搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单层MoS2的热弹耦合非线性板模型

黄坤 王腾飞 姚激

引用本文:
Citation:

单层MoS2的热弹耦合非线性板模型

黄坤, 王腾飞, 姚激

Nonlinear plate theory of single-layered MoS2 with thermal effect

Huang Kun, Wang Teng-Fei, Yao Ji
PDF
HTML
导出引用
  • 单层二硫化钼(${\rm{Mo}}{{\rm{S}}_2}$)是有广泛应用前景的二维纳米材料, 但其力学性质还没有被深入研究, 特别是其热弹耦合力学行为迄今还没有被关注到. 本文首次提出了考虑热应力影响的单层${\rm{Mo}}{{\rm{S}}_2}$的非线性板理论, 并对比研究了其与石墨烯的热弹耦合力学性质. 对于不可移动边界, 结果显示: 1)有限温度产生的热应力降低了${\rm{Mo}}{{\rm{S}}_2}$的刚度, 但提高了石墨烯的刚度; 2)在相同几何尺寸和温度条件下, 变形较小时${\rm{Mo}}{{\rm{S}}_2}$的刚度大于石墨烯, 但伴随变形的增大, ${\rm{Mo}}{{\rm{S}}_2}$的刚度将小于石墨烯. 研究结果表明, 边界预加轴向外力和环境温度可以调节单层二维纳米结构力学性质. 本文建立的热弹耦合板模型, 可以推广至其他单层二维纳米结构.
    The single-layered molybdenum disulfide (${\rm{Mo}}{{\rm{S}}_2}$) is a two-dimensional nanomaterial with wide potential applications due to its excellent electrical and frictional properties. However, there have been few investigations of its mechanical properties up to now, and researchers have not paid attention to its nonlinear mechanical properties under the multi-fields co-existing environment. The present paper proposed a nonlinear plate theory to model the effect of finite temperatures on the single-layered ${\rm{Mo}}{{\rm{S}}_2}$. It is similar to the classical plate theory that both the in-plane stretching deformation and the out-of-plane bending deformation are taken into account in the new theory. However, the new theory consists of two independent in-plane mechanical parameters and two independent out-of-plane mechanical parameters. Neither of the two out-of-plane mechanical parameters in the new theory, which describe the resistance of ${\rm{Mo}}{{\rm{S}}_2}$ to the bending and the twisting, depends on the structure’s thickness. This reasonably avoids the Yakobson paradox: uncertainty stemming from the thickness of the single-layered two-dimensional structures will lead to the uncertainty of the structure’s out-of-plane stiffness. The new nonlinear plate equations are then solved approximately through the Galerkin method for the thermoelastic mechanical problems of the graphene and ${\rm{Mo}}{{\rm{S}}_2}$. The approximate analytic solutions clearly reveal the effects of temperature and structure stiffness on the deformations. Through comparing the results of two materials under combined temperature and load, it is found, for the immovable boundaries, that (1) the thermal stress, which is induced by the finite temperature, reduces the stiffness of ${\rm{Mo}}{{\rm{S}}_2}$, but increases the stiffness of graphene; (2) the significant difference between two materials is that the graphene’s in-plane stiffness is greater than the ${\rm{Mo}}{{\rm{S}}_2}$’s, but the graphene’s out-of-plane stiffness is less than the ${\rm{Mo}}{{\rm{S}}_2}$’s. Because the ${\rm{Mo}}{{\rm{S}}_2}$’s bending stiffness is much greater than graphene’s, the graphene’s deformation is greater than MoS2’s with a small load. However, the graphene’s deformation is less than the ${\rm{Mo}}{{\rm{S}}_2}$’s with a large load since the graphene’s in-plane stretching stiffness is greater than the MoS2’s. The present research shows that the applied axial force and ambient temperature can conveniently control the mechanical properties of single-layered two-dimensional nanostructures. The new theory provides the basis for the intensive research of the thermoelastic mechanical problems of ${\rm{Mo}}{{\rm{S}}_2}$, and one can easily apply the theory to other single-layered two-dimensional nanostructures.
      通信作者: 黄坤, kunhuang2008@163.com
    • 基金项目: 国家自然科学基金(批准号: 12050001, 11562009)资助的课题
      Corresponding author: Huang Kun, kunhuang2008@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12050001, 11562009)
    [1]

    Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225Google Scholar

    [2]

    Pumera M, Sofer Z 2017 Adv. Mater. 29 1605299Google Scholar

    [3]

    王靖慧, 焦丽颖 2017 科学通报 62 2158Google Scholar

    Wang J H, Jiao L Y 2017 Chin. Sci. Bull. 62 2158Google Scholar

    [4]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [5]

    Song X, Hu J, Zeng H 2013 J. Mater. Chem. C 1 2952Google Scholar

    [6]

    Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, Liu C C, Zhong H, Han N, Lu J, Yao Y, Wu K 2016 Prog. Mater. Sci. 83 24Google Scholar

    [7]

    顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩霞 2016 物理学报 65 018102Google Scholar

    Gu P C, Zhang K L, Feng Y L, Wang F, Miao Y P, Han Y M, Zhang H X 2016 Acta Phys. Sin. 65 018102Google Scholar

    [8]

    魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇 2018 物理学报 67 128103Google Scholar

    Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 128103Google Scholar

    [9]

    Hong Y, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M, Sun D, Sun D, Chen X, Chen H, Ren W 2020 Science 369 670Google Scholar

    [10]

    黄坤, 殷雅俊, 吴继业 2014 物理学报 63 156201Google Scholar

    Huang K, Yin Y J, Wu J Y 2014 Acta Phys. Sin. 63 156201Google Scholar

    [11]

    黄坤, 殷雅俊, 屈本宁, 吴继业 2014 力学学报 46 905Google Scholar

    Huang K, Yin Y J, Qu B N, Wu J Y 2014 Chin. J. Theoret. Appl. Mechan. 46 905Google Scholar

    [12]

    Cao K, Feng S, Han Y, Gao L, Lu Y 2020 Nat. Commun. 11 284Google Scholar

    [13]

    Li X, Zhu H 2015 J. Materiomics 1 33Google Scholar

    [14]

    Xiong S, Cao G 2016 Nanotechnology 27 105701Google Scholar

    [15]

    Jiang J, Qi Z, Park H, Rabczuk T 2013 Nanotechnology 24 435705Google Scholar

    [16]

    Late D, Shirodkar S, Waghmare U, Dravid V, Rao C 2014 Chemphyschem 15 1592Google Scholar

    [17]

    Hu X, Yasaei P, Jokisaari J, Öğüt S, Salehi-Khojin A, Robert F, Klie R 2018 Phys. Rev. Lett. 120 055902

    [18]

    Zhang R, Cao H, Jiang J 2020 Nanotechnology 31 405709Google Scholar

    [19]

    Akinwande D, Brennan C, Bunch J, Egberts P, Felts J, Gao H, Huang R, Kim J, Li T, Li Y 2017 Extreme Mech. Lett. 23 42

    [20]

    Wei Y, Yang R 2018 Natl. Sci. Rev. 6 324

    [21]

    Chen S, Chrzan D C 2011 Phys. Rev. B 84 5409

    [22]

    Jiang J, Wang B, Wang J 2015 J. Phys-Condens. Mat. 27 083001Google Scholar

    [23]

    Zhou L, Cao G 2016 Phys. Chem. Chem. Phys. 18 1657Google Scholar

    [24]

    Gao E, Xu Z 2015 J. Appl. Mech. 82 121012Google Scholar

    [25]

    Audoly B, Pomeau Y 2010 Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells (New York: Oxford University Press) pp157-213

    [26]

    Kudin K, Scuseria G, Yakobson B 2001 Phys. Rev. B 64 235406Google Scholar

    [27]

    Landau L, Lifshitz E 1997 Theory of Elasticity 3rd (Oxford: Butterworth Heinemann) pp38−50

    [28]

    O'NEILL B 2006 Elementary Differential Geometry (Singapore: Elsevier) pp364−376

    [29]

    Eduard E, Krauthammer T 2001 Thin Plates and Shells: Theory, Analysis, and Applications (New York: Marcel Dekker) pp191−240

    [30]

    胡海昌 1981 弹性力学的变分原理及其应用 (北京: 科学出版社)pp322−342

    Hu H 1981 Variational Principles of Theory of Elasticity with Applications (Beijing: Science Press) pp322−342 (in Chinese)

    [31]

    Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Fu D, Lee S, Zhou J, Tongay S, Ji J, Neaton J, Wu J 2014 Nano Lett. 14 5097Google Scholar

    [32]

    Cooper R C, Lee C, Marianetti C A, Wei X, Hone J, Kysar J W 2013 Phys. Rev. B 87 035423Google Scholar

    [33]

    Xiong S, Cao G 2015 Nanotechnology 26 185705Google Scholar

    [34]

    Luongo A, Egidio A 2005 Nonlinear. Dynam. 41 171Google Scholar

    [35]

    Luongo A, D'Annibale F 2013 Int. J. Nonlin. Mech. 55 128Google Scholar

  • 图 1  单层${\rm{Mo}}{{\rm{S}}_2}$计算简图: (a) 顶视图; (b)侧视图; (c)等效板立体图; (d)边界载荷

    Fig. 1.  Computational model of single-layer ${\rm{Mo}}{{\rm{S}}_2}$: (a) Top view of the structure; (b) Side view of the structure; (c) Stereo plate model of the structure; (d) Applied edge loads

    图 2  $a = b = 6\;{\rm{nm}}$, $N_{xx}^0 = N_{yy}^0 = 0$时, 结构在两个不同温度下的载荷变形幅值曲线

    Fig. 2.  Loads-response curves with two temperatures for $a = b = 6\;{\rm{nm}}$ and $N_{xx}^0 = N_{yy}^0 = 0$.

    图 6  给定边界轴向力和温度条件下的载荷、几何尺寸及变形幅值曲面

    Fig. 6.  Loads- dimensions-response surfaces with the given stretching stresses and the temperature.

    图 3  $a = b = 6\;{\rm{nm}}$, $T = 0\;\rm K$时, 在两个不同边界拉力下的载荷变形幅值曲线

    Fig. 3.  Loads-response curves with two edge stretching stresses for $a = b = 6\;{\rm{nm}}$ and $T = 0\; \rm K$.

    图 4  $a = b = 6\;{\rm{nm}}$时, 在两个不同温度和边界载荷下的载荷变形幅值曲线

    Fig. 4.  Loads-response curves with two edge stresses and two temperatures for $a = b = 6\;{\rm{nm}}$.

    图 5  $a = b = 6\;{\rm{nm}}$时, 给定边界轴向力条件下的载荷、温度及变形幅值曲面

    Fig. 5.  Loads-temperatures-response surfaces with the given stretching stresses for $a = b = 6\;{\rm{nm}}$.

  • [1]

    Tan C, Cao X, Wu X J, He Q, Yang J, Zhang X, Chen J, Zhao W, Han S, Nam G, Sindoro M, Zhang H 2017 Chem. Rev. 117 6225Google Scholar

    [2]

    Pumera M, Sofer Z 2017 Adv. Mater. 29 1605299Google Scholar

    [3]

    王靖慧, 焦丽颖 2017 科学通报 62 2158Google Scholar

    Wang J H, Jiao L Y 2017 Chin. Sci. Bull. 62 2158Google Scholar

    [4]

    王慧, 徐萌, 郑仁奎 2020 物理学报 69 017301Google Scholar

    Wang H, Xu M, Zheng R K 2020 Acta Phys. Sin. 69 017301Google Scholar

    [5]

    Song X, Hu J, Zeng H 2013 J. Mater. Chem. C 1 2952Google Scholar

    [6]

    Zhao J, Liu H, Yu Z, Quhe R, Zhou S, Wang Y, Liu C C, Zhong H, Han N, Lu J, Yao Y, Wu K 2016 Prog. Mater. Sci. 83 24Google Scholar

    [7]

    顾品超, 张楷亮, 冯玉林, 王芳, 苗银萍, 韩叶梅, 张韩霞 2016 物理学报 65 018102Google Scholar

    Gu P C, Zhang K L, Feng Y L, Wang F, Miao Y P, Han Y M, Zhang H X 2016 Acta Phys. Sin. 65 018102Google Scholar

    [8]

    魏争, 王琴琴, 郭玉拓, 李佳蔚, 时东霞, 张广宇 2018 物理学报 67 128103Google Scholar

    Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X, Zhang G Y 2018 Acta Phys. Sin. 67 128103Google Scholar

    [9]

    Hong Y, Liu Z, Wang L, Zhou T, Ma W, Xu C, Feng S, Chen L, Chen M, Sun D, Sun D, Chen X, Chen H, Ren W 2020 Science 369 670Google Scholar

    [10]

    黄坤, 殷雅俊, 吴继业 2014 物理学报 63 156201Google Scholar

    Huang K, Yin Y J, Wu J Y 2014 Acta Phys. Sin. 63 156201Google Scholar

    [11]

    黄坤, 殷雅俊, 屈本宁, 吴继业 2014 力学学报 46 905Google Scholar

    Huang K, Yin Y J, Qu B N, Wu J Y 2014 Chin. J. Theoret. Appl. Mechan. 46 905Google Scholar

    [12]

    Cao K, Feng S, Han Y, Gao L, Lu Y 2020 Nat. Commun. 11 284Google Scholar

    [13]

    Li X, Zhu H 2015 J. Materiomics 1 33Google Scholar

    [14]

    Xiong S, Cao G 2016 Nanotechnology 27 105701Google Scholar

    [15]

    Jiang J, Qi Z, Park H, Rabczuk T 2013 Nanotechnology 24 435705Google Scholar

    [16]

    Late D, Shirodkar S, Waghmare U, Dravid V, Rao C 2014 Chemphyschem 15 1592Google Scholar

    [17]

    Hu X, Yasaei P, Jokisaari J, Öğüt S, Salehi-Khojin A, Robert F, Klie R 2018 Phys. Rev. Lett. 120 055902

    [18]

    Zhang R, Cao H, Jiang J 2020 Nanotechnology 31 405709Google Scholar

    [19]

    Akinwande D, Brennan C, Bunch J, Egberts P, Felts J, Gao H, Huang R, Kim J, Li T, Li Y 2017 Extreme Mech. Lett. 23 42

    [20]

    Wei Y, Yang R 2018 Natl. Sci. Rev. 6 324

    [21]

    Chen S, Chrzan D C 2011 Phys. Rev. B 84 5409

    [22]

    Jiang J, Wang B, Wang J 2015 J. Phys-Condens. Mat. 27 083001Google Scholar

    [23]

    Zhou L, Cao G 2016 Phys. Chem. Chem. Phys. 18 1657Google Scholar

    [24]

    Gao E, Xu Z 2015 J. Appl. Mech. 82 121012Google Scholar

    [25]

    Audoly B, Pomeau Y 2010 Elasticity and Geometry: From Hair Curls to the Non-linear Response of Shells (New York: Oxford University Press) pp157-213

    [26]

    Kudin K, Scuseria G, Yakobson B 2001 Phys. Rev. B 64 235406Google Scholar

    [27]

    Landau L, Lifshitz E 1997 Theory of Elasticity 3rd (Oxford: Butterworth Heinemann) pp38−50

    [28]

    O'NEILL B 2006 Elementary Differential Geometry (Singapore: Elsevier) pp364−376

    [29]

    Eduard E, Krauthammer T 2001 Thin Plates and Shells: Theory, Analysis, and Applications (New York: Marcel Dekker) pp191−240

    [30]

    胡海昌 1981 弹性力学的变分原理及其应用 (北京: 科学出版社)pp322−342

    Hu H 1981 Variational Principles of Theory of Elasticity with Applications (Beijing: Science Press) pp322−342 (in Chinese)

    [31]

    Liu K, Yan Q, Chen M, Fan W, Sun Y, Suh J, Fu D, Lee S, Zhou J, Tongay S, Ji J, Neaton J, Wu J 2014 Nano Lett. 14 5097Google Scholar

    [32]

    Cooper R C, Lee C, Marianetti C A, Wei X, Hone J, Kysar J W 2013 Phys. Rev. B 87 035423Google Scholar

    [33]

    Xiong S, Cao G 2015 Nanotechnology 26 185705Google Scholar

    [34]

    Luongo A, Egidio A 2005 Nonlinear. Dynam. 41 171Google Scholar

    [35]

    Luongo A, D'Annibale F 2013 Int. J. Nonlin. Mech. 55 128Google Scholar

  • [1] 侯磊, 关舒阳, 尹俊, 张语军, 肖宜明, 徐文, 丁岚. 谐振腔-单层二硫化钼系统中的高阶腔耦合等离极化激元. 物理学报, 2024, 73(22): 227102. doi: 10.7498/aps.73.20241106
    [2] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算. 物理学报, 2024, 73(20): 203101. doi: 10.7498/aps.73.20240992
    [3] 周昆, 马豪悦, 孙希贤, 吴小虎. 基于VO2和石墨烯实现hBN声子极化激元和自发发射率的主动调谐. 物理学报, 2023, 72(7): 074201. doi: 10.7498/aps.72.20222167
    [4] 李璐, 张养坤, 时东霞, 张广宇. 单层二硫化钼的制备及在器件应用方面的研究. 物理学报, 2022, 71(10): 108102. doi: 10.7498/aps.71.20212447
    [5] 李海鹏, 周佳升, 吉炜, 杨自强, 丁慧敏, 张子韬, 沈晓鹏, 韩奎. 边界对石墨烯量子点非线性光学性质的影响. 物理学报, 2021, 70(5): 057801. doi: 10.7498/aps.70.20201643
    [6] 蒲晓庆, 吴静, 郭强, 蔡建臻. 石墨烯与金属的欧姆接触理论研究. 物理学报, 2018, 67(21): 217301. doi: 10.7498/aps.67.20181479
    [7] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [8] 张忠强, 贾毓瑕, 郭新峰, 葛道晗, 程广贵, 丁建宁. 凹槽铜基底表面与单层石墨烯的相互作用特性研究. 物理学报, 2018, 67(3): 033101. doi: 10.7498/aps.67.20172249
    [9] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究. 物理学报, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [10] 叶鹏飞, 陈海涛, 卜良民, 张堃, 韩玖荣. SnO2量子点/石墨烯复合结构的合成及其光催化性能研究. 物理学报, 2015, 64(7): 078102. doi: 10.7498/aps.64.078102
    [11] 杨晶晶, 李俊杰, 邓伟, 程骋, 黄铭. 单层石墨烯带传输模式及其对气体分子振动谱的传感特性研究. 物理学报, 2015, 64(19): 198102. doi: 10.7498/aps.64.198102
    [12] 董刚, 刘荡, 石涛, 杨银堂. 多个硅通孔引起的热应力对迁移率和阻止区的影响. 物理学报, 2015, 64(17): 176601. doi: 10.7498/aps.64.176601
    [13] 厉巧巧, 韩文鹏, 赵伟杰, 鲁妍, 张昕, 谭平恒, 冯志红, 李佳. 缺陷单层和双层石墨烯的拉曼光谱及其激发光能量色散关系. 物理学报, 2013, 62(13): 137801. doi: 10.7498/aps.62.137801
    [14] 陈英良, 冯小波, 侯德东. 单层与双层石墨烯的光学吸收性质研究. 物理学报, 2013, 62(18): 187301. doi: 10.7498/aps.62.187301
    [15] 董海明. 掺杂石墨烯系统电场调控的非线性太赫兹光学特性研究. 物理学报, 2013, 62(23): 237804. doi: 10.7498/aps.62.237804
    [16] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO. 物理学报, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [17] 陈东猛. 在不同应力下石墨烯中拉曼谱的G峰劈裂的变化. 物理学报, 2010, 59(9): 6399-6404. doi: 10.7498/aps.59.6399
    [18] 潘洪哲, 徐明, 陈丽, 孙媛媛, 王永龙. 单层正三角锯齿型石墨烯量子点的电子结构和磁性. 物理学报, 2010, 59(9): 6443-6449. doi: 10.7498/aps.59.6443
    [19] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力. 物理学报, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [20] 陈为兰, 顾培夫, 王 颖, 章岳光, 刘 旭. 红外薄膜中热应力的研究. 物理学报, 2008, 57(7): 4316-4321. doi: 10.7498/aps.57.4316
计量
  • 文章访问数:  3941
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-24
  • 修回日期:  2021-02-24
  • 上网日期:  2021-06-30
  • 刊出日期:  2021-07-05

/

返回文章
返回