [23]

    Wang K, Alexandra Z, Zhi M C, Hua X, Sokolov A V 2015 Appl. Sci. 5 145Google Scholar

    [24]

    Shutova M, Shutov A D, Zhdanova A A, Thompson J V, Sokolov A V 2019 Sci. Rep. 9 1565Google Scholar

    [25]

    Takahashi J I, Matsubara E, Arima T, Hanamura E 2003 Phys. Rev. B 68 155102Google Scholar

    [26]

    Takahashi J I, Kawabe Y, Hanamura E 2004 Opt. Express 12 1185Google Scholar

    [27]

    Matsubara E, Inoue K, Hanamura E 2005 Phys. Rev. B 72 134101Google Scholar

    [28]

    Matsuki H, Inoue K, Hanamura E 2007 Phys. Rev. B 75 024102Google Scholar

    [29]

    Inoue K, Kato J, Hanamura E, Matsuki H, Matsubara E 2007 Phys. Rev. B 76 041101(RGoogle Scholar

    [30]

    Takahashi J I, Keisuke M, Toshirou Y 2006 Opt. Lett. 31 1501Google Scholar

    [31]

    Matsubara E, Sekikawa T, Yamashita M 2008 Appl. Phys. Lett. 92 071104Google Scholar

    [32]

    Sokolov A V, Harris S E 2003 J. Opt. B 5 R1Google Scholar

    [33]

    Zhi M C, Wang X, Sokolov A V 2008 Opt. Express 16 12139Google Scholar

    [34]

    Shea J J 2004 IEEE Electri. Insul. M. 20 46Google Scholar

    [35]

    Dharmadhikari J A, Dota K, Kritkika D, Mathur D, Dharmadhikari A K 2016 Appl. Phys. B 122 140Google Scholar

  • 图 1  实验装置图(PBS为偏振分束器; 1, 2, 3为半波片; BS为分光镜)

    Fig. 1.  Schematic diagram of the experimental setup (PBS represents polarization beam splitter; 1, 2, 3 represent half wave plates; BS represents beam splitter).

    图 2  (a) 钛宝石激光器输出的基频光光谱; (b) BBO在不同光轴角度下的倍频光光谱

    Fig. 2.  (a) Output spectrum of Ti-Sapphire laser; (b) spectra of the second harmonic generation under different BBO orientations.

    图 3  (a) AS2到AS7边带的照片; (b) AS1至AS9边带的光谱; (c) S1至S5边带的光谱

    Fig. 3.  (a) Photographs of AS2 to AS7; (b) spectra of sidebands from AS1 to AS9; (c) spectra of sidebands from S1 to S5.

    图 4  (a) AS1到AS9边带的理论计算中心波长(红色圆圈)和实验测量(黑色方块)之间的比对; (b) AS1到AS7边带的理论计算散射角(红色圆圈)和实验测量(黑色方块)之间的比对

    Fig. 4.  (a) Comparison of calculated results (red circles) and experimental data (black squares) of central wavelengths of AS1 to AS9; (b) comparison of calculated results (red circles) and experimental data (black squares) of scattering angle of AS1 to AS7.

    图 5  (a) AS3边带光谱(实线)及其高斯拟合(虚线); (b)不同延时下AS4边带的光谱, 图中的光谱对应的延时分别为20, 40, 60, 80, 100 fs

    Fig. 5.  (a) Spectra of the AS3 sideband (solid curve) and its Gaussian fitting (dashed curve); (b) spectra of the AS4 sideband at several specific time delays, i.e. 20, 40, 60, 80, and 100 fs.

  • [1]

    戴姆特瑞德W 著 (姬扬 译) 2012 激光光谱学(第2卷): 实验技术 (北京: 科学出版社) 第466—468页

    Demtroder W (translated by Ji Y) 2012 Laser Spectroscopy (Vol.2): Experimental Techniques (Beijing: Science Press) pp466–468 (in Chinese)

    [2]

    Bruder L, Bangert U, Binz M, Uhl D, Vexiau R, Bouloufa M N, Dulieu O, Stienkemeier F 2018 Nat. Commun. 9 2519Google Scholar

    [3]

    姚建铨 1995 非线性光学频率变换及激光调谐技术 (北京: 科学出版社) 第146—148页

    Yao J Q 1995 Nonlinear Optical Frequency Conversion and Tunable Lasers (Beijing: Science Press) pp146–148 (in Chinese)

    [4]

    叶佩弦 2007 非线性光学物理 (北京: 北京大学出版社) 第99—103页

    Ye P X 2007 Nonlinear Optical Physics (Beijing: Peking University Press) pp99–103 (in Chinese)

    [5]

    He J P, Liu J, Kobayashi T 2014 Appl. Sci. 4 444Google Scholar

    [6]

    Weigand R, Crespo H M 2015 Appl. Sci. 5 485Google Scholar

    [7]

    Liu J, Kobayashi T 2010 Sensors 10 4296Google Scholar

    [8]

    Crespo H M, Mendonça J T, Dos S A 2000 Opt. Lett. 25 829Google Scholar

    [9]

    Weigand R, Mendon J T, Crespo H M 2009 Phys. Rev. A 79 063838Google Scholar

    [10]

    Liu J, Zhang J, Kobayashi T 2008 Opt. Lett. 33 1494Google Scholar

    [11]

    Wang P, Shen X, Zeng Z N, Liu J, Li R X, Xu Z Z 2019 Opt. Lett. 44 3952Google Scholar

    [12]

    Liu J, Kobayashi T 2008 Opt. Express 16 22119Google Scholar

    [13]

    Liu J, Kobayashi T, Wang Z 2009 Opt. Express 17 9226Google Scholar

    [14]

    Wang P, Liu J, Li F J, Shen X, Li R X 2014 Appl. Phys. Lett. 105 201901Google Scholar

    [15]

    Liu J, Kobayashi T 2010 Opt. Commun. 283 1114Google Scholar

    [16]

    Wang P, Liu J, Li F J, Shen X, Li R X 2015 Photon. Res. 3 210Google Scholar

    [17]

    刘奇福, 李方家, 刘军 2014 物理学报 63 094209Google Scholar

    Liu Q F, Li F J, Liu J 2014 Acta Phys. Sin. 63 094209Google Scholar

    [18]

    Liu W M, Zhu L D, Fang C 2012 Opt. Lett. 37 3783Google Scholar

    [19]

    Liu W M, Zhu L D, Wang L, Fang C 2013 Opt. Lett. 38 1772Google Scholar

    [20]

    Zhi M C, Sokolov A V 2008 New J. Phys. 10 025032Google Scholar

    [21]

    Zhi M C, Sokolov A V 2007 Opt. Lett. 32 2251Google Scholar

    [22]

    Wang K, Zhi M C, Hua X, Strohaber J, Sokolov A V 2014 Appl. Opt. 53 2866Google Scholar

    [23]

    Wang K, Alexandra Z, Zhi M C, Hua X, Sokolov A V 2015 Appl. Sci. 5 145Google Scholar

    [24]

    Shutova M, Shutov A D, Zhdanova A A, Thompson J V, Sokolov A V 2019 Sci. Rep. 9 1565Google Scholar

    [25]

    Takahashi J I, Matsubara E, Arima T, Hanamura E 2003 Phys. Rev. B 68 155102Google Scholar

    [26]

    Takahashi J I, Kawabe Y, Hanamura E 2004 Opt. Express 12 1185Google Scholar

    [27]

    Matsubara E, Inoue K, Hanamura E 2005 Phys. Rev. B 72 134101Google Scholar

    [28]

    Matsuki H, Inoue K, Hanamura E 2007 Phys. Rev. B 75 024102Google Scholar

    [29]

    Inoue K, Kato J, Hanamura E, Matsuki H, Matsubara E 2007 Phys. Rev. B 76 041101(RGoogle Scholar

    [30]

    Takahashi J I, Keisuke M, Toshirou Y 2006 Opt. Lett. 31 1501Google Scholar

    [31]

    Matsubara E, Sekikawa T, Yamashita M 2008 Appl. Phys. Lett. 92 071104Google Scholar

    [32]

    Sokolov A V, Harris S E 2003 J. Opt. B 5 R1Google Scholar

    [33]

    Zhi M C, Wang X, Sokolov A V 2008 Opt. Express 16 12139Google Scholar

    [34]

    Shea J J 2004 IEEE Electri. Insul. M. 20 46Google Scholar

    [35]

    Dharmadhikari J A, Dota K, Kritkika D, Mathur D, Dharmadhikari A K 2016 Appl. Phys. B 122 140Google Scholar

计量
  • 文章访问数:  3586
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-22
  • 修回日期:  2020-11-11
  • 上网日期:  2021-03-06
  • 刊出日期:  2021-03-20

/

返回文章
返回