搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种水平变化波导中声传播问题的耦合模态法

刘娟 李琪

引用本文:
Citation:

一种水平变化波导中声传播问题的耦合模态法

刘娟, 李琪

A coupledj-mode method for sound propagation in range-dependent waveguides

Liu Juan, Li Qi
PDF
HTML
导出引用
  • 针对介质参数及海底边界水平变化波导中的声传播问题, 本文基于多模态导纳法提出一种能量守恒且便于数值稳定求解的耦合模态方法. 将声压表示为一组正交完备的本地本征函数之和, 对声压满足的Helmholtz方程在本地本征函数上作投影, 推导出关于声压模态系数的二阶耦合模态方程组. 耦合矩阵直观描述水平变化因素对模态耦合的贡献. 为避免直接求解二阶耦合模态方程组可能遇到的数值发散问题, 将其重构为两个耦合的一阶演化方程组, 引入导纳矩阵并使用Magnus数值积分方法获得稳定的声场解. 利用该耦合模态方法数值计算水平变化波导中的声场, 并与COMSOL参考解比较, 结果表明该耦合模态理论能够精确求解水平变化波导中的点源及分布源传播问题.
    The sound propagation problems in range-dependent waveguides are a common topic in underwater acoustics. The range-dependent factors, involving volumetric and bathymetric variations, significantly influence the propagation of sound energy and information. In this paper, a coupled-mode method based on the multimodal admittance method is presented for analyzing the sound propagation and scattering problems in range-dependent waveguides. The sound field is expanded in terms of a local basis with range-dependent modal amplitudes. The local basis corresponds to the transverse modes in a waveguide with constant physical parameters and constant cross section equal to the local cross section in the range-dependent waveguide. This local basis takes the advantage that it is easier to compute than the usual local modes which are the transverse modes in a waveguide with local physical parameters and constant cross-section equal to the local cross-section, especially for waveguides with complex environments. Projection of the Helmholtz equation that governs the sound pressure onto the local basis gives the second-order coupled mode equations for the modal amplitudes of the sound pressure. The correct boundary conditions are used in the derivation, giving rising to boundary matrices, in order to guarantee the conservation of energy among modes. The second-order coupled mode equations include coupled matrices and boundary matrices, which directly describe the effect of mode coupling due to contribution from volumetric variation (range-dependent physical parameters) and bathymetric variation (range-dependent boundaries). By introducing the admittance matrix, the second-order coupled mode equations are reduced to two sets of first-order evolution equations. The Magnus integration method is used to solve the first-order evolution equations. These first-order evolution equations allow us to obtain the numerical stable solutions and avoid the numerical divergence due to the exponential growth of evanescent modes. The numerical examples are presented for the waveguides with range-dependent physical parameters or range-dependent boundaries. The agreement between the results computed with the coupled mode method and COMSOL verifies the accuracy of the coupled mode method. Although the analysis and numerical implementation in this paper are based on two-dimensional waveguides in Cartesian coordinate system, it can be generally extended to study more complex waveguides.
      通信作者: 刘娟, liujuan@hrbeu.edu.cn
      Corresponding author: Liu Juan, liujuan@hrbeu.edu.cn
    [1]

    Pierce A D 1965 J. Acoust. Soc. Am. 37 19Google Scholar

    [2]

    Milder D M 1969 J. Acoust. Soc. Am. 46 1259Google Scholar

    [3]

    Shen J, Tang T, Wang L L 2011 Spectral Methods: Algorithms, Analysis and Applications (Berlin Heidelberg: Springer-Verlag) pp141−180

    [4]

    Pagneux V, Amir N, Kergomard J 1996 J. Acoust. Soc. Am. 100 2034Google Scholar

    [5]

    Ciarlet P G 2002 The Finite Element Method for Elliptic Problems (New York: SIAM) pp36−55

    [6]

    Alford R M, Kelly K R, Boore D M 1974 Geophysics 39 834Google Scholar

    [7]

    杨春梅, 骆文于, 张仁和, 秦继兴 2013 物理学报 62 094302Google Scholar

    Yang C M, Luo W Y, Zhang R H, Qin J X 2013 Acta Phys. Sin. 62 094302Google Scholar

    [8]

    Rutherford S R, Hawker K E 1981 J. Acoust. Soc. Am. 70 554Google Scholar

    [9]

    Fawcett J A 1992 J. Acoust. Soc. Am. 92 290Google Scholar

    [10]

    Abawi A T 2002 J. Acoust. Soc. Am. 111 160Google Scholar

    [11]

    彭朝晖, 张仁和 2005 声学学报 30 97Google Scholar

    Peng Z H, Zhang R H 2005 Acta Acustica. 30 97Google Scholar

    [12]

    莫亚枭, 朴胜春, 张海刚, 李丽 2014 物理学报 63 214302Google Scholar

    Mo Y X, Piao S C, Zhang H G, Li L 2014 Acta Phys. Sin. 63 214302Google Scholar

    [13]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) pp403−411

    [14]

    Pagneux V 2010 J. Comput. Appl. Math. 234 1834Google Scholar

    [15]

    Félix S, Pagneux V 2001 J. Acoust. Soc. Am. 110 1329Google Scholar

    [16]

    Schiff J, Shnider S 1999 SIAM J. Numer. Anal. 36 1392Google Scholar

    [17]

    Lu Y Y, McLaughlin J R 1996 J. Acoust. Soc. Am. 100 1432Google Scholar

    [18]

    Pierce A D 1983 J. Acoust. Soc. Am. 74 1837Google Scholar

    [19]

    Shmelev A A, Lynch J F, Lin Y T, Schmidt H 2014 J. Acoust. Soc. Am. 135 2496Google Scholar

    [20]

    Evans R B 1986 J. Acoust. Soc. Am. 80 1414Google Scholar

    [21]

    Qin J X, Luo W Y, Zhang R H, Yang C M 2013 Chin. Phys. Lett. 30 074301Google Scholar

    [22]

    Félix S, Pagneux V 2002 Wave Motion 36 157Google Scholar

    [23]

    Maurel A, Mercier J F 2012 J. Acoust. Soc. Am. 131 1874Google Scholar

    [24]

    Maurel A, Mercier J F, Pagneux V 2014 Proc. R. Soc. A 470 20130448Google Scholar

    [25]

    Lu Y Y 2005 J. Comput. Appl. Math. 173 247Google Scholar

    [26]

    Li Q, Liu J, Guo W 2020 Chin. Phys. B 29 014303Google Scholar

    [27]

    Preisig J C, Duda T F 1997 IEEE J. Oceanic Eng. 22 256Google Scholar

    [28]

    Favraud G, Pagneux V 2015 Proc. R. Soc. A 471 20140782Google Scholar

    [29]

    Westwood E K, Koch R A 1999 J. Acoust. Soc. Am. 106 2513Google Scholar

  • 图 1  水平变化波导示意图

    Fig. 1.  Configuration of a waveguide with range-dependent environments.

    图 2  水平变化波导中的声场(声源为分布源, 频率为20 Hz) (a) 利用CMM计算得到的声压幅值分布, 截断数$N = 10$; (b) 利用COMSOL计算得到的声压幅值分布; (c) 深度为20 m处, 声压幅值的水平分布; (d) 深度为50 m处, 声压幅值的水平分布

    Fig. 2.  Sound fields in a range-dependent waveguide (the source is a distributed source at 20 Hz): (a) Sound field computed by CMM where the truncation number is $N = 10$; (b) sound field computed with COMSOL; (c) sound field distribution along x direction at depth 20 m; (d) sound field distribution along x direction at depth 50 m.

    图 3  水平变化波导中的声场(声源为位于$(0, 10)$ m处的点源, 频率为20 Hz) (a) 利用双向CMM计算得到的声压幅值分布, 截断数$N = 50$; (b) 利用COMSOL计算得到的声压幅值分布; (c) 深度为71 m处, 声压幅值的水平分布; (d) 深度为101 m处, 声压幅值的水平分布

    Fig. 3.  Sound fields in a range-dependent waveguide generated by a point source at $(0, 10)$ m (the frequency is 20 Hz): (a) Sound field computed by CMM where the truncation number is $N = 50$; (b) sound field computed with COMSOL; (c) sound field distribution along x direction at depth 71 m; (d) sound field distribution along x direction at depth 101 m.

    图 4  水平缓变波导中的声场(声源为分布源, 频率为20 Hz) (a) 利用双CMM计算得到的声压幅值分布; (b) 利用单向近似CMM计算得到的声压幅值分布; (c) 利用绝热近似CMM计算得到的声压幅值分布; (d) 深度为60 m处, 声压幅值的水平分布; (e) 深度为120 m处, 声压幅值的水平分布

    Fig. 4.  Sound fields in a waveguide with weak range dependence generated by a distributed source (the frequency is 20 Hz): (a) Sound field computed by two-way CMM; (b) sound field computed with one-way CMM; (c) sound field computed with adiabatic CMM; (d) sound field distribution along x direction at depth 60 m; (e) sound field distribution along x direction at depth 120 m.

    图 5  密度均匀、声速水平变化波导中的声传播(声源为第二阶模态, 频率为10 Hz) (a)声压幅值分布; (b)声压的模态系数的水平分布; (c)归一化能流

    Fig. 5.  Sound propagation in a waveguide with constant mass density and range-dependent sound speed (the source is the second local mode, and its frequency is 10 Hz): (a) Sound field; (b) modal amplitudes distribution; (c) normalized energy flux distribution.

    图 6  密度均匀、声速及边界水平变化波导中的声传播(声源为第二阶简正波, 频率为10 Hz) (a)声压幅值分布; (b)声压的模态系数的水平分布; (c)归一化能流

    Fig. 6.  Sound propagation in a waveguide with constant mass density and range-dependent sound speed and boundary (the source is the second local mode and its frequency is 10 Hz): (a) Sound field; (b) modal amplitudes distribution; (c) normalized energy flux distribution.

    图 7  孤立子内波波导模型

    Fig. 7.  Configuration of a waveguide with an internal solitary wave.

    图 8  图7所示模型中$x = 0$ m处的简正波

    Fig. 8.  Local mode shape of the waveguide at $x = 0$ m shown in Fig. 7.

    图 9  浅海孤立子内波波导中的声传播(声源为第一阶简正波, 频率为100 Hz) (a)声压幅值分布; (b)前五阶简正波分量

    Fig. 9.  Sound propagation in a waveguide with an internal solitary wave (the incident wave is the first mode at 100 Hz): (a) Sound field; (b) modal amplitudes distribution.

  • [1]

    Pierce A D 1965 J. Acoust. Soc. Am. 37 19Google Scholar

    [2]

    Milder D M 1969 J. Acoust. Soc. Am. 46 1259Google Scholar

    [3]

    Shen J, Tang T, Wang L L 2011 Spectral Methods: Algorithms, Analysis and Applications (Berlin Heidelberg: Springer-Verlag) pp141−180

    [4]

    Pagneux V, Amir N, Kergomard J 1996 J. Acoust. Soc. Am. 100 2034Google Scholar

    [5]

    Ciarlet P G 2002 The Finite Element Method for Elliptic Problems (New York: SIAM) pp36−55

    [6]

    Alford R M, Kelly K R, Boore D M 1974 Geophysics 39 834Google Scholar

    [7]

    杨春梅, 骆文于, 张仁和, 秦继兴 2013 物理学报 62 094302Google Scholar

    Yang C M, Luo W Y, Zhang R H, Qin J X 2013 Acta Phys. Sin. 62 094302Google Scholar

    [8]

    Rutherford S R, Hawker K E 1981 J. Acoust. Soc. Am. 70 554Google Scholar

    [9]

    Fawcett J A 1992 J. Acoust. Soc. Am. 92 290Google Scholar

    [10]

    Abawi A T 2002 J. Acoust. Soc. Am. 111 160Google Scholar

    [11]

    彭朝晖, 张仁和 2005 声学学报 30 97Google Scholar

    Peng Z H, Zhang R H 2005 Acta Acustica. 30 97Google Scholar

    [12]

    莫亚枭, 朴胜春, 张海刚, 李丽 2014 物理学报 63 214302Google Scholar

    Mo Y X, Piao S C, Zhang H G, Li L 2014 Acta Phys. Sin. 63 214302Google Scholar

    [13]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (New York: Springer) pp403−411

    [14]

    Pagneux V 2010 J. Comput. Appl. Math. 234 1834Google Scholar

    [15]

    Félix S, Pagneux V 2001 J. Acoust. Soc. Am. 110 1329Google Scholar

    [16]

    Schiff J, Shnider S 1999 SIAM J. Numer. Anal. 36 1392Google Scholar

    [17]

    Lu Y Y, McLaughlin J R 1996 J. Acoust. Soc. Am. 100 1432Google Scholar

    [18]

    Pierce A D 1983 J. Acoust. Soc. Am. 74 1837Google Scholar

    [19]

    Shmelev A A, Lynch J F, Lin Y T, Schmidt H 2014 J. Acoust. Soc. Am. 135 2496Google Scholar

    [20]

    Evans R B 1986 J. Acoust. Soc. Am. 80 1414Google Scholar

    [21]

    Qin J X, Luo W Y, Zhang R H, Yang C M 2013 Chin. Phys. Lett. 30 074301Google Scholar

    [22]

    Félix S, Pagneux V 2002 Wave Motion 36 157Google Scholar

    [23]

    Maurel A, Mercier J F 2012 J. Acoust. Soc. Am. 131 1874Google Scholar

    [24]

    Maurel A, Mercier J F, Pagneux V 2014 Proc. R. Soc. A 470 20130448Google Scholar

    [25]

    Lu Y Y 2005 J. Comput. Appl. Math. 173 247Google Scholar

    [26]

    Li Q, Liu J, Guo W 2020 Chin. Phys. B 29 014303Google Scholar

    [27]

    Preisig J C, Duda T F 1997 IEEE J. Oceanic Eng. 22 256Google Scholar

    [28]

    Favraud G, Pagneux V 2015 Proc. R. Soc. A 471 20140782Google Scholar

    [29]

    Westwood E K, Koch R A 1999 J. Acoust. Soc. Am. 106 2513Google Scholar

  • [1] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2022, 71(2): 021401. doi: 10.7498/aps.71.20211083
    [2] 徐超, 丁继军, 陈海霞, 李国利. Ag纳米线四聚体中的局域表面等离子体共振腔模态变化. 物理学报, 2021, 70(23): 235201. doi: 10.7498/aps.70.20211230
    [3] 严江余, 张全虎, 霍勇刚. 基于散射和次级诱发中子的缪子多模态成像. 物理学报, 2021, 70(19): 191401. doi: 10.7498/aps.70.20210804
    [4] 李国强, 施宏宇, 刘康, 李博林, 衣建甲, 张安学, 徐卓. 基于超表面的多波束多模态太赫兹涡旋波产生. 物理学报, 2021, 70(18): 188701. doi: 10.7498/aps.70.20210897
    [5] 霍勇刚, 严江余, 张全虎. 缪子多模态成像图像质量分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211083
    [6] 郭威, 杨德森. 非均匀波导中的声聚焦. 物理学报, 2020, 69(7): 074301. doi: 10.7498/aps.69.20191854
    [7] 刘备, 胡伟鹏, 邹孝, 丁亚军, 钱盛友. 基于变分模态分解与多尺度排列熵的生物组织变性识别. 物理学报, 2019, 68(2): 028702. doi: 10.7498/aps.68.20181772
    [8] 孟瑞洁, 周士弘, 李风华, 戚聿波. 浅海波导中低频声场干涉简正模态的判别. 物理学报, 2019, 68(13): 134304. doi: 10.7498/aps.68.20190221
    [9] 杜义浩, 齐文靖, 邹策, 张晋铭, 谢博多, 谢平. 基于变分模态分解-相干分析的肌间耦合特性. 物理学报, 2017, 66(6): 068701. doi: 10.7498/aps.66.068701
    [10] 李鹏, 章新华, 付留芳, 曾祥旭. 一种基于模态域波束形成的水平阵被动目标深度估计. 物理学报, 2017, 66(8): 084301. doi: 10.7498/aps.66.084301
    [11] 孙明健, 刘婷, 程星振, 陈德应, 闫锋刚, 冯乃章. 基于多模态信号的金属材料缺陷无损检测方法. 物理学报, 2016, 65(16): 167802. doi: 10.7498/aps.65.167802
    [12] 谢平, 杨芳梅, 李欣欣, 杨勇, 陈晓玲, 张利泰. 基于变分模态分解-传递熵的脑肌电信号耦合分析. 物理学报, 2016, 65(11): 118701. doi: 10.7498/aps.65.118701
    [13] 戚聿波, 周士弘, 张仁和, 张波, 任云. 水平变化浅海声波导中模态特征频率与声源距离被动估计. 物理学报, 2014, 63(4): 044303. doi: 10.7498/aps.63.044303
    [14] 张同伟, 杨坤德. 一种水平变化波导中匹配场定位的虚拟时反实现方法. 物理学报, 2014, 63(21): 214303. doi: 10.7498/aps.63.214303
    [15] 莫亚枭, 朴胜春, 张海刚, 李丽. 水平变化波导中的简正波耦合与能量转移. 物理学报, 2014, 63(21): 214302. doi: 10.7498/aps.63.214302
    [16] 唐洁. 基于聚合经验模态分解方法的OJ 287 射电流量变化周期分析. 物理学报, 2013, 62(12): 129701. doi: 10.7498/aps.62.129701
    [17] 薛春芳, 侯威, 赵俊虎, 王式功. 集合经验模态分解在区域降水变化多尺度分析及气候变化响应研究中的应用. 物理学报, 2013, 62(10): 109203. doi: 10.7498/aps.62.109203
    [18] 杨春梅, 骆文于, 张仁和, 秦继兴. 一种水平变化可穿透波导中声传播问题的耦合简正波方法. 物理学报, 2013, 62(9): 094302. doi: 10.7498/aps.62.094302
    [19] 裴利军, 邱本花. 模态分解法在非恒同耦合系统同步研究中的推广. 物理学报, 2010, 59(1): 164-170. doi: 10.7498/aps.59.164
    [20] 陆埮, 蒋家禹, 龚大为, 孙恒慧. 单频导纳谱法测量锗硅量子阱的能带偏移. 物理学报, 1994, 43(2): 289-296. doi: 10.7498/aps.43.289
计量
  • 文章访问数:  4289
  • PDF下载量:  79
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-17
  • 修回日期:  2020-11-08
  • 上网日期:  2021-03-09
  • 刊出日期:  2021-03-20

/

返回文章
返回