搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

离子剂量比在气体团簇多级能量平坦化模式中的作用

罗进宝 VasiliyPelenovich 曾晓梅 郝中华 张翔宇 左文彬 付德君

引用本文:
Citation:

离子剂量比在气体团簇多级能量平坦化模式中的作用

罗进宝, VasiliyPelenovich, 曾晓梅, 郝中华, 张翔宇, 左文彬, 付德君

Effect of ion dose ratio on multilevel energy smoothing model of gas cluster

Luo Jin-Bao, Vasiliy Pelenovich, Zeng Xiao-Mei, Hao Zhong-Hua, Zhang Xiang-Yu, Zuo Wen-Bin, Fu De-Jun
PDF
HTML
导出引用
  • 本研究提出采用两种不同的离子剂量比的气体团簇离子束多级能量模式来改善n-Si(100)单晶片的创伤表面. 模式一采用低剂量的高能量团簇和高剂量的低能量团簇组合, 模式二则采用高剂量的高能量团簇和低剂量的低能量团簇组合. 结果证明, 模式一的平坦化效果优于模式二, 两者的均方根粗糙度分别为0.62 nm和1.02 nm. 本文在研究多级能量模式平坦化前, 先做了单一能量团簇轰击带有机械损伤的Si片实验, 来验证创伤去除、离子损伤程度与团簇能量的关系. 结果证明, 当用15 kV高压加速团簇离子时, 划痕去除效率最高, 最终表面划痕很浅, 但粗糙度下降不明显; 当用8 kV, 5 kV低压加速团簇离子时, 样品表面变得细腻, 遗留的离子损伤最轻. 然后将多级能量模式一与单一能量团簇轰击靶材进行对比, 结果表明, 与单一15 keV的高能团簇处理相比, 多级能量模式可以获得更为平坦的靶材表面; 与单一5 keV的低能团簇处理相比, 多级能量模式可以更好的去除划痕等创伤. 多级能量模式一将高、低能团簇优点集中起来, 从而达到最佳的平坦化效果.
    In this study, two kinds of gas cluster ion beam energy modes with different ion dose ratios are proposed to improve the traumatic surface of n-Si (100) single crystal. In mode1, low-dose high-energy clusters and high-dose low-energy clusters are used, while in mode2, high-dose high-energy clusters and low-dose low-energy clusters are used. The results show that the flattening effect of mode 1 is better than that of mode 2, and the root mean square roughness of mode 1 and mode 2 are 0.62 nm and 1.02 nm, respectively. This is because in multi-level energy mode 2, high-dose high-energy clusters are used to bombard the target surface in the early stage, so that more ion damages will be left after high-energy cluster bombardment. In the later stage, low-dose low-energy clusters can only remove part of the ion damages, and the repair strength is not strong enough. In multi-level energy mode1, we first use low-dose high-energy clusters to bombard the surface of the target, so that the high-energy clusters can quickly remove the shape objects with high protrusion on the sample surface, and in the low-dose mode, it will not leave too many ion damages, which is conducive to the later repair. In the first stage of multi-level energy mode, high-dose low-energy clusters are used to bombard the target surface, which can not only reduce the ion loss, but also increase the time for low-energy clusters to repair ion damages, thereby yielding the optimal flattening effect. In order to verify the relationship among the damage removal, ion damage degree and cluster energy, a single energy cluster bombardment experiment with mechanical damage is carried out before the multi-level energy mode modification is studied. The results show that when the cluster ions are accelerated at 15 kV high voltage, the scratch removal efficiency is highest, and the surface scratch is very shallow, but the decease of roughness is not obvious; when the cluster ions are accelerated at 8 kV and 5 kV, the sample surface becomes fine and the remaining ion damages are least. At the same time, a comparison of the target bombarded by the multi-level energy mode 1 clusters with that by the single energy clusters shows that the multi-level energy mode can obtain a smoother target surface than the single 15 keV high-energy cluster treatment; the multi-level energy mode can better remove scratches and other wounds than the single 5 keV low-energy cluster treatment. Multistage energy mode 1 integrates the advantages of high and low energy clusters, thereby achieving the best flattening effect.
      通信作者: VasiliyPelenovich, pelenovich@mail.ru ; 曾晓梅, 1714399588@qq.com ; 郝中华, zhhao@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875210, U1832127)和广东省自然科学基金(批准号: 2018A050506082, 2020A1515011531, 2020A1515011451)资助的课题.
      Corresponding author: Vasiliy Pelenovich, pelenovich@mail.ru ; Zeng Xiao-Mei, 1714399588@qq.com ; Hao Zhong-Hua, zhhao@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875210, U1832127), the Science and Technology Planning Project of Guangdong Province (Grant Nos. 2018A050506082, 2020A1515011531, 2020A1515011451).
    [1]

    Matsuo J, Katsumata H, Minami E, Yamada I 2000 Nucl. Instrum. Methods B 161-163 952Google Scholar

    [2]

    Goto K, Matsuo J, Tada Y, Momiyama Y, Sugii T, Yamada I 1997 IEDM Tech. Digst. 471Google Scholar

    [3]

    Toyoda N, Hagiwara N, Matsuo J, Yamada I 1999 Nucl. Instrum. MethodsB 148 639Google Scholar

    [4]

    Yamada I, Takaoka G H 1993 Jpn. J. Appl. Phys. 32 2121Google Scholar

    [5]

    Qin W, Howson R P, Akizuki M, Matsuo J, Takaoka G, Yamada I 1998 Mater. Chem. Phys. 54 258Google Scholar

    [6]

    Seki T, Matsuo J, Yamada I 2000 Nucl. Instrum. Methods B 161–163 1007

    [7]

    Tembrello. T A 1995 Nucl. Instrum. Methods B 99 225Google Scholar

    [8]

    Sang J L, Chang M C, Boo K M, Ji Y B, Jae Y E, Myoung C C 2019 Bull. Korean Chem. Soc. 40 877Google Scholar

    [9]

    Ieshkin A, Nazarev A, Tatarintsev A, Kireev D 2020 Mater. Lett. 272 127829Google Scholar

    [10]

    Sumie K, Toyoda N, Yamada I 2013 Nucl. Instrum. MethodsB 307 290Google Scholar

    [11]

    Zeng X M, Pelenovich V, Ieshkin A 2019 Rapid Commun. Mass. Spectrom. 33 1449Google Scholar

    [12]

    Pelenovich V, Zeng X M, Rakhimov R, Zuo W B 2020 Mater. Lett. 264 127356Google Scholar

    [13]

    Zeng X M, Pelenovich V, Zuo W B, Xing B, Tolstogouzov A 2020 Beilstein J. Nanotechnol. 11 383Google Scholar

    [14]

    Yamada I, Matsuo J, Insepov Z, Akizuki M 1995 Nucl. Instrum. Methods B 106 165Google Scholar

    [15]

    Yamada I, Matsuo J, Toyoda N, Kirkpatrick A 2001 Mater. Sci. Eng. R 34 231Google Scholar

    [16]

    Prasalovich S, Popok V, Persson P, Campbell E E B 2005 J. Eur. Phys. D 36 79Google Scholar

    [17]

    曾晓梅, Vasiliy Pelenovich, Rakhim Rakhimov, 左文彬, 邢斌, 罗进宝, 张翔宇, 付德君 2020 物理学报 69 093601Google Scholar

    Zeng X M, Pelenovich V, Rakhimov R, Zuo W B, Xing B, Luo J B, Zhang X Y, Fu D J 2020 Acta Phys. Sin. 69 093601Google Scholar

    [18]

    Tolstoguzov A B, Drozdov M N, Ieshkin A E, Tatarintsev A A, Myakon’kikh A V, Belykh S F, Korobeishchiko, N G, Pelenovich V 2020 JETP Letters. 111 467Google Scholar

    [19]

    Merkle K J, Jager W 1981 Philos. Mag. A 44 741Google Scholar

    [20]

    Gapann J 1995 Sensor Actuator. A 51 37Google Scholar

    [21]

    Takeuchi D, Seki T, Aoki T, Matsuo J, Yamada I 1998 Mater. Chem. Phys. 54 76Google Scholar

    [22]

    Matsuo J, Seki T, Yamada I 2003 Nucl. Instrum. Methods B 206 838Google Scholar

    [23]

    Allen L P, Insepov Z, Fenner D B, Santeufemio, Brooks C W, Jones K S, Yamada I 2002 J. Appl. Phys. 92 3671Google Scholar

    [24]

    Momota S, NojiIi Y 2006 Nucl. Instrum. Methods B 242 247Google Scholar

    [25]

    Seki T, Kaneko T, Takeuchi D, Aoki T, Matsuo J, Insepov Z, Yamada I 1997 Nucl. Instrum. Methods B 121 498Google Scholar

    [26]

    Pelenovich V, Zeng X M, Ieshkin A, Chernysh V S, Tolstogouzov A B 2019 J. Surf. Invest. 13 344Google Scholar

    [27]

    VasiliyPelenovich, 曾晓梅, 罗进宝, RakhimRakhimov, 左文彬, 张翔宇, 田灿鑫, 邹长伟, 付德君, 杨兵 2021 物理学报 70 053601Google Scholar

    Pelenovich V, Zeng X M, Luo J B, Rakhimov R, Zuo W B, Zhang X Y, Tian C X, Zhou C W, Fu D J, Yang B 2021 Acta Phys. Sin. 70 053601Google Scholar

    [28]

    Zeng X M, Pelenovich V, Liu C S, FuD J 2017 Chin. Phys. C 41 087003Google Scholar

    [29]

    Zeng X M, Pelenovich V, Zuo W B 2019 Beilstein J. Nanotechnol. 10 135Google Scholar

  • 图 1  Si片经不同单一能量的Ar团簇垂直辐照前后的AFM表面形貌图 (a) 0 keV (initial); (b) 15 keV; (c) 8 keV; (d) 5 keV

    Fig. 1.  AFM images of Si surface before and after Ar cluster bombardment at different single energies: (a) 0 keV (initial surface); (b) 15 keV; (c) 8 keV; (d) 5 keV.

    图 2  Si片经两种不同模式的Ar团簇垂直辐照后的AFM表面形貌图 (a) 0 keV (初始); (b) 15 keV + 8 keV + 5 keV多级能量(其离子剂量均为2 × 1016 cm–2); (c) 15 keV + 8 keV + 5 keV多级能量(其离子剂量分别为3 × 1016, 2 × 1016, 1 × 1016 cm–2)

    Fig. 2.  AFM images of mechanically polished Si surface irradiated by two different modes of Ar cluster bombardment: (a) Initial surface; (b) 15 keV + 8 keV + 5 keV, consequently (all ion doses are 2 × 1016 cm–2); (c) 15 keV + 8 keV + 5 keV, consequently (ion doses respectively are 3 × 1016, 2 × 1016, 1 × 1016 cm–2)

    图 3  两种不同模式下, Ar团簇垂直辐照Si片后的PSD曲线

    Fig. 3.  PSD curves of Ar clusters after vertical irradiation of Si wafer under two different modes

    图 4  Si片经不同能量的Ar团簇垂直辐照后的AFM表面形貌图 (a) 15 keV; (b) 5 keV; (c) 15 keV + 8 keV + 5 keV (离子剂量均为 2 × 1016 cm–2); (d) 15 keV + 8 keV + 5 keV (离子剂量分别为 3 × 1016, 2 × 1016、1 × 1016 cm–2); (e) 图(a)中孔洞的截面轮廓图; (f) 图(b)中孔洞的截面轮廓图; (g) 图(c)中孔洞的截面轮廓图; (h) 图(d)中孔洞的截面轮廓图

    Fig. 4.  AFM images of mechanically polished Si surface after Ar cluster bombardment with different energy: (a) 15 keV; (b) 5 keV; (c) 15 keV + 8 keV + 5 keV, consequently (all ion doses are 2 × 1016 cm–2); (d) 15 keV + 8 keV + 5 keV, consequently (ion doses respectively are 3 × 1016, 2 × 1016, 1 × 1016 cm–2); (e) cross section of a crater from (a); (f) cross section of a crater from (b); (g) cross section of a crater from (c); (h) cross section of a crater from (d).

    表 1  Si片样品的平坦化参数(团簇能量、离子剂量、抛光时间)和平坦化结果(均方根表面粗糙度Rq)

    Table 1.  The smoothing parameters (cluster energy, ion dose, smoothing time) and root mean square roughness Rq.

    团簇能量
    /keV
    离子剂量
    /(ions·cm-2)
    抛光时间
    /min
    均方根粗
    糙度/nm
    0001.69
    156 × 1016101.64
    86 × 1016201.07
    56 × 1016251.10
    下载: 导出CSV

    表 2  Si片样品的平坦化参数(团簇能量、离子剂量、抛光时间)和平坦化结果(均方根表面粗糙度Rq)

    Table 2.  The smoothing parameters (cluster energy, ion dose, smoothing time) and root mean square roughness Rq.

    团簇能量/keV离子剂量/(ions·cm–2)抛光时间/min均方根粗糙度/nm
    0001.69
    15 + 8 + 52 × 1016 + 2 × 1016 + 2 × 10163 + 6 + 80.62
    15 + 8 + 53 × 1016 + 2 × 1016+1 × 10165 + 6 + 41.02
    下载: 导出CSV
  • [1]

    Matsuo J, Katsumata H, Minami E, Yamada I 2000 Nucl. Instrum. Methods B 161-163 952Google Scholar

    [2]

    Goto K, Matsuo J, Tada Y, Momiyama Y, Sugii T, Yamada I 1997 IEDM Tech. Digst. 471Google Scholar

    [3]

    Toyoda N, Hagiwara N, Matsuo J, Yamada I 1999 Nucl. Instrum. MethodsB 148 639Google Scholar

    [4]

    Yamada I, Takaoka G H 1993 Jpn. J. Appl. Phys. 32 2121Google Scholar

    [5]

    Qin W, Howson R P, Akizuki M, Matsuo J, Takaoka G, Yamada I 1998 Mater. Chem. Phys. 54 258Google Scholar

    [6]

    Seki T, Matsuo J, Yamada I 2000 Nucl. Instrum. Methods B 161–163 1007

    [7]

    Tembrello. T A 1995 Nucl. Instrum. Methods B 99 225Google Scholar

    [8]

    Sang J L, Chang M C, Boo K M, Ji Y B, Jae Y E, Myoung C C 2019 Bull. Korean Chem. Soc. 40 877Google Scholar

    [9]

    Ieshkin A, Nazarev A, Tatarintsev A, Kireev D 2020 Mater. Lett. 272 127829Google Scholar

    [10]

    Sumie K, Toyoda N, Yamada I 2013 Nucl. Instrum. MethodsB 307 290Google Scholar

    [11]

    Zeng X M, Pelenovich V, Ieshkin A 2019 Rapid Commun. Mass. Spectrom. 33 1449Google Scholar

    [12]

    Pelenovich V, Zeng X M, Rakhimov R, Zuo W B 2020 Mater. Lett. 264 127356Google Scholar

    [13]

    Zeng X M, Pelenovich V, Zuo W B, Xing B, Tolstogouzov A 2020 Beilstein J. Nanotechnol. 11 383Google Scholar

    [14]

    Yamada I, Matsuo J, Insepov Z, Akizuki M 1995 Nucl. Instrum. Methods B 106 165Google Scholar

    [15]

    Yamada I, Matsuo J, Toyoda N, Kirkpatrick A 2001 Mater. Sci. Eng. R 34 231Google Scholar

    [16]

    Prasalovich S, Popok V, Persson P, Campbell E E B 2005 J. Eur. Phys. D 36 79Google Scholar

    [17]

    曾晓梅, Vasiliy Pelenovich, Rakhim Rakhimov, 左文彬, 邢斌, 罗进宝, 张翔宇, 付德君 2020 物理学报 69 093601Google Scholar

    Zeng X M, Pelenovich V, Rakhimov R, Zuo W B, Xing B, Luo J B, Zhang X Y, Fu D J 2020 Acta Phys. Sin. 69 093601Google Scholar

    [18]

    Tolstoguzov A B, Drozdov M N, Ieshkin A E, Tatarintsev A A, Myakon’kikh A V, Belykh S F, Korobeishchiko, N G, Pelenovich V 2020 JETP Letters. 111 467Google Scholar

    [19]

    Merkle K J, Jager W 1981 Philos. Mag. A 44 741Google Scholar

    [20]

    Gapann J 1995 Sensor Actuator. A 51 37Google Scholar

    [21]

    Takeuchi D, Seki T, Aoki T, Matsuo J, Yamada I 1998 Mater. Chem. Phys. 54 76Google Scholar

    [22]

    Matsuo J, Seki T, Yamada I 2003 Nucl. Instrum. Methods B 206 838Google Scholar

    [23]

    Allen L P, Insepov Z, Fenner D B, Santeufemio, Brooks C W, Jones K S, Yamada I 2002 J. Appl. Phys. 92 3671Google Scholar

    [24]

    Momota S, NojiIi Y 2006 Nucl. Instrum. Methods B 242 247Google Scholar

    [25]

    Seki T, Kaneko T, Takeuchi D, Aoki T, Matsuo J, Insepov Z, Yamada I 1997 Nucl. Instrum. Methods B 121 498Google Scholar

    [26]

    Pelenovich V, Zeng X M, Ieshkin A, Chernysh V S, Tolstogouzov A B 2019 J. Surf. Invest. 13 344Google Scholar

    [27]

    VasiliyPelenovich, 曾晓梅, 罗进宝, RakhimRakhimov, 左文彬, 张翔宇, 田灿鑫, 邹长伟, 付德君, 杨兵 2021 物理学报 70 053601Google Scholar

    Pelenovich V, Zeng X M, Luo J B, Rakhimov R, Zuo W B, Zhang X Y, Tian C X, Zhou C W, Fu D J, Yang B 2021 Acta Phys. Sin. 70 053601Google Scholar

    [28]

    Zeng X M, Pelenovich V, Liu C S, FuD J 2017 Chin. Phys. C 41 087003Google Scholar

    [29]

    Zeng X M, Pelenovich V, Zuo W B 2019 Beilstein J. Nanotechnol. 10 135Google Scholar

  • [1] VasiliyPelenovich, 曾晓梅, 罗进宝, RakhimRakhimov, 左文彬, 张翔宇, 田灿鑫, 邹长伟, 付德君, 杨兵. 气体团簇离子束两步能量修形法的平坦化效应. 物理学报, 2021, 70(5): 053601. doi: 10.7498/aps.70.20201454
    [2] 曾晓梅, VasiliyPelenovich, RakhimRakhimov, 左文彬, 邢斌, 罗进宝, 张翔宇, 付德君. 气体团簇离子束装置的设计及其在表面平坦化、自组装纳米结构中的应用. 物理学报, 2020, 69(9): 093601. doi: 10.7498/aps.69.20191990
    [3] 王建国, 杨松林, 叶永红. 样品表面银膜的粗糙度对钛酸钡微球成像性能的影响. 物理学报, 2018, 67(21): 214209. doi: 10.7498/aps.67.20180823
    [4] 张冉, 常青, 李桦. 气体-表面相互作用的分子动力学模拟研究. 物理学报, 2018, 67(22): 223401. doi: 10.7498/aps.67.20181608
    [5] 李夏至, 邹德滨, 周泓宇, 张世杰, 赵娜, 余德尧, 卓红斌. 等离子体光栅靶的表面粗糙度对高次谐波产生的影响. 物理学报, 2017, 66(24): 244209. doi: 10.7498/aps.66.244209
    [6] 程广贵, 张忠强, 丁建宁, 袁宁一, 许多. 石墨表面熔融硅的润湿行为研究. 物理学报, 2017, 66(3): 036801. doi: 10.7498/aps.66.036801
    [7] 宋延松, 杨建峰, 李福, 马小龙, 王红. 基于杂散光抑制要求的光学表面粗糙度控制方法研究. 物理学报, 2017, 66(19): 194201. doi: 10.7498/aps.66.194201
    [8] 宋永锋, 李雄兵, 史亦韦, 倪培君. 表面粗糙度对固体内部超声背散射的影响. 物理学报, 2016, 65(21): 214301. doi: 10.7498/aps.65.214301
    [9] 王宇翔, 陈硕. 微粗糙结构表面液滴浸润特性的多体耗散粒子动力学研究. 物理学报, 2015, 64(5): 054701. doi: 10.7498/aps.64.054701
    [10] 陈苏婷, 胡海锋, 张闯. 基于激光散斑成像的零件表面粗糙度建模. 物理学报, 2015, 64(23): 234203. doi: 10.7498/aps.64.234203
    [11] 马靖杰, 夏辉, 唐刚. 含关联噪声的空间分数阶随机生长方程的动力学标度行为研究. 物理学报, 2013, 62(2): 020501. doi: 10.7498/aps.62.020501
    [12] 柯川, 赵成利, 苟富均, 赵勇. 分子动力学模拟H原子与Si的表面相互作用. 物理学报, 2013, 62(16): 165203. doi: 10.7498/aps.62.165203
    [13] 曹洪, 黄勇, 陈素芬, 张占文, 韦建军. 脉冲敲击技术对PI微球表面粗糙度的影响. 物理学报, 2013, 62(19): 196801. doi: 10.7498/aps.62.196801
    [14] 黄晓玉, 程新路, 徐嘉靖, 吴卫东. Be原子在Be基底上的沉积过程研究. 物理学报, 2012, 61(9): 096801. doi: 10.7498/aps.61.096801
    [15] 马海敏, 洪亮, 尹伊, 许坚, 叶辉. 超亲水性SiO2-TiO2纳米颗粒阵列结构的制备与性能研究. 物理学报, 2011, 60(9): 098105. doi: 10.7498/aps.60.098105
    [16] 丁艳丽, 朱志立, 谷锦华, 史新伟, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 沉积速率对甚高频等离子体增强化学气相沉积制备微晶硅薄膜生长标度行为的影响. 物理学报, 2010, 59(2): 1190-1195. doi: 10.7498/aps.59.1190
    [17] 谷锦华, 丁艳丽, 杨仕娥, 郜小勇, 陈永生, 卢景霄. 椭圆偏振技术研究VHF-PECVD高速沉积微晶硅薄膜的异常标度行为. 物理学报, 2009, 58(6): 4123-4127. doi: 10.7498/aps.58.4123
    [18] 周炳卿, 刘丰珍, 朱美芳, 周玉琴, 吴忠华, 陈 兴. 微晶硅薄膜的表面粗糙度及其生长机制的X射线掠角反射研究. 物理学报, 2007, 56(4): 2422-2427. doi: 10.7498/aps.56.2422
    [19] 侯海虹, 孙喜莲, 申雁鸣, 邵建达, 范正修, 易 葵. 电子束蒸发氧化锆薄膜的粗糙度和光散射特性. 物理学报, 2006, 55(6): 3124-3127. doi: 10.7498/aps.55.3124
    [20] 程路, 萧季驹. 非相干光源用于“核-环比”法测量表面粗糙度. 物理学报, 1990, 39(1): 10-17. doi: 10.7498/aps.39.10
计量
  • 文章访问数:  3871
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-29
  • 修回日期:  2021-03-28
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-20

/

返回文章
返回