搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅基材料界面石墨烯片层运动行为及其摩擦特性

陆海林 段芳莉

引用本文:
Citation:

硅基材料界面石墨烯片层运动行为及其摩擦特性

陆海林, 段芳莉

Motion behavior of graphene sheets and friction characteristics between the interfaces of silicon-based materials

Lu Hai-Lin, Duan Fang-Li
PDF
HTML
导出引用
  • 应用从头算分子动力学方法, 模拟了在挤压剪切作用下石墨烯片层作为润滑剂添加于硅基材料界面的摩擦过程, 研究了水分子和石墨烯表面氧化对石墨烯片层运动行为的影响. 干燥环境下, 压强较大时单纯石墨烯片层才会出现滑移, 而氧化石墨烯片层在低压强下就开始滑移. 潮湿环境下, 界面结构影响水分子的整体分布和运动状态, 而水分子的运动状态又影响氧化石墨烯片层的运动行为. 由于二氧化硅表面羟基取向角较大, 使得水分子在挤压剪切作用下偶极矩角变大, 从而导致其与氧化石墨烯片层之间的结合强度削弱, 二者之间出现相对滑移. 石墨烯片层运动行为的改变引起了剪切面的转变. 通过对石墨烯片层沿滑移方向上的速度波动幅度的分析, 发现其与摩擦系数之间存在正相关性.
    The ab initio molecular dynamics method is used to simulate the friction process of the graphene sheet as lubricant added to the silicon-based material interface under the action of compression and shear, and the influence of water molecules and oxidation of graphene surface on the movement behavior of graphene sheet are studied. In a dry environment, the pristine graphene (PG) sheet will slip only when the pressure is high. Owing to the presence of surface functional groups, a strong force is formed between the graphene oxide (GO) sheet and the substrate. The direction of the hydroxyl groups on the surface of the upper slab is consistent as the upper slab moves at a constant speed, resulting in the fact that the force between the GO sheet and the upper slab is greater and the GO sheet slides forward with the upper slab. Owing to the formation of mechanical interlock between the GO sheet and the lower slab surface, the GO sheet no longer slips when the pressure is high. In a humid environment, the interface structure affects the overall distribution and movement state of water molecules. The water molecules between the PG sheet and the upper slab are adsorbed only on the surface of the upper slab and always remain in a “flat” state, and their motion behavior is consistent with the upper slab’s. Comparing with a dry environment, the PG sheet starts to slip only when the pressure is high. Since the hydroxyl orientation angle on the surface of the upper slab is greater than the hydroxyl orientation angle on the surface of the GO sheet, the water molecules gradually change from the "flat" state to the slightly “upright” state as the pressure increases. The change of the orientation of water molecules makes the bonding strength between water molecules and the GO sheet gradually decrease, leading to a relative slip between them. The change in the movement behavior of the graphene sheet causes the shear plane to change. There is a positive correlation between the velocity fluctuation mean square error of the graphene sheet and the friction coefficient as the oxidation rate of graphene sheet increases under different coverages of water molecules, indicating that the motion behavior of the lubricant affects the interface friction characteristics.
      通信作者: 段芳莉, flduan@cqu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51775066)资助的课题
      Corresponding author: Duan Fang-Li, flduan@cqu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51775066)
    [1]

    Wang X D, Yu J X, Chen L, Qian L M, Zhou Z R 2011 Wear 271 1681Google Scholar

    [2]

    Chandross M, Lorenz C A, Grest G S, Stevens M J, Webb E B 2005 JOM 57 55Google Scholar

    [3]

    Chen H, Filleter T 2015 Nanotechnology 26 135702Google Scholar

    [4]

    Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543Google Scholar

    [5]

    Li A, Liu Y, Szlufarska I 2014 Tribol. Lett. 56 481Google Scholar

    [6]

    Dong Y L, Wu X W, Martini A 2013 Nanotechnology 24 375701Google Scholar

    [7]

    Zeng X Z, Peng Y T, Yu M C, Lang H J, Cao X A, Zou K 2018 ACS Appl. Mater. Interfaces 10 8214Google Scholar

    [8]

    Ou J F, Wang Y, Wang J Q, Liu S, Li Z P, Yang S R 2011 J. Phys. Chem. C 115 10080Google Scholar

    [9]

    Arif T, Colas G, Filleter T 2018 ACS Appl. Mater. Interfaces 10 22537Google Scholar

    [10]

    Kim B I, Boehm R D, Bonander J R 2013 J. Chem. Phys. 139 054701Google Scholar

    [11]

    Ramin L, Jabbarzadeh A 2013 Langmuir 29 13367Google Scholar

    [12]

    Ootani Y, Xu J X, Hatano T, Kubo M 2018 J. Phys. Chem. C 122 10459Google Scholar

    [13]

    Hasz K, Ye Z J, Martini A, Carpick R W 2018 Phys. Rev. Mater. 2 126001Google Scholar

    [14]

    Rana M K, Chandra A 2013 J. Chem. Phys. 138 204702Google Scholar

    [15]

    Lee H, Ko J H, Choi J S, Hwang J H, Kim Y H, Salmeron M, Park J Y 2017 J. Phys. Chem. Lett. 8 3482Google Scholar

    [16]

    Wang C, Qian C, Li Z, Wei N, Zhang N, Wang Y, He H 2020 Ind. Eng. Chem. Res. 59 8028Google Scholar

    [17]

    Cheng Y, Ma M 2020 Phys. Rev. Mater. 4 113606Google Scholar

    [18]

    van Wijk M M, de Wijn A S, Fasolino A 2016 J. Phys.: Condens. Matter 28 134007Google Scholar

    [19]

    Levita G, Righi M C 2017 ChemPhysChem 18 1475Google Scholar

    [20]

    Car R, Parrinello M 1985 Phys. Rev. Lett. 55 2471Google Scholar

    [21]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502Google Scholar

    [22]

    Yue D C, Ma T B, Hu Y Z, Yeon J, van Duin A C T, Wang H, Luo J B 2013 J. Phys. Chem. C 117 25604Google Scholar

    [23]

    Lu N, Yin D, Li Z, Yang J 2011 J. Phys. Chem. C 115 11991Google Scholar

    [24]

    Gongyang Y, Qu C, Zhang S, Ma M, Zheng Q 2018 Carbon 132 444Google Scholar

    [25]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graph. 14 33Google Scholar

    [26]

    Chateauneuf G M, Mikulski P T, Gao G T, Harrison J A 2004 J. Phys. Chem. B 108 16626Google Scholar

    [27]

    Gao W, Xiao P H, Henkelman G, Liechti K M, Huang R 2014 J. Phys. D: Appl. Phys. 47 255301Google Scholar

    [28]

    Lee M J, Choi J S, Kim J, Byun I, Lee D H, Ryu S, Lee C, Park B H 2012 Nano Res. 5 710Google Scholar

    [29]

    McKenzie S, Kang H C 2014 Phys. Chem. Chem. Phys. 16 26004Google Scholar

    [30]

    Yang J J, Wang E G 2006 Phys. Rev. B 73 035406Google Scholar

    [31]

    Bonnaud P A, Coasne B, Pellenq R J M 2010 J. Phys.: Condens. Matter 22 284110Google Scholar

    [32]

    Notman R, Walsh T R 2009 Langmuir 25 1638Google Scholar

    [33]

    Cimas A, Tielens F, Sulpizi M, Gaigeot M P, Costa D 2014 J. Phys.: Condens. Matter 26 244106Google Scholar

    [34]

    Kajita S, Righi M C 2016 Tribol. Lett. 61 17Google Scholar

    [35]

    Lee D, Ahn G, Ryu S 2014 J. Am. Chem. Soc. 136 6634Google Scholar

    [36]

    Lang H, Peng Y, Zeng X, Cao X A, Liu L, Zou K 2018 Carbon 137 519Google Scholar

    [37]

    Peng Y, Wang Z, Zou K 2015 Langmuir 31 7782Google Scholar

  • 图 1  (a)原子构型图; (b)全羟基钝化的SiO2表面结构; (c)氧化率为50%的GO片层结构

    Fig. 1.  (a)Atomic configuration; (b) surface structure of SiO2 with all hydroxyl passivation; (c) GO sheet structure with oxidation rate of 50%.

    图 2  干燥环境下SiO2上基底和石墨烯片层沿滑移方向上的位移以及摩擦力随压强的变化情况 (a) Gr/H2O-0模型; (b) GO-50%/H2O-0模型

    Fig. 2.  Displacements of the SiO2 upper slab and the graphene sheet by the slide direction and friction force change with pressure of (a) Gr/H2O-0 and (b) GO-50%/H2O-0 model in a dry environment.

    图 3  (a) GO-50%/H2O-0模型的界面原子构型图2 GPa; (b) 7 GPa

    Fig. 3.  Interface atomic configuration of GO-50%/H2O-0 model under pressure of (a) 2 GPa and (b) 7 GPa.

    图 4  压强为5 GPa时界面水分子的分布状态 (a) Gr/H2O-12模型; (b) GO-50%/H2O-12模型

    Fig. 4.  Distribution of water molecules at the interface in the model of (a) Gr/H2O-12 and (b) GO-50%/H2O-12 under a pressure of 5 GPa.

    图 5  水分子偶极矩角在不同压强下的概率分布 (a) Gr/H2O-12模型; (b) GO-50%/H2O-12模型; (c)水分子偶极矩角拟合峰值随压强变化

    Fig. 5.  Probability distribution of the dipole moment angle of water molecules under different pressure in the model: (a) Gr/H2O-12; (b) GO-50%/H2O-12; (c) fitting peak values of the dipole momentangle of water molecule change with pressure.

    图 6  (a) 潮湿环境下不同类型的界面氢键; GO片层/水分子之间(b)及水分子/SiO2上基底之间(c)氢键数量随压强变化

    Fig. 6.  (a) Different patterns of interfacial hydrogen bonds in a humid environment; changes of numbers of hydrogen bonds between the GO sheet and water molecules (b) and between water molecules and the SiO2 upper slab (c) with pressure.

    图 7  压强为7 GPa时GO片层上表面和SiO2上基底下表面上羟基平均取向角示意图

    Fig. 7.  Schematic of the average orientation angle of hydroxyl groups on the GO sheet and the SiO2 upper slab under a pressure of 7 GPa.

    图 8  潮湿环境下SiO2上基底、水分子层和石墨烯片层沿滑移方向上的位移以及摩擦力随压强的变化情况 (a) Gr/H2O-0模型; (b) GO-50%/H2O-0模型

    Fig. 8.  The displacements of the SiO2 upper slab, water layer and the graphene sheet by the slide direction and friction force change with pressure of (a) Gr/H2O-0 and (b) GO-50%/H2O-0 model in a humid environment.

    图 9  (a)不同水分子覆盖率下石墨烯片层的速度波动均方差与摩擦系数随石墨烯氧化率变化; 干燥环境(b)和潮湿环境(c)下石墨烯片层速度随压强变化

    Fig. 9.  (a) Velocity fluctuation mean square error of the graphene sheet and the friction coefficient changes with the graphene oxidation rate under different water molecule coverage; The velocity of graphene sheet changes with pressure in a (b) dry and (c) humid environment.

  • [1]

    Wang X D, Yu J X, Chen L, Qian L M, Zhou Z R 2011 Wear 271 1681Google Scholar

    [2]

    Chandross M, Lorenz C A, Grest G S, Stevens M J, Webb E B 2005 JOM 57 55Google Scholar

    [3]

    Chen H, Filleter T 2015 Nanotechnology 26 135702Google Scholar

    [4]

    Koenig S P, Boddeti N G, Dunn M L, Bunch J S 2011 Nat. Nanotechnol. 6 543Google Scholar

    [5]

    Li A, Liu Y, Szlufarska I 2014 Tribol. Lett. 56 481Google Scholar

    [6]

    Dong Y L, Wu X W, Martini A 2013 Nanotechnology 24 375701Google Scholar

    [7]

    Zeng X Z, Peng Y T, Yu M C, Lang H J, Cao X A, Zou K 2018 ACS Appl. Mater. Interfaces 10 8214Google Scholar

    [8]

    Ou J F, Wang Y, Wang J Q, Liu S, Li Z P, Yang S R 2011 J. Phys. Chem. C 115 10080Google Scholar

    [9]

    Arif T, Colas G, Filleter T 2018 ACS Appl. Mater. Interfaces 10 22537Google Scholar

    [10]

    Kim B I, Boehm R D, Bonander J R 2013 J. Chem. Phys. 139 054701Google Scholar

    [11]

    Ramin L, Jabbarzadeh A 2013 Langmuir 29 13367Google Scholar

    [12]

    Ootani Y, Xu J X, Hatano T, Kubo M 2018 J. Phys. Chem. C 122 10459Google Scholar

    [13]

    Hasz K, Ye Z J, Martini A, Carpick R W 2018 Phys. Rev. Mater. 2 126001Google Scholar

    [14]

    Rana M K, Chandra A 2013 J. Chem. Phys. 138 204702Google Scholar

    [15]

    Lee H, Ko J H, Choi J S, Hwang J H, Kim Y H, Salmeron M, Park J Y 2017 J. Phys. Chem. Lett. 8 3482Google Scholar

    [16]

    Wang C, Qian C, Li Z, Wei N, Zhang N, Wang Y, He H 2020 Ind. Eng. Chem. Res. 59 8028Google Scholar

    [17]

    Cheng Y, Ma M 2020 Phys. Rev. Mater. 4 113606Google Scholar

    [18]

    van Wijk M M, de Wijn A S, Fasolino A 2016 J. Phys.: Condens. Matter 28 134007Google Scholar

    [19]

    Levita G, Righi M C 2017 ChemPhysChem 18 1475Google Scholar

    [20]

    Car R, Parrinello M 1985 Phys. Rev. Lett. 55 2471Google Scholar

    [21]

    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A, Umari P, Wentzcovitch R M 2009 J. Phys.: Condens. Matter 21 395502Google Scholar

    [22]

    Yue D C, Ma T B, Hu Y Z, Yeon J, van Duin A C T, Wang H, Luo J B 2013 J. Phys. Chem. C 117 25604Google Scholar

    [23]

    Lu N, Yin D, Li Z, Yang J 2011 J. Phys. Chem. C 115 11991Google Scholar

    [24]

    Gongyang Y, Qu C, Zhang S, Ma M, Zheng Q 2018 Carbon 132 444Google Scholar

    [25]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graph. 14 33Google Scholar

    [26]

    Chateauneuf G M, Mikulski P T, Gao G T, Harrison J A 2004 J. Phys. Chem. B 108 16626Google Scholar

    [27]

    Gao W, Xiao P H, Henkelman G, Liechti K M, Huang R 2014 J. Phys. D: Appl. Phys. 47 255301Google Scholar

    [28]

    Lee M J, Choi J S, Kim J, Byun I, Lee D H, Ryu S, Lee C, Park B H 2012 Nano Res. 5 710Google Scholar

    [29]

    McKenzie S, Kang H C 2014 Phys. Chem. Chem. Phys. 16 26004Google Scholar

    [30]

    Yang J J, Wang E G 2006 Phys. Rev. B 73 035406Google Scholar

    [31]

    Bonnaud P A, Coasne B, Pellenq R J M 2010 J. Phys.: Condens. Matter 22 284110Google Scholar

    [32]

    Notman R, Walsh T R 2009 Langmuir 25 1638Google Scholar

    [33]

    Cimas A, Tielens F, Sulpizi M, Gaigeot M P, Costa D 2014 J. Phys.: Condens. Matter 26 244106Google Scholar

    [34]

    Kajita S, Righi M C 2016 Tribol. Lett. 61 17Google Scholar

    [35]

    Lee D, Ahn G, Ryu S 2014 J. Am. Chem. Soc. 136 6634Google Scholar

    [36]

    Lang H, Peng Y, Zeng X, Cao X A, Liu L, Zou K 2018 Carbon 137 519Google Scholar

    [37]

    Peng Y, Wang Z, Zou K 2015 Langmuir 31 7782Google Scholar

  • [1] 李醒龙, 赵浩宇, 武文杰, 蒋卫峰, 郑加金, 张祖兴, 余柯涵, 韦玮. 氧化石墨烯修饰倾斜光纤光栅10–12级重金属离子传感. 物理学报, 2022, 71(5): 050702. doi: 10.7498/aps.71.20211315
    [2] 段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智. 水的氢键网络动力学与其太赫兹频谱的关系. 物理学报, 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [3] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究. 物理学报, 2020, 69(19): 193102. doi: 10.7498/aps.69.20200651
    [4] 史超, 林晨森, 陈硕, 朱军. 石墨烯表面的特征水分子排布及其湿润透明特性的分子动力学模拟. 物理学报, 2019, 68(8): 086801. doi: 10.7498/aps.68.20182307
    [5] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪. 氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究. 物理学报, 2019, 68(24): 247302. doi: 10.7498/aps.68.20191304
    [6] 莫佳伟, 裘银伟, 伊若冰, 吴俊, 王志坤, 赵丽华. 基于温度的亚稳态氧化石墨烯性能. 物理学报, 2019, 68(15): 156501. doi: 10.7498/aps.68.20190670
    [7] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强. 基于氧化石墨烯的瓦级调Q锁模Tm: LuAG激光器. 物理学报, 2019, 68(10): 104207. doi: 10.7498/aps.68.20182224
    [8] 张忠强, 李冲, 刘汉伦, 葛道晗, 程广贵, 丁建宁. 石墨烯碳纳米管复合结构渗透特性的分子动力学研究. 物理学报, 2018, 67(5): 056102. doi: 10.7498/aps.67.20172424
    [9] 乔志星, 秦成兵, 贺文君, 弓亚妮, 张晓荣, 张国峰, 陈瑞云, 高岩, 肖连团, 贾锁堂. 通过光致还原调制氧化石墨烯寿命并用于微纳图形制备. 物理学报, 2018, 67(6): 066802. doi: 10.7498/aps.67.20172331
    [10] 陈浩, 彭同江, 刘波, 孙红娟, 雷德会. 还原温度对氧化石墨烯结构及室温下H2敏感性能的影响. 物理学报, 2017, 66(8): 080701. doi: 10.7498/aps.66.080701
    [11] 曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛. 氧化石墨烯基功能纸的简易制备和染料吸附性能. 物理学报, 2016, 65(14): 146802. doi: 10.7498/aps.65.146802
    [12] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟. 物理学报, 2016, 65(13): 133102. doi: 10.7498/aps.65.133102
    [13] 黄诗盛, 王勇刚, 李会权, 林荣勇, 闫培光. 氧化石墨烯被动锁模掺镱光纤激光器多脉冲现象的实验研究. 物理学报, 2014, 63(8): 084202. doi: 10.7498/aps.63.084202
    [14] 张云安, 陶俊勇, 陈循, 刘彬. 水对无定形SiO2拉伸特性影响的反应分子动力学模拟. 物理学报, 2013, 62(24): 246801. doi: 10.7498/aps.62.246801
    [15] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [16] 高岩, 陈瑞云, 吴瑞祥, 张国锋, 肖连团, 贾锁堂. 电场诱导氧化石墨烯的极化动力学特性研究. 物理学报, 2013, 62(23): 233601. doi: 10.7498/aps.62.233601
    [17] 张磊, 叶辉, 皇甫幼睿, 刘旭. 氧化硅缓冲层对于退火形成锗量子点的作用研究. 物理学报, 2011, 60(7): 076103. doi: 10.7498/aps.60.076103
    [18] 丁宏林, 刘 奎, 王 祥, 方忠慧, 黄 健, 余林蔚, 李 伟, 黄信凡, 陈坤基. 控制氧化层对双势垒纳米硅浮栅存储结构性能的影响. 物理学报, 2008, 57(7): 4482-4486. doi: 10.7498/aps.57.4482
    [19] 盛永刚, 徐 耀, 李志宏, 吴 东, 孙予罕, 吴中华. 气体吸附法测定二氧化硅干凝胶的分形维数. 物理学报, 2005, 54(1): 221-227. doi: 10.7498/aps.54.221
    [20] 汤晓燕, 张义门, 张鹤鸣, 张玉明, 戴显英, 胡辉勇. 碳化硅基上3UCVD淀积二氧化硅及其C-V性能测试. 物理学报, 2004, 53(9): 3225-3228. doi: 10.7498/aps.53.3225
计量
  • 文章访问数:  5100
  • PDF下载量:  90
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-14
  • 修回日期:  2021-02-21
  • 上网日期:  2021-07-13
  • 刊出日期:  2021-07-20

/

返回文章
返回