搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

神经微管振动产生纳米尺度内电磁场作用

王艳红 王磊 武京治

引用本文:
Citation:

神经微管振动产生纳米尺度内电磁场作用

王艳红, 王磊, 武京治

Nanoscale electromagnetic field interaction generated by microtubule vibration in neurons

Wang Yan-Hong, Wang Lei, Wu Jing-Zhi
PDF
HTML
导出引用
  • 生物体经过神经元进行信息处理产生指令, 控制各种功能和活动. 神经元可通过神经微管维持动态生长, 辅助蛋白转运等, 微管蛋白可产生电磁信号进行信息交换. 微管蛋白具有强极性分布, 本文通过研究微管不同振动模式产生的电磁特性, 分析微管周围的电磁场分布和相互作用. 结果表明, 微管蛋白在太赫兹波段有众多振动模式. 在多微管间纳米尺度内, 细胞溶液介电系数在太赫兹波段随频率增加而减小, 在相邻微管间可产生强于热噪声的电磁场. 合理调节微管长度、振动振幅等参数可能获得溶液中可探测太赫兹电磁场. 微管振动产生电磁场, 可用于疾病诊断和脑机接口等.
    Neurons collect information from different parts of the biological body, generate signals and control their functions and activities. There are electromagnetic communication channels between neurons apart from the action potentials. Microtubules are the largest cytoskeletal filaments in neurons, with a diameter of about 25 nm. Microtubule is composed of alpha- and beta-tubulin subunits assembled into hollow cylindrical polymers supporting dynamical growth, and facilitate transport of proteins. In axons, dendrites, growth cones, and migratory neurons, microtubules are generally tightly organized in array and uniformly oriented. Because of the polarity and charge distribution of tubulins, the vibrations of microtubules generate electromagnetic fields. In this paper, electromagnetic fields induced by different vibrational modes of microtubules are studied. The vibrational mode of tubulins calculated using the normal mode analysis shows that there are abundant vibrational modes in the terahertz range. The electric fields of different vibration modes show distinct distribution features. The induced electromagnetic fields of microtubules can be stronger than thermal noise because of reduced permittivity of intracellular fluid for higher frequencies in a nanometric confined region. Since water exhibits layered structuring near all surfaces independent of their hydrophilicity, the permittivity of water surrounding tubulins between microtubules is expected to decrease significantly because of surface-induced alignment of water molecular dipoles. While the permittivity of surrounding medium decreases to 5, the electromagnetic potential energy between two 100-nm-long microtubules can be stronger than the thermal energy within a 30-nm-long distance. As high frequency vibrations are generally localized in the microtubule, terahertz electromagnetic interactions can be present between tubulins and short microtubules. Because the separation between microtubule arrays in neurons is in a range from 20 nm to 100 nm, electromagnetic interactions between microtubules can dominate the thermal motions, and affect the biological functions. Simulation results show that the electromagnetic potential energy increases over one order of magnitude when the vibration amplitude is changed from 0.1 nm to 0.4 nm. The results indicate that the electromagnetic interaction between microtubules is important for a better understanding of neural functions and communication. Terahertz stimulations can be used to detect and modulate the neural signals. The microtubule vibration generated magnetic field can be applied to disease diagnosis and brain-machine interface.
      通信作者: 武京治, Jingzhi.wu@outlook.com
    • 基金项目: 国防科技创新特区(批准号: 02-ZT-008)资助的课题.
      Corresponding author: Wu Jing-Zhi, Jingzhi.wu@outlook.com
    • Funds: Project supported by the National Defense Science and Technology Innovation Special Zone of China (Grant No. 02-ZT-008)
    [1]

    Hodgkin A L, Huxley A F 1952 Physiol. 117 500Google Scholar

    [2]

    Hodgkin A L, Huxley A F 1952 Physiol. 116 449Google Scholar

    [3]

    Hodgkin A L, Huxley A F 1952 Physiol. 116 497Google Scholar

    [4]

    刘延生, 吴开杰, 刘春良, 崔刚强, 常超, 刘国志 2020 中国科学: 物理 力学 天文学 63 274211Google Scholar

    Liu Y S, Wu K J, Liu C L, Cui G Q, Chang C, Liu G Z 2020 Sci. China, Ser. G 63 274211Google Scholar

    [5]

    Kučera O, Havelka D, Cifra M 2017 Wave Motion 72 13Google Scholar

    [6]

    Cifra M, Fields J Z, Farhadi A 2011 Prog. Biophys. Mol. Biol. 105 223Google Scholar

    [7]

    赵月, 詹启民 2012 理论生物学与医学模型 9 26Google Scholar

    Zhao Y, Zhan Q M 2012 Theor. Biol. Med. Modell. 9 26Google Scholar

    [8]

    De Ninno A, Pregnolato M 2017 Electromagn. Biol. Med. 36 115Google Scholar

    [9]

    Pokorný J, Jelínek F, Trkal V, Lamprecht I, Hölzel R 1997 J. Biol. Phys. 23 171Google Scholar

    [10]

    Cifra M, Pokorný J, Havelka D 2010 Biosystems 100 122Google Scholar

    [11]

    Deriu M A, Soncini M, Orsi M, Patel M, Essex J W, Montevecchi F M, Redaelli A 2010 Biophys. J. 99 2190Google Scholar

    [12]

    Sirenko Y M, Stroscio M A, Kim K W 1996 Phy. Rev. E 53 1003Google Scholar

    [13]

    Thackston K, Deheyn D, Sievenpiper D 2019 Phys. Rev. E 100 022410Google Scholar

    [14]

    Akhmanova A, Steinmetz M O 2015 Nat. Rev. Mol. Cell Biol. 16 711Google Scholar

    [15]

    Amos L A 1995 Trends Cell Biol. 5 48Google Scholar

    [16]

    Mershin A, Kolomenski A.A, Schuessler H A, Nanopoulos D V 2004 Biosystems 77 73Google Scholar

    [17]

    Pohl H A, Braden T, Robinson S, Piclardi J, Pohl D G 1981 J. Biol. Phys. 9 133Google Scholar

    [18]

    Hölzel R 2001 Electro-Magnetobiol. 20 1Google Scholar

    [19]

    Pokorný J, Hašek J, Jelínek F, Šaroch J, Palán B 2001 Electro-Magnetobiol. 20 371Google Scholar

    [20]

    Tuszyński J A, Brown J A, Crawford E, Carpenter E J, Nip M L A, Dixon J M, Satarić M V 2005 Math. Comput. Modell. 41 1055Google Scholar

    [21]

    van den Heuvel M G L, de Graaff M P, Lemay S G, Dekker C 2007 Proc. Natl. Acad. 104 7770Google Scholar

  • 图 1  神经元和微管蛋白构成

    Fig. 1.  Neuron and microtubules.

    图 2  (a)微管蛋白异二聚体(PDB:1TUB)电荷分布; (b)微管(PDB:6EW0)电荷分布(swiss model)

    Fig. 2.  (a) Charge distribution of tubulin alpha-beta dimer; (b) charge distribution of GDP-microtubule (PDB:6EW0).

    图 3  微管不同振动模式示意图 (a) 轴向振动; (b) 弯曲振动; (c) 扭转振动; (d) 屈曲振动

    Fig. 3.  Schematic diagram of microtubule vibrations modes: (a) Axial vibration; (b) bending vibration; (c) twisting vibration; (d) flexing vibration.

    图 4  不同长度微管屈曲振动势能的传播特性 (A = 0.1 nm, ${\varepsilon }_{\rm{r}}=80)$

    Fig. 4.  Vibrating potential transferring performance in different length of microtubule at A = 0.1 nm, ${\varepsilon }_{\rm{r}}=80$.

    图 5  水溶液介电系数的频率响应

    Fig. 5.  Permittivity of intracellular fluid of neuron as a function of frequency.

    图 6  微管蛋白异二聚体太赫兹振动频谱

    Fig. 6.  Frequency modes of tubulin alpha-beta dimer.

    图 7  四种振动模态的势能 (L = 100 nm, A = 0.1 nm) (a) 轴向振动; (b) 弯曲振动; (c) 扭转振动; (d) 屈曲振动

    Fig. 7.  Electromagnetic potential of four modes of microtubule vibration at L = 100 nm, A = 0.1 nm: (a) Axial vibration; (b) bending vibration; (c) twisting vibration; (d) flexing vibration.

    图 8  不同振动振幅对势能的影响$({\varepsilon }_{\rm{r}}=80)$ (a) 轴向振动; (b) 弯曲振动; (c) 扭转振动; (d) 屈曲振动

    Fig. 8.  Potential in various vibration magnitude at ${\varepsilon }_{\rm{r}}=80$: (a) Axial vibration; (b) flexing vibration; (c) twisting vibration; (d) flexing vibration.

    图 9  不同振动模式电场分布 $({\varepsilon }_{\rm{r}}=80,\;A=0.1\;{\rm{nm}})$ (a) 轴向振动; (b) 弯曲振动; (c) 扭转振动; (d) 屈曲振动

    Fig. 9.  Electric field distribution at ${\varepsilon }_{\rm{r}}=80$ and A = 0.1 nm: (a) Axial vibration; (b) bending vibration; (c) twisting vibration; (d) flexing vibration.

    图 10  不同振动模式电场分布$({\varepsilon }_{\rm{r}}=5\;A=0.1\;{\rm{nm}})$ (a) 轴向振动; (b) 弯曲振动; (c) 扭转振动; (d) 屈曲振动

    Fig. 10.  Electric field distribution at ${\varepsilon }_{\rm{r}}=5,$ A = 0.1 nm: (a) Axial vibration; (b) bending vibration; (c) twisting vibration; (d) flexing vibration.

  • [1]

    Hodgkin A L, Huxley A F 1952 Physiol. 117 500Google Scholar

    [2]

    Hodgkin A L, Huxley A F 1952 Physiol. 116 449Google Scholar

    [3]

    Hodgkin A L, Huxley A F 1952 Physiol. 116 497Google Scholar

    [4]

    刘延生, 吴开杰, 刘春良, 崔刚强, 常超, 刘国志 2020 中国科学: 物理 力学 天文学 63 274211Google Scholar

    Liu Y S, Wu K J, Liu C L, Cui G Q, Chang C, Liu G Z 2020 Sci. China, Ser. G 63 274211Google Scholar

    [5]

    Kučera O, Havelka D, Cifra M 2017 Wave Motion 72 13Google Scholar

    [6]

    Cifra M, Fields J Z, Farhadi A 2011 Prog. Biophys. Mol. Biol. 105 223Google Scholar

    [7]

    赵月, 詹启民 2012 理论生物学与医学模型 9 26Google Scholar

    Zhao Y, Zhan Q M 2012 Theor. Biol. Med. Modell. 9 26Google Scholar

    [8]

    De Ninno A, Pregnolato M 2017 Electromagn. Biol. Med. 36 115Google Scholar

    [9]

    Pokorný J, Jelínek F, Trkal V, Lamprecht I, Hölzel R 1997 J. Biol. Phys. 23 171Google Scholar

    [10]

    Cifra M, Pokorný J, Havelka D 2010 Biosystems 100 122Google Scholar

    [11]

    Deriu M A, Soncini M, Orsi M, Patel M, Essex J W, Montevecchi F M, Redaelli A 2010 Biophys. J. 99 2190Google Scholar

    [12]

    Sirenko Y M, Stroscio M A, Kim K W 1996 Phy. Rev. E 53 1003Google Scholar

    [13]

    Thackston K, Deheyn D, Sievenpiper D 2019 Phys. Rev. E 100 022410Google Scholar

    [14]

    Akhmanova A, Steinmetz M O 2015 Nat. Rev. Mol. Cell Biol. 16 711Google Scholar

    [15]

    Amos L A 1995 Trends Cell Biol. 5 48Google Scholar

    [16]

    Mershin A, Kolomenski A.A, Schuessler H A, Nanopoulos D V 2004 Biosystems 77 73Google Scholar

    [17]

    Pohl H A, Braden T, Robinson S, Piclardi J, Pohl D G 1981 J. Biol. Phys. 9 133Google Scholar

    [18]

    Hölzel R 2001 Electro-Magnetobiol. 20 1Google Scholar

    [19]

    Pokorný J, Hašek J, Jelínek F, Šaroch J, Palán B 2001 Electro-Magnetobiol. 20 371Google Scholar

    [20]

    Tuszyński J A, Brown J A, Crawford E, Carpenter E J, Nip M L A, Dixon J M, Satarić M V 2005 Math. Comput. Modell. 41 1055Google Scholar

    [21]

    van den Heuvel M G L, de Graaff M P, Lemay S G, Dekker C 2007 Proc. Natl. Acad. 104 7770Google Scholar

  • [1] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法. 物理学报, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [2] 殷佳鹏, 刘圣广. 用单发电子束探测激光等离子体内电磁场演化实验研究. 物理学报, 2022, 71(1): 012901. doi: 10.7498/aps.71.20211374
    [3] 马少卿, 龚士香, 张微, 路承彪, 李小俚, 李英伟. 宽带微量太赫兹辐射促进神经元生长发育. 物理学报, 2022, 71(20): 208701. doi: 10.7498/aps.71.20220636
    [4] 朱海龙, 李雪迎, 童洪辉. 三维数值模拟射频热等离子体的物理场分布. 物理学报, 2021, 70(15): 155202. doi: 10.7498/aps.70.20202135
    [5] 张秀芳, 马军, 徐莹, 任国栋. 光电管耦合FitzHugh-Nagumo神经元的同步. 物理学报, 2021, 70(9): 090502. doi: 10.7498/aps.70.20201953
    [6] 安新磊, 乔帅, 张莉. 基于麦克斯韦电磁场理论的神经元动力学响应与隐藏放电控制. 物理学报, 2021, 70(5): 050501. doi: 10.7498/aps.70.20201347
    [7] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [8] 于文婷, 张娟, 唐军. 动态突触、神经耦合与时间延迟对神经元发放的影响. 物理学报, 2017, 66(20): 200201. doi: 10.7498/aps.66.200201
    [9] 修春波, 刘畅, 郭富慧, 成怡, 罗菁. 迟滞混沌神经元/网络的控制策略及应用研究. 物理学报, 2015, 64(6): 060504. doi: 10.7498/aps.64.060504
    [10] 李晓莉, 张连水, 孙江, 冯晓敏. 微波驱动精细结构能级跃迁引起的电磁诱导负折射效应. 物理学报, 2012, 61(4): 044202. doi: 10.7498/aps.61.044202
    [11] 王兴元, 任小丽, 张永雷. 参数未知神经元模型的全阶与降阶最优同步. 物理学报, 2012, 61(6): 060508. doi: 10.7498/aps.61.060508
    [12] 陈军, 李春光. 禁忌学习神经元模型的电路设计及其动力学研究. 物理学报, 2011, 60(2): 020502. doi: 10.7498/aps.60.020502
    [13] 王慧巧, 俞连春, 陈勇. 离子通道噪声对神经元新陈代谢能量的影响. 物理学报, 2009, 58(7): 5070-5074. doi: 10.7498/aps.58.5070
    [14] 乔晓艳, 李 刚, 董有尔, 贺秉军. 弱激光诱导神经元兴奋性改变的实验研究. 物理学报, 2008, 57(2): 1259-1265. doi: 10.7498/aps.57.1259
    [15] 乔晓艳, 李 刚, 林 凌, 贺秉军. 弱激光对神经元钾离子通道特性影响的实验研究. 物理学报, 2007, 56(4): 2448-2455. doi: 10.7498/aps.56.2448
    [16] 徐春华, 刘春香, 郭红莲, 李兆霖, 降雨强, 张道中, 袁 明. 荧光标记微管的光敏断裂及机理. 物理学报, 2006, 55(1): 206-210. doi: 10.7498/aps.55.206
    [17] 柳学榕, 胡泊, 刘文汉, 高琛. 扫描近场微波显微镜测量非线性介电常数的理论校准系数. 物理学报, 2003, 52(1): 34-38. doi: 10.7498/aps.52.34
    [18] 张 勤, 班春燕, 崔建忠, 巴启先, 路贵民, 张北江. CREM法半连铸Al合金过程中电磁场对溶质元素固溶的影响机理. 物理学报, 2003, 52(10): 2642-2648. doi: 10.7498/aps.52.2642
    [19] 陈 莹, 邱锡钧. 细胞骨架微管中水的电偶极集体辐射. 物理学报, 2003, 52(6): 1554-1560. doi: 10.7498/aps.52.1554
    [20] 吴奇学. 有旋电子在电磁场及二维谐振子场中运动的双波描述. 物理学报, 2000, 49(11): 2118-2122. doi: 10.7498/aps.49.2118
计量
  • 文章访问数:  5399
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 修回日期:  2021-03-22
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回