搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2-溴对苯二甲酸钝化的全无机钙钛矿电池的性能

林明月 巨博 李燕 陈雪莲

引用本文:
Citation:

2-溴对苯二甲酸钝化的全无机钙钛矿电池的性能

林明月, 巨博, 李燕, 陈雪莲

Performance of 2-bromoterephthalic acid passivated all-inorganic perovskite cells

Lin Ming-Yue, Ju Bo, Li Yan, Chen Xue-Lian
PDF
HTML
导出引用
  • 基于铯铅碘(CsPbI3)材料的全无机钙钛矿太阳电池是一种廉价且有潜力的光伏器件, 然而该电池的转换效率仍然较低, 研究结果表明钝化CsPbI3薄膜的表面电子陷阱态可有效提高电池性能. 本文报道了一种新型廉价2-溴对苯二甲酸钝化材料对CsPbI3钙钛矿太阳电池性能的影响, 研究结果表明, 随着2-溴对苯二甲酸浓度的增加, 钙钛矿太阳电池的光电转换效率先增加后减少, 当钝化材料的浓度达到0.2 mg/mL时, CsPbI3电池获得最优转换效率13.5%. 通过对2-溴对苯二甲酸钝化后的钙钛矿薄膜进行相结构和微结构分析, 结果表明钝化并未引起钙钛矿薄膜的物相和微结构的变化, 但表面钝化显著提高了CsPbI3薄膜的荧光发射强度和TiO2/CsPbI3界面的电子传输能力. 本研究有望为钙钛矿太阳电池中应用的钝化材料的低成本开发提供基础依据.
    All-inorganic perovskite cesium lead iodine (CsPbI3) without any volatile organic components has attracted much attention due to its superior stability, high absorption efficiency and suitable band gap. However, the power-conversion efficiencies of CsPbI3 based perovskite solar cells (PSCs) are substantially low compared with those of the organic-inorganic hybrid lead halide PSCs. The surface passivation of the CsPbI3 film by long-chain halide salts has been found to be an effective method of improving the performance. In this paper, we report the concentration effect of an inexpensive 2-bromoterephthalic acid (BBr) as passivation material on the performance of CsPbI3 perovskite solar cells. The experimental results show that the conversion efficiency of perovskite solar cells first increases and then decreases as the concentration of BBr increases from 0 to 2 mg/mL. The best conversion efficiency of CsPbI3 perovskite solar cells reaches 13.5% at 0.2 mg/mL BBr. The results from X-ray diffraction and scanning electron microscopy suggest that there is no change in the phase or microstructure of the CsPbI3 perovskite film after surface passivation by BBr. By further analyzing the photoluminescence data of the CsPbI3 film with and without capping hole transport layer, it can be found that the passivation of BBr with the concentration of 0.2 mg/mL can enhance the fluorescence excitation intensity of the CsPbI3 film and accelerate the exciton separation at the interface between CsPbI3 film and hole transport layer. Based on the electrochemical impedance spectroscopy data, we find that the electron transport ability at the interface between TiO2 and CsPbI3 can be significantly improved after surface passivation, which is induced by the acceleration of the exciton separation at the interface between CsPbI3 film and hole transport layer. The decrease of the PSCs performance when the concentration of the BBr precursor increases from 0.5 mg/mL to 2 mg/mL can be attributed to the local agglomeration of the BBr material, resulting in the block of charge transportation. This research is expected to provide basic support for the low-cost development of the passivation materials for perovskite solar cells.
      通信作者: 李燕, yli@xsyu.edu.cn ; 陈雪莲, chenxl@xsyu.edu.cn
    • 基金项目: 陕西省自然科学基金(批准号: 2019JQ-184, 2019JQ-286)和西安石油大学基金(批准号: YCS19212057)资助的课题
      Corresponding author: Li Yan, yli@xsyu.edu.cn ; Chen Xue-Lian, chenxl@xsyu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2019JQ-184, 2019JQ-286) and the Xi’an Shiyou University Foundation, China (Grant No. YCS19212057)
    [1]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry B R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [2]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [3]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [4]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J W, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [5]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar

    [6]

    Li X M, Cao F, Yu D, Chen J, Sun Z, Shen Y L, Zhu Y, Wang L, Wei Y, Wu Y, Zeng H B 2017 Small 13 1603996Google Scholar

    [7]

    Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, M Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J 2016 J. Am. Chem. Soc. 138 15829Google Scholar

    [8]

    Pan W C, Wu H D, Luo J J, Deng Z Z, Ge C, Chen C, Jiang X W, Yin W J, Niu G D, Zhu L J, Yin L X, Zhou Y, Xie Q G, Ke X X, Sui M L, Tang J 2017 Nat. Photonics 11 726Google Scholar

    [9]

    Zhao X G, Yang D W, Sun Y H, Li T S, Zhang L J, Yu L P, Zunger A 2017 J. Am. Chem. Soc. 139 6718Google Scholar

    [10]

    Choi H S, Jeong J K, Kim H B, Kim S B, Walker B, Kim G H, Kim J Y 2014 Nano Energy 7 80Google Scholar

    [11]

    Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J 2015 J. Mater. Chem. A 3 19688Google Scholar

    [12]

    Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M 2016 Science 354 92Google Scholar

    [13]

    Li Y F, Zhang C H, Zhang, X X, Huang D, Shen Q, Cheng Y C, Huang W 2017 Appl. Phys. Lett. 111 162106Google Scholar

    [14]

    Long L X, Cao D, Fei J P, Wang J F, Zhou Y, Jiang Z T, Jiao Z W, Shu H B 2019 Chem. Phys. Lett. 734 136719Google Scholar

    [15]

    Zeng Q S, Zhang X Y, Feng X L, Lu S Y, Chen Z, Yong X, Redfern S A T, Wei H T, Wang H Z, Shen H Z, Zhang W, Zheng W T, Zhang H, Tse J S, Yang B 2018 Adv. Mater. 30 1705393Google Scholar

    [16]

    Yang Y Q, Wu J H, Wang X B, Guo Q Y, Liu X P, Sun W H, Wei Y L, Huang Y F, Lan Z, Huang M L, L in, J M, Chen H W, Wei Z H 2020 Adv. Mater. 32 1904347Google Scholar

    [17]

    Wu M, Yan K Y, Wang Y, Kang X W 2020 J. Energy Chem. 48 181Google Scholar

    [18]

    Wang Y, Liu X M, Zhang T Y, Wang X T, Kan M, Shi J L, Zhao Y X 2019 Angew. Chem. Int. Ed. 58 16691Google Scholar

    [19]

    Sim K M, Abhishek S, Angshuman N, Chung D S 2018 Laser Photonics Rev. 12 1700209Google Scholar

    [20]

    Wang Y, Zhang T Y, Kan M, Li Y H, Wang T, Zhao Y X 2018 Joule 2 2065Google Scholar

    [21]

    Ding X, Cai M, Liu X, Ding Y, Liu X, Wu Y, Hayat T, Alsaedi A, Dai S 2019 ACS Appl. Mater. Interfaces 11 37720Google Scholar

    [22]

    Ye Q F, Zhao Y, Mu S Q, Ma F, You J B 2019 Adv. Mater. 31 1905143Google Scholar

    [23]

    Wang Y, Zhang T, Kan M, Zhao Y 2018 J. Am. Chem. Soc. 140 12345Google Scholar

    [24]

    Li Y, Ding B, Chu Q Q, Yang G J, Wang M, Li C X, Li C J 2017 Sci. Rep. 7 46141Google Scholar

  • 图 1  (a) CsPbI3薄膜的制备过程示意图; (b) BBr的分子结构式; (c)本研究所制备的面结PSC的结构示意图

    Fig. 1.  (a) Schematic diagram of the fabrication of CsPbI3 film; (b) chemical structure of BBr; (c) configuration of the PSC.

    图 2  前驱体浓度不同时所制备的BBr钝化层的PSCs性能 (a) Voc; (b) Jsc; (c) FF; (d) PCE

    Fig. 2.  Performance of the PSCs based on the BBr passivation layer with different precursor concentrations: (a) Voc; (b) Jsc; (c) FF; (d) PCE.

    图 3  前驱体浓度不同时所制备的BBr钝化层的PSCs的代表性光电特性曲线

    Fig. 3.  Representative photoelectric characteristic curves of PSCs based on the BBr passivation layer with different precursor concentrations.

    图 4  BBr钝化后CsPbI3薄膜的XRD图

    Fig. 4.  XRD patterns of CsPbI3 film after BBr passivation.

    图 5  BBr钝化后CsPbI3薄膜的表面形貌表征结果和晶粒尺寸统计结果, 其中前驱体浓度分别为 (a)−(c) 0 mg/mL, (d)−(f) 0.2 mg/mL, (g)−(i) 0.5 mg/mL, (j)−(l) 1.0 mg/mL, (m)−(o) 2.0 mg/mL

    Fig. 5.  SEM images and grain size of CsPbI3 films after BBr passivation with different precursor concentrations: (a)−(c) 0 mg/mL; (d)−(f) 0.2 mg/mL; (g)−(i) 0.5 mg/mL; (j)−(l) 1.0 mg/mL; (m)−(o) 2.0 mg/mL

    图 6  BBr钝化后CsPbI3薄膜的 (a) UV-vis和(b) PL的测试结果; (c)沉积上空穴传输层后CsPbI3薄膜的PL的测试结果

    Fig. 6.  (a) UV-vis spectra and (b) PL of the CsPbI3 film after BBr passivation, and (c) the PL quenching of the CsPbI3 film after spin-coated by hole transport material.

    图 7  BBr钝化后PSCs的EIS测试结果

    Fig. 7.  EIS curves of PSCs after BBr passivation.

    表 1  代表性光电特性曲线的具体光伏参数

    Table 1.  Photovoltaic parameters of representative characteristic curves.

    电池类型/
    (mg·mL–1)
    Voc/VJsc/(mA·cm–2)FF/%PCE/%
    00.99916.8576.6912.91
    0.21.01517.0278.1413.50
    0.50.92416.9075.3211.77
    1.00.91016.7873.0111.15
    2.00.91816.6968.8910.55
    下载: 导出CSV
  • [1]

    Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry B R, Yum J H, Moser J E, Grätzel M, Park N G 2012 Sci. Rep. 2 591Google Scholar

    [2]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [3]

    Liu M Z, Johnston M B, Snaith H J 2013 Nature 501 395Google Scholar

    [4]

    Yang W S, Park B W, Jung E H, Jeon N J, Kim Y C, Lee D U, Shin S S, Seo J W, Kim E K, Noh J H, Seok S I 2017 Science 356 1376Google Scholar

    [5]

    Leijtens T, Eperon G E, Noel N K, Habisreutinger S N, Petrozza A, Snaith H J 2015 Adv. Energy Mater. 5 1500963Google Scholar

    [6]

    Li X M, Cao F, Yu D, Chen J, Sun Z, Shen Y L, Zhu Y, Wang L, Wei Y, Wu Y, Zeng H B 2017 Small 13 1603996Google Scholar

    [7]

    Liang J, Wang C X, Wang Y R, Xu Z R, Lu Z P, M Y, Zhu H F, Hu Y, Xiao C C, Yi X, Zhu G Y, Lv H L, Ma L B, Chen T, Tie Z X, Jin Z, Liu J 2016 J. Am. Chem. Soc. 138 15829Google Scholar

    [8]

    Pan W C, Wu H D, Luo J J, Deng Z Z, Ge C, Chen C, Jiang X W, Yin W J, Niu G D, Zhu L J, Yin L X, Zhou Y, Xie Q G, Ke X X, Sui M L, Tang J 2017 Nat. Photonics 11 726Google Scholar

    [9]

    Zhao X G, Yang D W, Sun Y H, Li T S, Zhang L J, Yu L P, Zunger A 2017 J. Am. Chem. Soc. 139 6718Google Scholar

    [10]

    Choi H S, Jeong J K, Kim H B, Kim S B, Walker B, Kim G H, Kim J Y 2014 Nano Energy 7 80Google Scholar

    [11]

    Eperon G E, Paternò G M, Sutton R J, Zampetti A, Haghighirad A A, Cacialli F, Snaith H J 2015 J. Mater. Chem. A 3 19688Google Scholar

    [12]

    Swarnkar A, Marshall A R, Sanehira E M, Chernomordik B D, Moore D T, Christians J A, Chakrabarti T, Luther J M 2016 Science 354 92Google Scholar

    [13]

    Li Y F, Zhang C H, Zhang, X X, Huang D, Shen Q, Cheng Y C, Huang W 2017 Appl. Phys. Lett. 111 162106Google Scholar

    [14]

    Long L X, Cao D, Fei J P, Wang J F, Zhou Y, Jiang Z T, Jiao Z W, Shu H B 2019 Chem. Phys. Lett. 734 136719Google Scholar

    [15]

    Zeng Q S, Zhang X Y, Feng X L, Lu S Y, Chen Z, Yong X, Redfern S A T, Wei H T, Wang H Z, Shen H Z, Zhang W, Zheng W T, Zhang H, Tse J S, Yang B 2018 Adv. Mater. 30 1705393Google Scholar

    [16]

    Yang Y Q, Wu J H, Wang X B, Guo Q Y, Liu X P, Sun W H, Wei Y L, Huang Y F, Lan Z, Huang M L, L in, J M, Chen H W, Wei Z H 2020 Adv. Mater. 32 1904347Google Scholar

    [17]

    Wu M, Yan K Y, Wang Y, Kang X W 2020 J. Energy Chem. 48 181Google Scholar

    [18]

    Wang Y, Liu X M, Zhang T Y, Wang X T, Kan M, Shi J L, Zhao Y X 2019 Angew. Chem. Int. Ed. 58 16691Google Scholar

    [19]

    Sim K M, Abhishek S, Angshuman N, Chung D S 2018 Laser Photonics Rev. 12 1700209Google Scholar

    [20]

    Wang Y, Zhang T Y, Kan M, Li Y H, Wang T, Zhao Y X 2018 Joule 2 2065Google Scholar

    [21]

    Ding X, Cai M, Liu X, Ding Y, Liu X, Wu Y, Hayat T, Alsaedi A, Dai S 2019 ACS Appl. Mater. Interfaces 11 37720Google Scholar

    [22]

    Ye Q F, Zhao Y, Mu S Q, Ma F, You J B 2019 Adv. Mater. 31 1905143Google Scholar

    [23]

    Wang Y, Zhang T, Kan M, Zhao Y 2018 J. Am. Chem. Soc. 140 12345Google Scholar

    [24]

    Li Y, Ding B, Chu Q Q, Yang G J, Wang M, Li C X, Li C J 2017 Sci. Rep. 7 46141Google Scholar

  • [1] 温亚飞, 庄园园, 王志强, 高士回. 高效率时间复用Duan-Lukin-Cirac-Zoller存储方案的实验研究. 物理学报, 2024, 73(18): 180301. doi: 10.7498/aps.73.20240799
    [2] 姬超, 梁春军, 由芳田, 何志群. 界面修饰对有机-无机杂化钙钛矿太阳能电池性能的影响. 物理学报, 2021, 70(2): 028402. doi: 10.7498/aps.70.20201222
    [3] 杨德文, 陈昌华, 史彦超, 肖仁珍, 滕雁, 范志强, 刘文元, 宋志敏, 孙钧. X波段高效率速调型相对论返波管研究. 物理学报, 2020, 69(16): 164102. doi: 10.7498/aps.69.20200434
    [4] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌. 基于三元非富勒烯体系的高效有机太阳能电池. 物理学报, 2020, 69(19): 198801. doi: 10.7498/aps.69.20200624
    [5] 杨剑群, 董磊, 刘超铭, 李兴冀, 徐鹏飞. Si3N4钝化层对横向PNP双极晶体管电离辐射损伤的影响机理. 物理学报, 2018, 67(16): 168501. doi: 10.7498/aps.67.20172215
    [6] 温亚飞, 王圣智, 徐忠孝, 李淑静, 王海. 冷原子系综中两正交光场偏振模高效率存储的实验研究. 物理学报, 2018, 67(1): 014204. doi: 10.7498/aps.67.20171217
    [7] 王小卡, 汤富领, 薛红涛, 司凤娟, 祁荣斐, 刘静波. H,Cl和F原子钝化Cu2ZnSnS4(112)表面态的第一性原理计算. 物理学报, 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [8] 李少华, 李海涛, 江亚晓, 涂丽敏, 李文标, 潘玲, 杨仕娥, 陈永生. 高效平面异质结有机-无机杂化钙钛矿太阳电池的质量管理. 物理学报, 2018, 67(15): 158801. doi: 10.7498/aps.67.20172600
    [9] 杨旭东, 陈汉, 毕恩兵, 韩礼元. 高效率钙钛矿太阳电池发展中的关键问题. 物理学报, 2015, 64(3): 038404. doi: 10.7498/aps.64.038404
    [10] 陈剑辉, 杨静, 沈艳娇, 李锋, 陈静伟, 刘海旭, 许颖, 麦耀华. 后退火增强氢化非晶硅钝化效果的研究. 物理学报, 2015, 64(19): 198801. doi: 10.7498/aps.64.198801
    [11] 郭靖, 何广源, 焦中兴, 王彪. 高效率内腔式2 μm简并光学参量振荡器. 物理学报, 2015, 64(8): 084207. doi: 10.7498/aps.64.084207
    [12] 贾河顺, 罗磊, 李秉霖, 徐振华, 任现坤, 姜言森, 程亮, 张春艳. 彩色多晶硅太阳电池性能研究. 物理学报, 2013, 62(16): 168802. doi: 10.7498/aps.62.168802
    [13] 薛源, 郜超军, 谷锦华, 冯亚阳, 杨仕娥, 卢景霄, 黄强, 冯志强. 薄膜硅/晶体硅异质结电池中本征硅薄膜钝化层的性质及光发射谱研究. 物理学报, 2013, 62(19): 197301. doi: 10.7498/aps.62.197301
    [14] 郑雪, 余学功, 杨德仁. -Si:H/SiNx叠层薄膜对晶体硅太阳电池的钝化. 物理学报, 2013, 62(19): 198801. doi: 10.7498/aps.62.198801
    [15] 张祥, 刘邦武, 夏洋, 李超波, 刘杰, 沈泽南. Al2O3钝化及其在晶硅太阳电池中的应用. 物理学报, 2012, 61(18): 187303. doi: 10.7498/aps.61.187303
    [16] 潘书万, 亓东峰, 陈松岩, 李成, 黄巍, 赖虹凯. Si(100)表面Se薄膜生长及其在Ti/Si欧姆接触中的应用. 物理学报, 2011, 60(9): 098108. doi: 10.7498/aps.60.098108
    [17] 毕志伟, 冯倩, 郝跃, 岳远征, 张忠芬, 毛维, 杨丽媛, 胡贵州. Al2O3介质层厚度对AlGaN/GaN金属氧化物半导体-高电子迁移率晶体管性能的影响. 物理学报, 2009, 58(10): 7211-7215. doi: 10.7498/aps.58.7211
    [18] 张国英, 张 辉, 刘艳侠, 杨丽娜. Pd对Ti合金钝化影响的电子理论研究. 物理学报, 2008, 57(4): 2404-2408. doi: 10.7498/aps.57.2404
    [19] 刘贵立. 钛的腐蚀与钝化机理电子理论研究. 物理学报, 2008, 57(7): 4441-4445. doi: 10.7498/aps.57.4441
    [20] 孙 涛, 陈兴国, 胡晓宁, 李言谨. HgCdTe长波光伏探测器的表面漏电流及1/f噪声研究. 物理学报, 2005, 54(7): 3357-3362. doi: 10.7498/aps.54.3357
计量
  • 文章访问数:  4489
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-27
  • 修回日期:  2021-01-16
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-06-20

/

返回文章
返回