搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用

王闯 鲍容容 潘曹峰

引用本文:
Citation:

基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用

王闯, 鲍容容, 潘曹峰

Research and application of flexible wearable electronics based on nanogenerator in touch sensor

Wang Chuang, Bao Rong-Rong, Pan Cao-Feng
PDF
HTML
导出引用
  • 柔性可穿戴电子设备因其在人工智能、健康医疗等领域的应用而受到了人们的极大关注. 然而, 如何降低功耗或实现自供能一直是阻碍其广泛应用的瓶颈. 随着纳米发电机与自驱动技术的兴起, 尤其以摩擦纳米发电机(TENG)与压电纳米发电机(PENG)代表的研究, 为解决可穿戴传感器电源的问题提供了可行的方案. TENG和PENG分别基于摩擦起电效应与压电效应, 可以将机械能转化为电能, 同时具备可拉伸性、生物相容性和自愈性等优良特性, 已经广泛应用于自驱动的触觉传感器的设计制备中, 并作为下一代可穿戴电子设备的技术基础展现出巨大的应用潜力. 基于该领域的最新进展, 本文对TENG与PENG的机理进行概述, 对其性能优化途径进行归纳, 再结合材料、器件的设计等讨论应力应变与分布、滑移等纳米发电机自驱动传感器的制备与应用研究. 最后, 对自驱动触觉传感器目前存在的问题与挑战进行讨论, 并对未来的发展进行展望.
    With the advance of the fourth industrial revolution, a wave of emerging industries and interdisciplinary research is breaking out, such as the Internet of Things, megadata, humanoid robots and artificial intelligence.The rapid development of these functional electronic devices is changing the way people communicate with each other and their surroundings, thus integrating our world into an intelligent information network. The applications of flexible wearable electronic devices in intelligent robots, health and medical monitoring and other fields have attracted great attention. Following the human skin, the device can respond to external stimuli and should also have stretchability and self-healing properties. In practical applications, a large network of sensors is needed to connect with humans or robots, so the supply of energy is crucial. Several forms of green and renewable energy have been searched for, such as magnetic energy, solar energy, thermal energy, mechanical energy and microbial chemical energy. However, high cost, limitations in the choice of materials, and other disadvantages have become serious bottlenecks.The advent of nanogenerator brings a novel and effective solution to the above problems. Here in this work, the triboelectronic nanogenerator (TENG) and the piezoelectric generator (PENG) are taken as two representative objectives, which are, respectively, based on the triboelectronic effect and piezoelectronic effect to realize the collection of mechanical energy, and each of them can be used as a self-power sensor, which can generate electrical signals, respond to environmental stimuli, and need no power supply any more.The optimization and design of nanogenerator is always a key factor to improve its performance and wide application. At present, the methods commonly adopted in optimization schemes mainly include material selection, design and optimization of structural layer and electrode. The selection of materials should be based on low cost, stretchability, transparency, stability and biocompatibility. Firstly, for the optimization of structural layer, there are mainly two ways of designing the materials, one is the microstructure of the material surface, and the other is the functionalization of materials.The performance of the nanogenerator is proportional to the charge density of the contact surface. The square of the charge density is the main parameter to quantify the performance of the nanogenerator. Therefore, increasing the charge generation has been the main strategy to improve the output power. The microstructure of materials can be realized by means of colloidal arrays, soft lithography, block copolymer components and surface nanomaterial manufacturing. The same materials can be functionalized by ion doping, plasma treatment, electrical polarization, laser induction, and the formation of nanocomposites. In practical application, more attention is paid to the electrode with excellent performance which can simplify device structure, improve device performance and expand application field. The design of the electrode more focuses on the features such as flexibility, stretchability, high transparency and excellent electrical conductivity. The touch sensors based on TENG and PENG such as pressure sensors, strain sensors, pressure distribution sensors and slip sensors have shown excellent performances in application. Self-powered pressure sensors are used most widely because they are highly sensitive to and can detect the subtle pressure changes such as respiratory or arterial pulse-related changes. Strain sensors can detect signals produced by the body during mechanical movements, such as walking and joint movements. Pressure distribution sensor and slip distribution sensor play a key role in touch screen and smart prosthesis and so on.In this article, first, we introduce the mechanism of TENG and PENG, and summarize the way of performing the optimization design of the nanogenerators. Then, we discuss the self-powered sensors based on the nanogenerators such as stress, strain and distribution and slip sensors by combining the marerials and the design of device. Finally, the problems and challenges of the tactile sensor based on the nanogenerators are discussed, and the future development is prospected.
      通信作者: 鲍容容, baorongrong@binn.cas.cn ; 潘曹峰, cfpan@binn.cas.cn
    • 基金项目: 国家自然科学基金(批准号: U20A20166, 61675027, 61805015, 61804011)、科技部重点研发专项(批准号: 2016YFA0202703)、北京市自然科学基金(批准号: Z180011)和深圳市科技计划项目(批准号: KQTD20170810105439418)
      Corresponding author: Bao Rong-Rong, baorongrong@binn.cas.cn ; Pan Cao-Feng, cfpan@binn.cas.cn
    • Funds: Project support by the National Natural Science Foundation of China (Grant Nos. U20A20166, 61675027, 61805015, 61804011), the National Key R & D Project From Minister of Science and Technology, China (Grant No. 2016YFA0202703), the Natural Science Foundation of Beijing, China (Grant No. Z180011), and the Shenzhen Science and Technology Program, China (Grant No. KQTD20170810105439418)
    [1]

    Chortos A, Bao Z 2014 Mater. Today 17 321Google Scholar

    [2]

    Hammock M L, Chortos A, Tee C K, Tok B H, Bao Z 2013 Adv. Mater. 25 5997Google Scholar

    [3]

    Wang C, Hwang D, Yu Z B, Takei K, Park J, Chen T, Ma B, Javey A 2013 Nat. mater. 12 899Google Scholar

    [4]

    Wang Z L, Song J H 2006 Science 312 242Google Scholar

    [5]

    Tee B C-K, Chortos A, Berndt A, Nguyen A K, Tom A, Mcguire A, Lin Z C, Tien K, Bae W-G, Wang H 2015 Science 350 313Google Scholar

    [6]

    Zhao G, Zhang Y, Shi N, Liu Z, Zhang X, Wu M, Pan C, Liu H, Li L, Wang Z L 2019 Nano Energy 59 302Google Scholar

    [7]

    Liu Y, Bao R, Tao J, Li J, Dong M, Pan C 2020 Sci. Bull 65 70Google Scholar

    [8]

    Wu X, Chen Y, Xing Z, Lam C W K, Pang S S, Zhang W, Ju Z 2019 Adv. Energy Mater. 9 1900343Google Scholar

    [9]

    Dong K, Deng J, Zi Y, Wang Y, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B, Wang Z L 2017 Adv. Mater. 29 1702648Google Scholar

    [10]

    王中林, 林龙, 陈俊, 牛思淼, 訾云龙 2017 摩擦纳米发电机 (北京: 科学出版社) 第14页

    Wang Z L, Lin L, Chen J, Niu S M, Zi Y L 2017 Trieboelectronic Nanogenerators (Beijing: Science Press) p14 (in Chinese)

    [11]

    Wang Z L 2014 Faraday Discuss. 176 447Google Scholar

    [12]

    Zhu G, Peng B, Chen J, Jing Q, Wang Z L 2015 Nano Energy 14 126Google Scholar

    [13]

    Wang Z L 2020 Nano Energy 68 104272Google Scholar

    [14]

    Fan F R, Tian Z Q, Zhong L W 2012 Nano Energy 1 328Google Scholar

    [15]

    Fan F, Lin L, Zhu G, Wu W, Zhang R, Wang Z L 2012 Nano Lett. 12 3109Google Scholar

    [16]

    Niu S, Wang S, Lin L, Liu Y, Zhou Y, Hu Y, Wang Z L 2013 Energy Environ. Sci. 6 3576Google Scholar

    [17]

    Niu S, Wang S, Liu Y, Zhou Y, Lin L, Hu Y, Pradel K C, Wang Z L 2014 Energy Environ. Sci. 7 2339Google Scholar

    [18]

    Zhu G, Chen J, Zhang T J, Jing Q S, Wang Z L 2014 Nat. Commun. 5 3426Google Scholar

    [19]

    Niu S, Liu Y, Wang S, Lin L, Zhou Y, Hu Y, Wang Z L 2013 Adv. Mater. 25 6184Google Scholar

    [20]

    Niu S, Liu Y, Wang S, Lin L, Zhou Y, Hu Y, Wang Z L 2014 Adv. Funct. Mater. 24 3332Google Scholar

    [21]

    Xiong J, Lin M, Wang J, Gaw S L, Parida K, Lee P S 2017 Adv. Energy. Mater. 7 1701243Google Scholar

    [22]

    Lin M, Parida K, Cheng X, Lee P S 2017 Adv. Mater. Technol-Us. 2 1600186Google Scholar

    [23]

    Wang S, Xie Y, Niu S, Lin L, Wang Z L 2014 Adv. Mater. 26 2818Google Scholar

    [24]

    Niu S, Liu Y, Chen X, Wang S, Zhou Y, Lin L, Xie Y, Wang Z L 2015 Nano Energy 12 760Google Scholar

    [25]

    Xie Y, Wang S, Niu S, Long L, Jing Q, Jin Y, Wu Z, Zhong L W 2014 Adv. Mater. 26 6599Google Scholar

    [26]

    Chen H, Song Y, Cheng X, Zhang H 2018 Nano Energy 56 252

    [27]

    Henniker J 1962 Nature 196 474

    [28]

    Davies D K 2002 J. Phys. D. 2 1533

    [29]

    Zhong L W 2013 ACS Nano 7 9533Google Scholar

    [30]

    Zheng Q, Shi B J, Li Z, Wang Z L, 2017 Adv. Sci. 4 1700029Google Scholar

    [31]

    Karan S K, Bera R, Paria S, Das A K, Maiti S, Maitra A, Khatua B B 2016 Adv. Energy. Mater. 6 1601016Google Scholar

    [32]

    Kim M K, Kim M S, Kwon H B, Jo S E, Kim Y 2017 RSC Adv. 7 48368Google Scholar

    [33]

    Wang X, Song J, Liu J, Wang Z L 2007 Science 316 102Google Scholar

    [34]

    Zhuang Y, Xu Z, Li F, Liao Z, Liu W 2015 J. Alloys Compd. 629 113Google Scholar

    [35]

    Fang H, Wang X, Li Q, Peng D, Yan Q, Pan C 2016 Adv. Energy. Mater. 6 1600829Google Scholar

    [36]

    Gong H, Xu Z, Yang Y, Xu Q, Li X, Cheng X, Huang Y, Zhang F, Zhao J Z, LiS, Liu X, Huang Q, Guo W 2020 Biosens. Bioelectron. 169 112567Google Scholar

    [37]

    Tat T, Libanori A, Au C, Yau A, Chen J 2021 Biosens. Bioelectron. 171 112714Google Scholar

    [38]

    Zhu G, Yang R, Wang S, Wang Z L 2010 Nano Lett. 10 3151Google Scholar

    [39]

    Wang Z L 2012 MRS Bulletin 37 814Google Scholar

    [40]

    Kwon J, Seung W, Sharma B K, Kim S, Ahn J 2012 Energy Environ. Sci. 5 8970Google Scholar

    [41]

    Bhavanasi V, Kumar V, Parida K, Wang J, Lee P S 2016 ACS Appl. Mater. Inter. 8 521Google Scholar

    [42]

    Jeong C K, Baek K M, Niu S, Nam T W, Hur Y H, Park D Y, Hwang G T, Byun M, Wang Z L, Jung Y S 2014 Nano Lett. 14 7031Google Scholar

    [43]

    Choi H J, Lee J H, Jun J, Kim T Y, Kim S W, Lee H 2016 Nano Energy 27 595Google Scholar

    [44]

    Jang D, Kim Y, Kim T Y, Koh K, Jeong U, Cho J 2016 Nano Energy 20 283Google Scholar

    [45]

    吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇 2019 物理学报 68 190201Google Scholar

    Wu Y S, Liu Q, Cao J, Li K, Cheng G G, Zhang Z Q, Ding J N, Jiang S Y 2019 Acta Phys. Sin. 68 190201Google Scholar

    [46]

    Zhu G, Pan C, Guo W, Chen C Y, Zhou Y, Yu R, Wang Z L 2012 Nano Lett. 12 4960Google Scholar

    [47]

    Chen X, Li X, Shao J, An N, Tian H, Wang C, Han T, Wang L, Lu B 2017 Small 13 1604245Google Scholar

    [48]

    Khalifa M, Anandhan S 2019 ACS Appl. Nano Mater. 2 7328Google Scholar

    [49]

    Ouyang H, Tian J, Sun G, Zou Y, Liu Z, Li H, Zhao L, Shi B, Fan Y, Fan Y, Wang Z L, Li Z 2017 Adv. Mater. 29 1703456

    [50]

    Zhang X S, Han M D, Wang R X, Meng B, Zhu F Y, Sun X M, Hu W, Wang W, Li Z H, Zhang H X 2014 Nano Energy 4 123Google Scholar

    [51]

    Yun B K, Kim J W, Kim H S, Jung K W, Yi Y, Jeong M S, Ko J H, Jung J H 2015 Nano Energy 15 523Google Scholar

    [52]

    Li H Y, Su L, Kuang S Y, Pan C F, Zhu G, Wang Z L 2015 Adv. Funct. Mater. 25 5691Google Scholar

    [53]

    Zou H, Zhang Y, Guo L, Wang P, He X, Dai G, Zheng H, Chen C, Wang A C, Xu C, Wang Z L 2019 Nat. Commun. 10 1427Google Scholar

    [54]

    Kim D W, Lee J H, Kim J K, Jeong U 2020 NPG Asia Mater. 12 6Google Scholar

    [55]

    Wang S, Xie Y, Niu S, Lin L, Liu C, Zhou Y, Wang Z L 2014 Adv. Mater. 26 6720Google Scholar

    [56]

    Chen H, Xu Y, Zhang J, Wu W, Song G 2019 Nano Energy 58 304Google Scholar

    [57]

    Yang J, Liu P, Wei X, Luo W, Yang J, Jiang H, Wei D, Shi R, Shi H F 2017 ACS Appl. Mater. Inter. 9 36017Google Scholar

    [58]

    Parida K, Xiong J, Zhou X, Lee P S 2019 Nano Energy 59 237Google Scholar

    [59]

    Deng J, Kuang X, Liu R, Ding W, Wang A, Lai Y C, Dong K, Wen Z, Wang Y X, Wang Z L 2018 Adv. Mater. 30 1705918Google Scholar

    [60]

    Parida K, Thangavel G, Cai G, Zhou X, Park S, Xiong J, Lee P S 2019 Nat. Commun. 10 2158Google Scholar

    [61]

    Belanger M C, Marois Y 2001 J. Biomed. Mater. Res. 58 467Google Scholar

    [62]

    Starr P, Agrawal C M, Bailey S 2016 J. Biomed. Mater. Res. Part A 104 406Google Scholar

    [63]

    Seitz H, Marlovits S, Schwendenwein I, Müller E, Vécsei V 1998 Biomaterials 19 189Google Scholar

    [64]

    Zhang H, Ye X J, Li J S 2009 Biomed. Mater. 4 045007Google Scholar

    [65]

    Cao Y, Wu H, Allec S I, Wong B M, Nguyen D S, Wang C 2018 Adv. Mater. 30 1804602Google Scholar

    [66]

    Parida K, Kumar V, Jiangxin W, Bhavanasi V, Bendi R, Lee P S 2017 Adv. Mater. 29 1702181Google Scholar

    [67]

    Zhu G, Yang W Q, Zhang T, Jing Q, Chen J, Zhou Y S, Bai P, Wang Z L 2014 Nano Lett. 14 3208Google Scholar

    [68]

    Fan W, He Q, Meng K, Tan X, Zhou Z, Zhang G, Yang J, Wang Z L 2020 Sci. Adv. 6 eaay2840Google Scholar

    [69]

    Li W, Duan J, Zhong J, Wu N, Lin S, Xu Z, Chen S, Pan Y, Huang L, Hu B 2018 ACS Appl. Mater. Inter. 10 29675Google Scholar

    [70]

    Niu X, Jia W, Qian S, Zhu J, Zhang J, Hou X, Mu J, Geng W, Cho J, He J, Chou X 2019 ACS Sustainable Chem. Eng. 7 979Google Scholar

    [71]

    Hwang B, Lee J, Trung T Q, Roh E, Kim D, Kim S W, Lee N E 2015 ACS Nano 9 8801Google Scholar

    [72]

    Jin L, Tao J, Bao R, Sun L, Pan C 2017 Sci. Rep. 7 10521Google Scholar

    [73]

    Zou Y, Tan P C, Shi B J, Ouyang H, Jiang D J, Liu Z, Li H, Yu M, Wang Ch, Qu X C, Zhao L M, Fan Y B, Wang Z L, Li Z 2019 Nat. Commun. 10 2695Google Scholar

    [74]

    Kim K, Jang W, Cho J Y, Woo S B, Jeon D H, Ahn J H, Hong S D, Koo H Y, Sung T H 2018 Nano Energy 54 91Google Scholar

    [75]

    Wang X, Zhang Y, Zhang X, Huo Z, Li X, Que M, Peng Z, Wang H, Pan C 2018 Adv. Mater. 30 1706738

    [76]

    Yuan Z, Zhou T, Yin Y, Cao R, Li C, Wang Z L 2017 ACS Nano 11 8364Google Scholar

    [77]

    Yang Z W, Pang Y, Zhang L, Lu C, Chen J, Zhou T, Zhang C, Wang Z L 2016 ACS Nano 10 10912Google Scholar

    [78]

    Guo H, Wan J, Wu H, Wang H, Miao L, Song Y, Chen H, Han M, Zhang H X 2020 ACS Appl. Mater. Inter. 12 22357Google Scholar

    [79]

    Ren Z, Nie J, Shao J, Lai Q, Wang L, Chen J, Chen X, Wang Z L 2018 Adv. Funct. Mater. 28 1805277Google Scholar

    [80]

    Zhu X X, Meng X S, Kuang S Y, Wang X D, Pan C, Zhu G, Wang Z L 2017 Nano Energy 41 387Google Scholar

    [81]

    Wang X, Zhang H, Dong L, Han X, Du W, Zhai J, Pan C, Wang Z L 2016 Adv. Mater. 28 2896Google Scholar

    [82]

    Ma L, Zhou M, Wu R, Patil A, Gong H, Zhu S, Wang T, Zhang Y, Shen S, Dong K, Yang L, Wang J, Guo W, Wang Z L 2020 ACS Nano 14 4716Google Scholar

    [83]

    Wang X, Song W Z, You M H, Zhang J, Yu M, Fan Z Y, Ramakrishna S, Long Y Z 2018 ACS Nano 12 8588Google Scholar

    [84]

    Li S, Peng W, Wang J, Lin L, Zi Y, Zhang G, Wang Z L 2016 Acs Nano 10 7973Google Scholar

    [85]

    Shi M, Zhang J, Chen H, Ha nM, Shankaregowda S A, S uZ, Meng B, ChengX, Zhang H 2016 ACS Nano 10 4083Google Scholar

    [86]

    ChenM, L iX, Lin L, Du W, Ha nX, Zhu J, Pan C, Wang Z L 2014 Adv. Funct. Mater. 24 5059Google Scholar

    [87]

    Jing Q, Xie Y, Zhu G, Han R P S, Wang Z L 2015 Nat. Commun. 6 8031Google Scholar

    [88]

    Chen H, Song Y, Guo H, Miao L, Chen X, Su Z, Zhang H 2018 Nano Energy 51 496Google Scholar

    [89]

    Ren Z, Nie J, Shao J, Lai Q, Wang L, Chen J, Chen X, Wang Z L 2018 Adv. Funct. Mater. 28 1802989Google Scholar

  • 图 1  摩擦纳米发电机的工作机理与四种工作模式[26] (a)接触分离模式; (b)滑动摩擦声式; (c)单电极模式; (d)自由摩擦层模式

    Fig. 1.  Working mechanism and four working modes of triboelectronic nanogenerator[26]: (a) Contact-separation mode; (b) lateral sliding mode; (c) single-electrode mode; (d) freestanding mode.

    图 2  ZnO的压电机理[30] (a) ZnO原子模型示意图; (b) ZnO在压缩和拉伸下的极性变化示意图

    Fig. 2.  The working principle of piezoelectric nanogerator[30]: (a) Schematic of ZnO atom model; (b) schematic of working mechanism of piezoelectric nano-generator under compression and tension.

    图 3  主体结构层的设计与性能优化 (a)微纳加工技术制备的微金字塔与微柱状结构的TENG的SEM图像[15]; (b)表面具有微柱结构的PENG结构示意图[47]; (c)在FEP表面进行表面极化示意图[55]; (d) gC3N4, PANI纳米棒, DMF和PVDF链之间相互作用机制示意图[48]

    Fig. 3.  Design and performance optimization of the main structure layer: (a) SEM images of micropyramid and microcolumnar TENG prepared by micro-nano processing techniques[15]; (b) schematic diagram of PENG structure with microcolumn structure on the surface[47]; (c) schematic diagram of negative ion implantation on the FEP surface[55]; (d) schematic diagram of the interaction mechanism between gC3N4, PANI nanorods, DMF and PVDF chains[48].

    图 4  电极的设计与优化 (a)VHB胶带上的透明及可拉伸双层CG照片[56]; (b)制造的石墨烯/聚合物混合透明电极的照片[57]; (c)具有自愈合功能的可拉伸导体照片[66]

    Fig. 4.  Design and optimization of electrode: (a) The photo of stretch image and double layer CG transparency on VHB tape[56]; (b) the photo of fabrication of the graphene/polymer hybrid transparent electrode[57]; (c) the photo of stretchable conductor with a self-healing function[66].

    图 5  基于TENG的压力传感器 (a)TES的结构示意图[67]; (b), (c)通过手指按压TES的无线报警系统与实际输出电压[67]; (d) TATSA结构示意图[68]; (e)不同年龄段人群脉搏输出信号[68]; (f)健康参与者的呼吸信号和PTT[68]

    Fig. 5.  The pressure sensor based on TENG: (a) Schematic diagram of TES[67]; (b), (c) press TES wireless alarm system with finger and actual output voltage[67]; (d) schematic diagram of TATSA[68]; (e) pulse output signals of different age groups[68]; (f) respiratory signals and PTT of healthy participants[68].

    图 6  基于PENG的压力传感器[69] (a)TVH/COC压电纳米发电机实物图; (b), (d)食指敲击, 拇指按压, 重击桌面所检测到的压力与商用测力计所对应的压力对比图

    Fig. 6.  The pressure sensor based on PENG[69]: (a) Physical picture of TVH/COC piezoelectric nanogenerator; (b), (d) the diagram comparing the pressure detected by tapping the index finger, pressing the thumb, and thumping the table with the pressure corresponding to a commercial dynamometer.

    图 7  基于TENG的应变传感器 (a)TENG与机械手结合的的照片与示意图[72]; (b)在一个接触和分离过程中反向电流信号曲线[72]; (c)中指的两个不同随机运动的转移电荷曲线[72]; (d)仿生可拉伸纳米发电机(BSNG)(填充红色墨水)的一个工作周期的照片[73]; (e)BSNG工作机制示意图[73]; (f)基于仿生伸缩性纳米发生器(BSNG)水下无线多站点人体运动监控系统的示意图[73]

    Fig. 7.  Strain sensor based on TENG: (a) Photos and schematic diagram of the combination of TENG and manipulator[72]; (b) reverse current signal during a contact and separation process[72]; (c) the transfer charge curves of two different random motions in the middle finger[72]; (d) a photo of a working cycle of the bionic stretchable nanogenerator (BSNG) (filled with red ink)[73]; (e) schematic diagram of the working mechanism of BSNG[73]; (f) schematic diagram of underwater wireless multi-site human motion monitoring system based on bionic flexible nanogenerator (BSNG)[73].

    图 8  基于PENG的应变传感器[74] (a)TFPS结构示意图; (b)TFPS工作原理图; (c)多部位运动所对应的电压输出关系图

    Fig. 8.  Strain sensor based on PENG[74]: (a) the structure diagram of TFPS; (b) the schematic diagram TFPS operating; (c) the voltage output diagram corresponding to the multi-position motion.

    图 9  基于TENG的压力分布传感器 (a) 16 × 16阵列器件结构示意[81]; (b)压力分布监测过程的示意图[81]; (c) 36 × 20矩阵交叉型电极的器件结构示意图[81]; (d)基于TENG的压力分布传感器在商用智能手机中的应用[81]; (e) SETY的阵列结构示意图[82]; (f), (g)单点触碰时压力分布信号示意图及 3D输出信号示意图[82]; (h)昆虫接触传感器时的信号输出曲线[82]

    Fig. 9.  Pressure distribution sensor based on TENG: (a) The schematic diagram of device structure of 16 × 16 arrys[81]; (b) the process diagram of pressure distribution detection[81]; (c) schematic diagram of device structureof 36 × 20 matrix crossed electrode[81]; (d) pressure distribution sensor based on TENG appllied for a commercial smart phone[81]; (e) schematic diagram of the array structure of SETY[82]; (f), (g) schematic diagram of pressure distribution signal and 3D output signal in single point contact the device[82]; (h) signal output curve of ainsect contact the sensor[82].

    图 10  基于PENG的压力分布传感器[83] (a)SPENG的实物照片; (b)单点触碰时的压力分布的3D信号示意图

    Fig. 10.  The pressure distribution based on PENG[83]: (a) Physical schematic diagram of SPENG; (b) schematic diagram of 3D output signal under pressure distribution signal at single point contact.

    图 11  基于TENG的滑动传感器 (a)指纹结构启发的TENG及其工作原理, 包含四个螺旋电极的示意图和照片[88]; (b)外部物体沿着不同方向接触传感器时的电压信号变化图[88]; (c) TENG传感器结构设计示意图和照片[89]; (d)检测施加斜侧45°方向切向力的动态输出关系曲线[89]

    Fig. 11.  The sliding sensor based on TENG: (a) A schematic diagram and photograph of a fingerprint-structure-inspired TENG and how it works, including four spiral electrodes[88]; (b) the signal of the voltage when the external object is in contact in different directions[88]; (c) the schematic diagram and photo of the TENG sensor structure and of real product[89]; (d) detection of dynamic output of the tangential force in the 45° direction[89].

  • [1]

    Chortos A, Bao Z 2014 Mater. Today 17 321Google Scholar

    [2]

    Hammock M L, Chortos A, Tee C K, Tok B H, Bao Z 2013 Adv. Mater. 25 5997Google Scholar

    [3]

    Wang C, Hwang D, Yu Z B, Takei K, Park J, Chen T, Ma B, Javey A 2013 Nat. mater. 12 899Google Scholar

    [4]

    Wang Z L, Song J H 2006 Science 312 242Google Scholar

    [5]

    Tee B C-K, Chortos A, Berndt A, Nguyen A K, Tom A, Mcguire A, Lin Z C, Tien K, Bae W-G, Wang H 2015 Science 350 313Google Scholar

    [6]

    Zhao G, Zhang Y, Shi N, Liu Z, Zhang X, Wu M, Pan C, Liu H, Li L, Wang Z L 2019 Nano Energy 59 302Google Scholar

    [7]

    Liu Y, Bao R, Tao J, Li J, Dong M, Pan C 2020 Sci. Bull 65 70Google Scholar

    [8]

    Wu X, Chen Y, Xing Z, Lam C W K, Pang S S, Zhang W, Ju Z 2019 Adv. Energy Mater. 9 1900343Google Scholar

    [9]

    Dong K, Deng J, Zi Y, Wang Y, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B, Wang Z L 2017 Adv. Mater. 29 1702648Google Scholar

    [10]

    王中林, 林龙, 陈俊, 牛思淼, 訾云龙 2017 摩擦纳米发电机 (北京: 科学出版社) 第14页

    Wang Z L, Lin L, Chen J, Niu S M, Zi Y L 2017 Trieboelectronic Nanogenerators (Beijing: Science Press) p14 (in Chinese)

    [11]

    Wang Z L 2014 Faraday Discuss. 176 447Google Scholar

    [12]

    Zhu G, Peng B, Chen J, Jing Q, Wang Z L 2015 Nano Energy 14 126Google Scholar

    [13]

    Wang Z L 2020 Nano Energy 68 104272Google Scholar

    [14]

    Fan F R, Tian Z Q, Zhong L W 2012 Nano Energy 1 328Google Scholar

    [15]

    Fan F, Lin L, Zhu G, Wu W, Zhang R, Wang Z L 2012 Nano Lett. 12 3109Google Scholar

    [16]

    Niu S, Wang S, Lin L, Liu Y, Zhou Y, Hu Y, Wang Z L 2013 Energy Environ. Sci. 6 3576Google Scholar

    [17]

    Niu S, Wang S, Liu Y, Zhou Y, Lin L, Hu Y, Pradel K C, Wang Z L 2014 Energy Environ. Sci. 7 2339Google Scholar

    [18]

    Zhu G, Chen J, Zhang T J, Jing Q S, Wang Z L 2014 Nat. Commun. 5 3426Google Scholar

    [19]

    Niu S, Liu Y, Wang S, Lin L, Zhou Y, Hu Y, Wang Z L 2013 Adv. Mater. 25 6184Google Scholar

    [20]

    Niu S, Liu Y, Wang S, Lin L, Zhou Y, Hu Y, Wang Z L 2014 Adv. Funct. Mater. 24 3332Google Scholar

    [21]

    Xiong J, Lin M, Wang J, Gaw S L, Parida K, Lee P S 2017 Adv. Energy. Mater. 7 1701243Google Scholar

    [22]

    Lin M, Parida K, Cheng X, Lee P S 2017 Adv. Mater. Technol-Us. 2 1600186Google Scholar

    [23]

    Wang S, Xie Y, Niu S, Lin L, Wang Z L 2014 Adv. Mater. 26 2818Google Scholar

    [24]

    Niu S, Liu Y, Chen X, Wang S, Zhou Y, Lin L, Xie Y, Wang Z L 2015 Nano Energy 12 760Google Scholar

    [25]

    Xie Y, Wang S, Niu S, Long L, Jing Q, Jin Y, Wu Z, Zhong L W 2014 Adv. Mater. 26 6599Google Scholar

    [26]

    Chen H, Song Y, Cheng X, Zhang H 2018 Nano Energy 56 252

    [27]

    Henniker J 1962 Nature 196 474

    [28]

    Davies D K 2002 J. Phys. D. 2 1533

    [29]

    Zhong L W 2013 ACS Nano 7 9533Google Scholar

    [30]

    Zheng Q, Shi B J, Li Z, Wang Z L, 2017 Adv. Sci. 4 1700029Google Scholar

    [31]

    Karan S K, Bera R, Paria S, Das A K, Maiti S, Maitra A, Khatua B B 2016 Adv. Energy. Mater. 6 1601016Google Scholar

    [32]

    Kim M K, Kim M S, Kwon H B, Jo S E, Kim Y 2017 RSC Adv. 7 48368Google Scholar

    [33]

    Wang X, Song J, Liu J, Wang Z L 2007 Science 316 102Google Scholar

    [34]

    Zhuang Y, Xu Z, Li F, Liao Z, Liu W 2015 J. Alloys Compd. 629 113Google Scholar

    [35]

    Fang H, Wang X, Li Q, Peng D, Yan Q, Pan C 2016 Adv. Energy. Mater. 6 1600829Google Scholar

    [36]

    Gong H, Xu Z, Yang Y, Xu Q, Li X, Cheng X, Huang Y, Zhang F, Zhao J Z, LiS, Liu X, Huang Q, Guo W 2020 Biosens. Bioelectron. 169 112567Google Scholar

    [37]

    Tat T, Libanori A, Au C, Yau A, Chen J 2021 Biosens. Bioelectron. 171 112714Google Scholar

    [38]

    Zhu G, Yang R, Wang S, Wang Z L 2010 Nano Lett. 10 3151Google Scholar

    [39]

    Wang Z L 2012 MRS Bulletin 37 814Google Scholar

    [40]

    Kwon J, Seung W, Sharma B K, Kim S, Ahn J 2012 Energy Environ. Sci. 5 8970Google Scholar

    [41]

    Bhavanasi V, Kumar V, Parida K, Wang J, Lee P S 2016 ACS Appl. Mater. Inter. 8 521Google Scholar

    [42]

    Jeong C K, Baek K M, Niu S, Nam T W, Hur Y H, Park D Y, Hwang G T, Byun M, Wang Z L, Jung Y S 2014 Nano Lett. 14 7031Google Scholar

    [43]

    Choi H J, Lee J H, Jun J, Kim T Y, Kim S W, Lee H 2016 Nano Energy 27 595Google Scholar

    [44]

    Jang D, Kim Y, Kim T Y, Koh K, Jeong U, Cho J 2016 Nano Energy 20 283Google Scholar

    [45]

    吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇 2019 物理学报 68 190201Google Scholar

    Wu Y S, Liu Q, Cao J, Li K, Cheng G G, Zhang Z Q, Ding J N, Jiang S Y 2019 Acta Phys. Sin. 68 190201Google Scholar

    [46]

    Zhu G, Pan C, Guo W, Chen C Y, Zhou Y, Yu R, Wang Z L 2012 Nano Lett. 12 4960Google Scholar

    [47]

    Chen X, Li X, Shao J, An N, Tian H, Wang C, Han T, Wang L, Lu B 2017 Small 13 1604245Google Scholar

    [48]

    Khalifa M, Anandhan S 2019 ACS Appl. Nano Mater. 2 7328Google Scholar

    [49]

    Ouyang H, Tian J, Sun G, Zou Y, Liu Z, Li H, Zhao L, Shi B, Fan Y, Fan Y, Wang Z L, Li Z 2017 Adv. Mater. 29 1703456

    [50]

    Zhang X S, Han M D, Wang R X, Meng B, Zhu F Y, Sun X M, Hu W, Wang W, Li Z H, Zhang H X 2014 Nano Energy 4 123Google Scholar

    [51]

    Yun B K, Kim J W, Kim H S, Jung K W, Yi Y, Jeong M S, Ko J H, Jung J H 2015 Nano Energy 15 523Google Scholar

    [52]

    Li H Y, Su L, Kuang S Y, Pan C F, Zhu G, Wang Z L 2015 Adv. Funct. Mater. 25 5691Google Scholar

    [53]

    Zou H, Zhang Y, Guo L, Wang P, He X, Dai G, Zheng H, Chen C, Wang A C, Xu C, Wang Z L 2019 Nat. Commun. 10 1427Google Scholar

    [54]

    Kim D W, Lee J H, Kim J K, Jeong U 2020 NPG Asia Mater. 12 6Google Scholar

    [55]

    Wang S, Xie Y, Niu S, Lin L, Liu C, Zhou Y, Wang Z L 2014 Adv. Mater. 26 6720Google Scholar

    [56]

    Chen H, Xu Y, Zhang J, Wu W, Song G 2019 Nano Energy 58 304Google Scholar

    [57]

    Yang J, Liu P, Wei X, Luo W, Yang J, Jiang H, Wei D, Shi R, Shi H F 2017 ACS Appl. Mater. Inter. 9 36017Google Scholar

    [58]

    Parida K, Xiong J, Zhou X, Lee P S 2019 Nano Energy 59 237Google Scholar

    [59]

    Deng J, Kuang X, Liu R, Ding W, Wang A, Lai Y C, Dong K, Wen Z, Wang Y X, Wang Z L 2018 Adv. Mater. 30 1705918Google Scholar

    [60]

    Parida K, Thangavel G, Cai G, Zhou X, Park S, Xiong J, Lee P S 2019 Nat. Commun. 10 2158Google Scholar

    [61]

    Belanger M C, Marois Y 2001 J. Biomed. Mater. Res. 58 467Google Scholar

    [62]

    Starr P, Agrawal C M, Bailey S 2016 J. Biomed. Mater. Res. Part A 104 406Google Scholar

    [63]

    Seitz H, Marlovits S, Schwendenwein I, Müller E, Vécsei V 1998 Biomaterials 19 189Google Scholar

    [64]

    Zhang H, Ye X J, Li J S 2009 Biomed. Mater. 4 045007Google Scholar

    [65]

    Cao Y, Wu H, Allec S I, Wong B M, Nguyen D S, Wang C 2018 Adv. Mater. 30 1804602Google Scholar

    [66]

    Parida K, Kumar V, Jiangxin W, Bhavanasi V, Bendi R, Lee P S 2017 Adv. Mater. 29 1702181Google Scholar

    [67]

    Zhu G, Yang W Q, Zhang T, Jing Q, Chen J, Zhou Y S, Bai P, Wang Z L 2014 Nano Lett. 14 3208Google Scholar

    [68]

    Fan W, He Q, Meng K, Tan X, Zhou Z, Zhang G, Yang J, Wang Z L 2020 Sci. Adv. 6 eaay2840Google Scholar

    [69]

    Li W, Duan J, Zhong J, Wu N, Lin S, Xu Z, Chen S, Pan Y, Huang L, Hu B 2018 ACS Appl. Mater. Inter. 10 29675Google Scholar

    [70]

    Niu X, Jia W, Qian S, Zhu J, Zhang J, Hou X, Mu J, Geng W, Cho J, He J, Chou X 2019 ACS Sustainable Chem. Eng. 7 979Google Scholar

    [71]

    Hwang B, Lee J, Trung T Q, Roh E, Kim D, Kim S W, Lee N E 2015 ACS Nano 9 8801Google Scholar

    [72]

    Jin L, Tao J, Bao R, Sun L, Pan C 2017 Sci. Rep. 7 10521Google Scholar

    [73]

    Zou Y, Tan P C, Shi B J, Ouyang H, Jiang D J, Liu Z, Li H, Yu M, Wang Ch, Qu X C, Zhao L M, Fan Y B, Wang Z L, Li Z 2019 Nat. Commun. 10 2695Google Scholar

    [74]

    Kim K, Jang W, Cho J Y, Woo S B, Jeon D H, Ahn J H, Hong S D, Koo H Y, Sung T H 2018 Nano Energy 54 91Google Scholar

    [75]

    Wang X, Zhang Y, Zhang X, Huo Z, Li X, Que M, Peng Z, Wang H, Pan C 2018 Adv. Mater. 30 1706738

    [76]

    Yuan Z, Zhou T, Yin Y, Cao R, Li C, Wang Z L 2017 ACS Nano 11 8364Google Scholar

    [77]

    Yang Z W, Pang Y, Zhang L, Lu C, Chen J, Zhou T, Zhang C, Wang Z L 2016 ACS Nano 10 10912Google Scholar

    [78]

    Guo H, Wan J, Wu H, Wang H, Miao L, Song Y, Chen H, Han M, Zhang H X 2020 ACS Appl. Mater. Inter. 12 22357Google Scholar

    [79]

    Ren Z, Nie J, Shao J, Lai Q, Wang L, Chen J, Chen X, Wang Z L 2018 Adv. Funct. Mater. 28 1805277Google Scholar

    [80]

    Zhu X X, Meng X S, Kuang S Y, Wang X D, Pan C, Zhu G, Wang Z L 2017 Nano Energy 41 387Google Scholar

    [81]

    Wang X, Zhang H, Dong L, Han X, Du W, Zhai J, Pan C, Wang Z L 2016 Adv. Mater. 28 2896Google Scholar

    [82]

    Ma L, Zhou M, Wu R, Patil A, Gong H, Zhu S, Wang T, Zhang Y, Shen S, Dong K, Yang L, Wang J, Guo W, Wang Z L 2020 ACS Nano 14 4716Google Scholar

    [83]

    Wang X, Song W Z, You M H, Zhang J, Yu M, Fan Z Y, Ramakrishna S, Long Y Z 2018 ACS Nano 12 8588Google Scholar

    [84]

    Li S, Peng W, Wang J, Lin L, Zi Y, Zhang G, Wang Z L 2016 Acs Nano 10 7973Google Scholar

    [85]

    Shi M, Zhang J, Chen H, Ha nM, Shankaregowda S A, S uZ, Meng B, ChengX, Zhang H 2016 ACS Nano 10 4083Google Scholar

    [86]

    ChenM, L iX, Lin L, Du W, Ha nX, Zhu J, Pan C, Wang Z L 2014 Adv. Funct. Mater. 24 5059Google Scholar

    [87]

    Jing Q, Xie Y, Zhu G, Han R P S, Wang Z L 2015 Nat. Commun. 6 8031Google Scholar

    [88]

    Chen H, Song Y, Guo H, Miao L, Chen X, Su Z, Zhang H 2018 Nano Energy 51 496Google Scholar

    [89]

    Ren Z, Nie J, Shao J, Lai Q, Wang L, Chen J, Chen X, Wang Z L 2018 Adv. Funct. Mater. 28 1802989Google Scholar

  • [1] 李银辉, 殷荣艳, 梁建国, 李玮栋, 范凯, 周赟磊. 一种耐高温的柔性压电/热释电双功能传感器. 物理学报, 2024, 73(20): 206801. doi: 10.7498/aps.73.20241006
    [2] 邓浩程, 李祎, 田双双, 张晓星, 肖淞. 面向高性能摩擦纳米发电机的电介质材料. 物理学报, 2024, 73(7): 070702. doi: 10.7498/aps.73.20240150
    [3] 张如轩, 宗肖航, 于婷婷, 葛一璇, 胡适, 梁文杰. 基于纳米传感器矩阵的混合气体组分探测与识别. 物理学报, 2022, 71(18): 180702. doi: 10.7498/aps.71.20220955
    [4] 王坤, 段高燕, 郎佩琳, 赵玉芳, 刘尖斌, 宋钢. 基于银纳米链的马赫-曾德干涉仪结构的生物传感器. 物理学报, 2022, 71(1): 017301. doi: 10.7498/aps.71.20211420
    [5] 梁帅博, 袁涛, 邱扬, 张震, 妙亚宁, 韩竞峰, 刘秀童, 姚春丽. 钛酸钡介电调控提升纸基摩擦纳米发电机输出性能. 物理学报, 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [6] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [7] 吴健, 韩文, 程珍珍, 杨彬, 孙利利, 王迪, 朱程鹏, 张勇, 耿明昕, 景龑. 基于流体模型的碳纳米管电离式传感器的结构优化方法. 物理学报, 2021, 70(9): 090701. doi: 10.7498/aps.70.20201828
    [8] 李凤超, 孔振, 吴锦华, 纪欣宜, 梁嘉杰. 柔性压阻式压力传感器的研究进展. 物理学报, 2021, 70(10): 100703. doi: 10.7498/aps.70.20210023
    [9] 曹杰, 顾伟光, 曲召奇, 仲艳, 程广贵, 张忠强. 基于变化静电场的非接触式摩擦纳米发电机设计与研究. 物理学报, 2020, 69(23): 230201. doi: 10.7498/aps.69.20201052
    [10] 李闯, 李伟伟, 蔡理, 谢丹, 刘保军, 向兰, 杨晓阔, 董丹娜, 刘嘉豪, 陈亚博. 基于银纳米线电极-rGO敏感材料的柔性NO2气体传感器. 物理学报, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [11] 李胜优, 刘镓榕, 文豪, 刘向阳, 郭文熹. 蚕丝基可穿戴传感器的研究进展. 物理学报, 2020, 69(17): 178703. doi: 10.7498/aps.69.20200818
    [12] 申茂良, 张岩. 基于压电纳米发电机的柔性传感与能量存储器件. 物理学报, 2020, 69(17): 170701. doi: 10.7498/aps.69.20200784
    [13] 钟婷婷, 吴梦昊. 二维层间滑移铁电研究进展. 物理学报, 2020, 69(21): 217707. doi: 10.7498/aps.69.20201432
    [14] 肖思, 秦应霖, 王慧, 王鹏, 马海铭, 何军, 王迎威. 辐射对称金字塔型剪纸的力学行为. 物理学报, 2020, 69(9): 096102. doi: 10.7498/aps.69.20200112
    [15] 丁亚飞, 陈翔宇. 基于摩擦纳米发电机的可穿戴能源器件. 物理学报, 2020, 69(17): 170202. doi: 10.7498/aps.69.20200867
    [16] 谈溥川, 赵超超, 樊瑜波, 李舟. 自驱动柔性生物医学传感器的研究进展. 物理学报, 2020, 69(17): 178704. doi: 10.7498/aps.69.20201012
    [17] 侯星宇, 郭传飞. 柔性压力传感器的原理及应用. 物理学报, 2020, 69(17): 178102. doi: 10.7498/aps.69.20200987
    [18] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能. 物理学报, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [19] 张艳艳, 饶长辉, 李梅, 马晓燠. 基于电子倍增电荷耦合器件的哈特曼-夏克波前传感器质心探测误差分析. 物理学报, 2010, 59(8): 5904-5913. doi: 10.7498/aps.59.5904
    [20] 陈茂康. 一种脈流发电机之初记. 物理学报, 1933, 1(1): 87-90. doi: 10.7498/aps.1.87
计量
  • 文章访问数:  11108
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-18
  • 修回日期:  2021-01-21
  • 上网日期:  2021-05-17
  • 刊出日期:  2021-05-20

/

返回文章
返回