搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于1560 nm外腔式激光器的拉曼光锁相技术

王凯楠 程冰 周寅 陈佩军 朱栋 翁堪兴 王河林 彭树萍 王肖隆 吴彬 林强

引用本文:
Citation:

基于1560 nm外腔式激光器的拉曼光锁相技术

王凯楠, 程冰, 周寅, 陈佩军, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强

Phase locking technology for Raman laser system based on 1560 nm external cavity lasers

Wang Kai-Nan, Cheng Bing, Zhou Yin, Chen Pei-Jun, Zhu Dong, Weng Kan-Xing, Wang He-Lin, Peng Shu-Ping, Wang Xiao-Long, Wu Bin, Lin Qiang
PDF
HTML
导出引用
  • 拉曼光产生技术是量子精密测量领域的一个重要研究内容, 是冷原子重力仪、冷原子陀螺仪等量子惯性传感器的关键技术. 对于铷87原子, 需要两束频差6.834 GHz且相位稳定的780 nm激光来产生拉曼光. 基于两台外腔式780 nm激光器, 并利用光学锁相环技术可以产生拉曼光, 但系统复杂、环境适应性不强. 基于内腔式1560 nm激光器, 通过倍频和电光调制技术也可以产生拉曼光, 虽然系统简单、环境适应性强, 但测量性能受边带效应影响. 受限于内腔式激光器的线宽及反馈带宽性能, 一般无法利用光学锁相环方法来产生拉曼光. 鉴于此, 本文基于两台新型外腔式1560 nm激光器和自制锁相电路系统, 实现了一套低相噪的拉曼光系统, 相位噪声功率谱在1—10 kHz频段低至–95 dBc/Hz. 通过与780 nm双激光器及混合双激光器锁相性能进行比较, 发现该方案略具优势. 此外, 通过分段积分的方法分析了该锁相性能对冷原子干涉仪相位噪声的影响. 本文实验结果为研制小型化、外场适用的拉曼光系统提供了一种方案.
    The technology of generating Raman laser is not only an important research content in the field of quantum precision measurement, but also a core technology of quantum inertial sensors such as cold atom gravimeter, gyroscope. For 87Rb atoms, two 780-nm lasers with a frequency difference of 6.834 GHz and a stable phase are needed to generate Raman light. Raman lasers can be generated by optical phase-locked loops of two 780-nm narrow linewidth external cavity tunable semiconductor lasers (ECDL). But the system thus developed is complicated in structure and very poor in environmental adaptability. The other method to generate Raman laser is based on intracavity 1560-nm laser with frequency doubling and electro-optic modulation technology. This system is simple in structure and strong in environmental adaptability, but it will introduce sideband effects and cannot achieve phase lock due to the limit by the linewidth and feedback bandwidth performance of the laser. In view of this, based on two new 1560-nm external cavity lasers and a home-made phase-locked circuit, in this paper the phase lock of the laser is achieved, and a Raman laser with low phase noise is obtained. The phase noise of beat note signal is as low as –95 dBc/Hz at the Fourier frequency in a range from 1 kHz to 10 kHz. A comparison of this system with the phase-locked performance of the 780-nm dual laser and the hybrid dual laser shows that this scheme has a slight advantage. In addition, the effect of the phase-locking performance on the phase noise of the cold atom interferometer through the method of piecewise integration is analyzed in this work. The experimental results given in this work provide a scheme for developing a miniaturized Raman optical system suitable for external fields.
      通信作者: 吴彬, wubin@zjut.edu.cn ; 林强, qlin@zjut.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFC0601602)、国家自然科学基金(批准号: 51905482, 61727821, 61875175, 11704334, 51905482)和中国自然资源航空物探遥感中心项目(批准号: DD20189831)资助的课题
      Corresponding author: Wu Bin, wubin@zjut.edu.cn ; Lin Qiang, qlin@zjut.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFC0601602), the National Natural Science Foundation of China (Grant Nos. 51905482, 61727821, 61875175, 11704334, 51905482), and the Program of China Aero Geophysical Survey and Remote Sensing Center for Natural Resources (Grant No. DD20189831)
    [1]

    Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar

    [2]

    Zhou L, Long S T, Tang B, Chen X, Gao F, Peng W C, Duan W T, Zhong J Q, Xiong Z Y, Wang J, Zhang Y Z, Zhan M S 2015 Phys. Rev. Lett. 115 013004Google Scholar

    [3]

    Tino G M, Cacciapuoti L, Capozziello S, Lambiase G, Sorrentino F 2020 Prog. Part. Nucl. Phys. 112 103772Google Scholar

    [4]

    Hamilton P, Jaffe M, Haslinger P, Simmons Q, Muller H, Khoury J 2015 Science 349 849Google Scholar

    [5]

    Jaffe M, Haslinger P, Xu V, Hamilton P, Upadhye A, Elder B, Khoury J, Muller H 2017 Nat. Phys. 13 938Google Scholar

    [6]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [7]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [8]

    McGuirk J M, Foster G T, Fixler J B, Snadden M J, Kasevich M A 2002 Phys. Rev. A 65 033608Google Scholar

    [9]

    Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L, Tino G M 2014 Phys. Rev. A 89 023607Google Scholar

    [10]

    Dutta I, Savoie D, Fang B, Venon B, Alzar C L G, Geiger R, Landragin A 2016 Phys. Rev. Lett. 116 183003Google Scholar

    [11]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046Google Scholar

    [12]

    Lautier J, Volodimer L, Hardin T, Merlet S, Lours M, Dos Santos F P, Landragin A 2014 Appl. Phys. Lett. 105 144102Google Scholar

    [13]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [14]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [15]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [16]

    Wu B, Wang Z Y, Cheng B, Wang Q Y, Xu A P, Lin Q 2014 Metrologia 51 452Google Scholar

    [17]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [18]

    Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar

    [19]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [20]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [21]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [22]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [23]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [24]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [25]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [26]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 2Google Scholar

    [27]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [28]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [29]

    Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar

    [30]

    Luo Q, Zhang H, Zhang K, Duan X C, Hu Z K, Chen L L, Zhou M K 2019 Rev. Sci. Instrum. 90 043104Google Scholar

    [31]

    Zhu L X, Lien Y H, Hinton A, Niggebaum A, Rammeloo C, Bongs K, Holynski M 2018 Opt. Express 26 6542Google Scholar

    [32]

    Fang J, Hu J, Chen X, Zhu H, Zhou L, Zhong J, Wang J, Zhan M 2018 Opt. Express 26 1586Google Scholar

    [33]

    Theron F, Bidel Y, Dieu E, Zahzam N, Cadoret M, Bresson A 2017 Opt. Commun. 393 152Google Scholar

    [34]

    Diboune C, Zahzam N, Bidel Y, Cadoret M, Bresson A 2017 Opt. Express 25 16898Google Scholar

    [35]

    Theron F, Carraz O, Renon G, Zahzam N, Bidel Y, Cadoret M, Bresson A 2015 Appl. Phys. B 118 1Google Scholar

    [36]

    Lévèque T, Antoni-Micollier L, Faure B, Berthon J 2014 Appl. Phys. B 116 997Google Scholar

    [37]

    Menoret V, Geiger R, Stern G, Zahzam N, Battelier B, Bresson A, Landragin A, Bouyer P 2011 Opt. Lett. 36 4128Google Scholar

    [38]

    Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405Google Scholar

    [39]

    Lienhart F, Boussen S, Carraz O, Zahzam N, Bidel Y, Bresson A 2007 Appl. Phys. B 89 177Google Scholar

    [40]

    吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强 2019 物理学报 68 194205Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Wu L M, Wang K N, Wang H L, Wang Z Y, Wang X L, Lin Q 2019 Acta Phys. Sin. 68 194205Google Scholar

    [41]

    Le Gouet J, Kim J, Bourassin-Bouchet C, Lours M, Landragin A, Dos Santos F P 2009 Opt. Commun. 282 977Google Scholar

    [42]

    Schmidt M, Prevedelli M, Giorgini A, Tino G M, Peters A 2011 Appl. Phys. B 102 11Google Scholar

    [43]

    Yim S H, Lee S B, Kwon T Y, Park S E 2014 Appl. Phys. B 115 491

    [44]

    Yim S H, Lee S B, Kwon T Y, Shim K M, Park S E 2019 Appl. Opt. 58 2481Google Scholar

    [45]

    Ristic S, Bhardwaj A, Rodwell M J, Coldren L A, Johansson L A 2010 J. Lightwave Technol. 28 526Google Scholar

    [46]

    Numata K, Chen J R, Wu S T 2012 Opt. Express 20 14234Google Scholar

    [47]

    Friederich F, Schuricht G, Deninger A, Lison F, Spickermann G, Bolivar P H, Roskos H G 2010 Opt. Express 18 8621Google Scholar

    [48]

    Guionie M, Frein L, Bondu F, Carre A, Loas G, Pinsard E, Cadier B, Alouini M, Romanelli M, Vallet M, Brunel M 2018 Fiber Lasers and Glass Photonics: Materials through Applications Strasbourg, France, April 22−26, 2018 p10683

    [49]

    Rouse C D, Brown A W, Wylie M T V, Colpitts B G 2011 21st International Conference on Optical Fiber Sensors Ottawa, Canada, May 15−19, 2011 p77532L

  • 图 1  拉曼光锁相的原理示意图. ML, 主激光器; SL, 从激光器; PD, 高速光电管; Mix, 混频器; RF, 射频参考

    Fig. 1.  Schematic diagram of the optical phase-locked loop (OPLL) system. ML, master laser; SL, slave laser; PD, high-speed photodiode; Mix, mixer; RF, RF reference.

    图 2  拉曼光锁相的频域原理图

    Fig. 2.  Diagram in frequency domain for the system of OPLL.

    图 3  实验系统示意图. 1560 nm FL1, 光纤激光器; 1560 nm FL2, 外腔式光纤输出型激光器; 780 nm DL1和780 nm DL2, 外腔式激光器; ISO, 隔离器; EDFA, 掺铒光纤放大器; PPLN, 周期性铌酸锂晶体; FM, 频率调制光谱; PD, 高速光电管; Amp, 低噪声放大器; Beat signal, 拍频信号; ${\Phi }\; \mathrm{l}\mathrm{o}\mathrm{c}\mathrm{k}$, 相位锁定方法; SA, 频谱分析仪; PFD, 频率相位检测模块; PID, 比例积分微分控制模块; DDS, 直接数字合成器; Frequency Ref, 频率参考; /2, 二分频; Current, 电流调制口; PZT, 压电陶瓷调制口; PDRO, 锁相介质振荡器

    Fig. 3.  Schematic diagram of the experimental system. 1560 nm FL1, fiber laser; 1560 nm FL2, fibered laser; 780 nm DL1 and 780 nm DL2, external cavity diode laser; ISO, isolator; EDFA, erbium-doped fiber amplifier; PPLN, periodic lithium niobate crystal; FM, frequency modulation spectroscopy; PD, high-speed photodiode; Amp, low noise amplifier; Beat signal, Beatnote signal; $ \varPhi \;\mathrm{l}\mathrm{o}\mathrm{c}\mathrm{k}, $ phase locking method; SA, spectrum analyzer; PFD, frequency phase detector module; PID, the module of proportional integral derivative controller; DDS, direct digital synthesizer; Frequency Ref, frequency reference; /2, two-way frequency; Current, current modulation port; PZT, piezoelectric ceramic modulation port; PDRO, phase locked dielectric resonator oscillator.

    图 4  锁相后的拍频信号谱线

    Fig. 4.  Spectra of the closed-loop beat note.

    图 5  光锁相环各部分的相位噪声功率谱

    Fig. 5.  Phase noise spectral density for several parts of the OPLL system.

    图 6  三种激光器组合锁相后的相位噪声功率谱

    Fig. 6.  Phase noise spectral density for three kinds of combinations of the lasers.

    图 7  相噪分段积分的结果

    Fig. 7.  Results of subsection integral based on the phase noise spectra.

    图 8  相噪对重力测量性能的影响

    Fig. 8.  Influence of the phase noise on the gravity measurement performance.

  • [1]

    Parker R H, Yu C, Zhong W, Estey B, Müller H 2018 Science 360 191Google Scholar

    [2]

    Zhou L, Long S T, Tang B, Chen X, Gao F, Peng W C, Duan W T, Zhong J Q, Xiong Z Y, Wang J, Zhang Y Z, Zhan M S 2015 Phys. Rev. Lett. 115 013004Google Scholar

    [3]

    Tino G M, Cacciapuoti L, Capozziello S, Lambiase G, Sorrentino F 2020 Prog. Part. Nucl. Phys. 112 103772Google Scholar

    [4]

    Hamilton P, Jaffe M, Haslinger P, Simmons Q, Muller H, Khoury J 2015 Science 349 849Google Scholar

    [5]

    Jaffe M, Haslinger P, Xu V, Hamilton P, Upadhye A, Elder B, Khoury J, Muller H 2017 Nat. Phys. 13 938Google Scholar

    [6]

    Peters A, Chung K Y, Chu S 2001 Metrologia 38 25Google Scholar

    [7]

    Peters A, Chung K Y, Chu S 1999 Nature 400 849Google Scholar

    [8]

    McGuirk J M, Foster G T, Fixler J B, Snadden M J, Kasevich M A 2002 Phys. Rev. A 65 033608Google Scholar

    [9]

    Sorrentino F, Bodart Q, Cacciapuoti L, Lien Y H, Prevedelli M, Rosi G, Salvi L, Tino G M 2014 Phys. Rev. A 89 023607Google Scholar

    [10]

    Dutta I, Savoie D, Fang B, Venon B, Alzar C L G, Geiger R, Landragin A 2016 Phys. Rev. Lett. 116 183003Google Scholar

    [11]

    Gustavson T L, Bouyer P, Kasevich M A 1997 Phys. Rev. Lett. 78 2046Google Scholar

    [12]

    Lautier J, Volodimer L, Hardin T, Merlet S, Lours M, Dos Santos F P, Landragin A 2014 Appl. Phys. Lett. 105 144102Google Scholar

    [13]

    Cheiney P, Fouche L, Templier S, Napolitano F, Battelier B, Bouyer P, Barrett B 2018 Phys. Rev. Appl. 10 034030Google Scholar

    [14]

    Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J, Zhan M S 2019 Metrologia 56 045012Google Scholar

    [15]

    Fu Z J, Wu B, Cheng B, Zhou Y, Weng K X, Zhu D, Wang Z Y, Lin Q 2019 Metrologia 56 025001Google Scholar

    [16]

    Wu B, Wang Z Y, Cheng B, Wang Q Y, Xu A P, Lin Q 2014 Metrologia 51 452Google Scholar

    [17]

    Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H, Scherneck H G, Muller J, Peters A 2016 J. Phys. Conf. Ser. 723 012050Google Scholar

    [18]

    Menoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A, Desruelle B 2018 Sci. Rep. 8 12300Google Scholar

    [19]

    Hu Z K, Sun B L, Duan X C, Zhou M K, Chen L L, Zhan S, Zhang Q Z, Luo J 2013 Phys. Rev. A 88 043610Google Scholar

    [20]

    Wang S K, Zhao Y, Zhuang W, Li T C, Wu S Q, Feng J Y, Li C J 2018 Metrologia 55 360Google Scholar

    [21]

    Gillot P, Francis O, Landragin A, Dos Santos F P, Merlet S 2014 Metrologia 51 L15Google Scholar

    [22]

    Bidel Y, Carraz O, Charriere R, Cadoret M, Zahzam N, Bresson A 2013 Appl. Phys. Lett. 102 144107Google Scholar

    [23]

    Wu X J, Pagel Z, Malek B S, Nguyen T H, Zi F, Scheirer D S, Muller H 2019 Sci. Adv. 5 eaax0800Google Scholar

    [24]

    Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette M F 2018 Nat. Commun. 9 9Google Scholar

    [25]

    吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强 2020 物理学报 69 060302Google Scholar

    Wu B, Zhou Y, Cheng B, Zhu D, Wang K N, Zhu X X, Chen P J, Weng K X, Yang Q H, Lin J H, Zhang K J, Wang H L, Lin Q 2020 Acta Phys. Sin. 69 060302Google Scholar

    [26]

    Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen A V, Forsberg R 2020 J. Geod. 94 2Google Scholar

    [27]

    程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强 2021 物理学报 70 040304Google Scholar

    Cheng B, Zhou Y, Chen P J, Zhang K J, Zhu D, Wang K N, Weng K X, Wang H L, Peng S P, Wang X L, Wu B, Lin Q 2021 Acta Phys. Sin. 70 040304Google Scholar

    [28]

    Zhang X W, Zhong J Q, Tang B, Chen X, Zhu L, Huang P W, Wang J, Zhan M S 2018 Appl. Opt. 57 6545Google Scholar

    [29]

    Wang Q, Wang Z, Fu Z, Liu W, Lin Q 2016 Opt. Commun. 358 82Google Scholar

    [30]

    Luo Q, Zhang H, Zhang K, Duan X C, Hu Z K, Chen L L, Zhou M K 2019 Rev. Sci. Instrum. 90 043104Google Scholar

    [31]

    Zhu L X, Lien Y H, Hinton A, Niggebaum A, Rammeloo C, Bongs K, Holynski M 2018 Opt. Express 26 6542Google Scholar

    [32]

    Fang J, Hu J, Chen X, Zhu H, Zhou L, Zhong J, Wang J, Zhan M 2018 Opt. Express 26 1586Google Scholar

    [33]

    Theron F, Bidel Y, Dieu E, Zahzam N, Cadoret M, Bresson A 2017 Opt. Commun. 393 152Google Scholar

    [34]

    Diboune C, Zahzam N, Bidel Y, Cadoret M, Bresson A 2017 Opt. Express 25 16898Google Scholar

    [35]

    Theron F, Carraz O, Renon G, Zahzam N, Bidel Y, Cadoret M, Bresson A 2015 Appl. Phys. B 118 1Google Scholar

    [36]

    Lévèque T, Antoni-Micollier L, Faure B, Berthon J 2014 Appl. Phys. B 116 997Google Scholar

    [37]

    Menoret V, Geiger R, Stern G, Zahzam N, Battelier B, Bresson A, Landragin A, Bouyer P 2011 Opt. Lett. 36 4128Google Scholar

    [38]

    Carraz O, Lienhart F, Charrière R, Cadoret M, Zahzam N, Bidel Y, Bresson A 2009 Appl. Phys. B 97 405Google Scholar

    [39]

    Lienhart F, Boussen S, Carraz O, Zahzam N, Bidel Y, Bresson A 2007 Appl. Phys. B 89 177Google Scholar

    [40]

    吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强 2019 物理学报 68 194205Google Scholar

    Wu B, Cheng B, Fu Z J, Zhu D, Wu L M, Wang K N, Wang H L, Wang Z Y, Wang X L, Lin Q 2019 Acta Phys. Sin. 68 194205Google Scholar

    [41]

    Le Gouet J, Kim J, Bourassin-Bouchet C, Lours M, Landragin A, Dos Santos F P 2009 Opt. Commun. 282 977Google Scholar

    [42]

    Schmidt M, Prevedelli M, Giorgini A, Tino G M, Peters A 2011 Appl. Phys. B 102 11Google Scholar

    [43]

    Yim S H, Lee S B, Kwon T Y, Park S E 2014 Appl. Phys. B 115 491

    [44]

    Yim S H, Lee S B, Kwon T Y, Shim K M, Park S E 2019 Appl. Opt. 58 2481Google Scholar

    [45]

    Ristic S, Bhardwaj A, Rodwell M J, Coldren L A, Johansson L A 2010 J. Lightwave Technol. 28 526Google Scholar

    [46]

    Numata K, Chen J R, Wu S T 2012 Opt. Express 20 14234Google Scholar

    [47]

    Friederich F, Schuricht G, Deninger A, Lison F, Spickermann G, Bolivar P H, Roskos H G 2010 Opt. Express 18 8621Google Scholar

    [48]

    Guionie M, Frein L, Bondu F, Carre A, Loas G, Pinsard E, Cadier B, Alouini M, Romanelli M, Vallet M, Brunel M 2018 Fiber Lasers and Glass Photonics: Materials through Applications Strasbourg, France, April 22−26, 2018 p10683

    [49]

    Rouse C D, Brown A W, Wylie M T V, Colpitts B G 2011 21st International Conference on Optical Fiber Sensors Ottawa, Canada, May 15−19, 2011 p77532L

  • [1] 成永军, 董猛, 孙雯君, 吴翔民, 张亚飞, 贾文杰, 冯村, 张瑞芳. 基于7Li冷原子操控的超高真空测量. 物理学报, 2024, 73(22): 220601. doi: 10.7498/aps.73.20241215
    [2] 翟荟. 基于冷原子的非平衡量子多体物理研究. 物理学报, 2023, 72(23): 230701. doi: 10.7498/aps.72.20231375
    [3] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验. 物理学报, 2022, 71(2): 026701. doi: 10.7498/aps.71.20211449
    [4] 张苏钊, 孙雯君, 董猛, 武海斌, 李睿, 张雪姣, 张静怡, 成永军. 基于磁光阱中6Li冷原子的真空度测量. 物理学报, 2022, 71(9): 094204. doi: 10.7498/aps.71.20212204
    [5] 程冰, 陈佩军, 周寅, 王凯楠, 朱栋, 楚立, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于冷原子重力仪的绝对重力动态移动测量实验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211449
    [6] 程冰, 周寅, 陈佩军, 张凯军, 朱栋, 王凯楠, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 船载系泊状态下基于原子重力仪的绝对重力测量. 物理学报, 2021, 70(4): 040304. doi: 10.7498/aps.70.20201522
    [7] 吴彬, 周寅, 程冰, 朱栋, 王凯楠, 朱欣欣, 陈佩军, 翁堪兴, 杨秋海, 林佳宏, 张凯军, 王河林, 林强. 基于原子重力仪的车载静态绝对重力测量. 物理学报, 2020, 69(6): 060302. doi: 10.7498/aps.69.20191765
    [8] 何天琛, 李吉. 利用Kapitza-Dirac脉冲操控简谐势阱中冷原子测量重力加速度. 物理学报, 2019, 68(20): 203701. doi: 10.7498/aps.68.20190749
    [9] 陈斌, 龙金宝, 谢宏泰, 陈泺侃, 陈帅. 可移动三维主动减振系统及其在原子干涉重力仪上的应用. 物理学报, 2019, 68(18): 183301. doi: 10.7498/aps.68.20190443
    [10] 吴彬, 程冰, 付志杰, 朱栋, 邬黎明, 王凯楠, 王河林, 王兆英, 王肖隆, 林强. 拉曼激光边带效应对冷原子重力仪测量精度的影响. 物理学报, 2019, 68(19): 194205. doi: 10.7498/aps.68.20190581
    [11] 王谨, 詹明生. 基于原子干涉仪的微观粒子弱等效原理检验. 物理学报, 2018, 67(16): 160402. doi: 10.7498/aps.67.20180621
    [12] 吴彬, 程冰, 付志杰, 朱栋, 周寅, 翁堪兴, 王肖隆, 林强. 大倾斜角度下基于冷原子重力仪的绝对重力测量. 物理学报, 2018, 67(19): 190302. doi: 10.7498/aps.67.20181121
    [13] 王志辉, 田亚莉, 李刚, 张天才. 用于铯原子内态操控的双光子拉曼激光的产生及应用. 物理学报, 2015, 64(18): 184209. doi: 10.7498/aps.64.184209
    [14] 杨威, 孙大立, 周林, 王谨, 詹明生. 用于原子干涉仪实验的锂原子的塞曼减速与磁光囚禁. 物理学报, 2014, 63(15): 153701. doi: 10.7498/aps.63.153701
    [15] 熊宗元, 姚战伟, 王玲, 李润兵, 王谨, 詹明生. 对抛式冷原子陀螺仪中原子运动轨迹的控制. 物理学报, 2011, 60(11): 113201. doi: 10.7498/aps.60.113201
    [16] 朱常兴, 冯焱颖, 叶雄英, 周兆英, 周永佳, 薛洪波. 利用原子干涉仪的相位调制进行绝对转动测量. 物理学报, 2008, 57(2): 808-815. doi: 10.7498/aps.57.808
    [17] 江开军, 李 可, 王 谨, 詹明生. Rb原子磁光阱中囚禁原子数目与实验参数的依赖关系. 物理学报, 2006, 55(1): 125-129. doi: 10.7498/aps.55.125
    [18] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间. 物理学报, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [19] 耿 涛, 闫树斌, 王彦华, 杨海菁, 张天才, 王军民. 用短程飞行时间吸收谱对铯磁光阱中冷原子温度的测量. 物理学报, 2005, 54(11): 5104-5108. doi: 10.7498/aps.54.5104
    [20] 罗有华, 黄整, 王育竹. 冷原子在静电势阱中的量子力学效应. 物理学报, 2002, 51(8): 1706-1710. doi: 10.7498/aps.51.1706
计量
  • 文章访问数:  5833
  • PDF下载量:  142
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-06
  • 修回日期:  2021-04-21
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回